Skip to main content

Aged-Related Physiological Changes: CNS Function

  • Chapter
  • First Online:
The Very Old Critically Ill Patients

Part of the book series: Lessons from the ICU ((LEICU))

  • 792 Accesses

Abstract

The central nervous system (CNS) is a complex entity characterised by lots of cells, organised in networks, and has various functions. In this chapter, we will expose CNS normal ageing at a molecular, cellular, and functional level, in order to better understand the interdependence of CNS age-related changes. It will highlight intensive care issues in older people from the point of view of our brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Heffernan AL, Hare DJ. Tracing environmental exposure from neurodevelopment to neurodegeneration. Trends Neurosci. 2018;41(8):496–501.

    Article  CAS  PubMed  Google Scholar 

  2. Gold G, Bouras C, Kovari E, Canuto A, Glaria BG, Malky A, et al. Clinical validity of Braak neuropathological staging in the oldest-old. Acta Neuropathol. 2000;99(5):579–82; discussion 83–4.

    Article  CAS  PubMed  Google Scholar 

  3. Maccioni RB, Cambiazo V. Role of microtubule-associated proteins in the control of microtubule assembly. Physiol Rev. 1995;75(4):835–64.

    Article  CAS  PubMed  Google Scholar 

  4. Bouras C, Hof PR, Morrison JH. Neurofibrillary tangle densities in the hippocampal formation in a non-demented population define subgroups of patients with differential early pathologic changes. Neurosci Lett. 1993;153(2):131–5.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang K, Mizuma H, Zhang X, Takahashi K, Jin C, Song F, et al. PET imaging of neural activity, beta-amyloid, and tau in normal brain aging. Eur J Nucl Med Mol Imaging. 2021;

    Google Scholar 

  6. Clayton KA, Van Enoo AA, Ikezu T. Alzheimer's disease: the role of microglia in brain homeostasis and proteopathy. Front Neurosci. 2017;11:680.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wong SQ, Kumar AV, Mills J, Lapierre LR. Autophagy in aging and longevity. Hum Genet. 2020;139(3):277–90.

    Article  PubMed  Google Scholar 

  8. Keller JN, Dimayuga E, Chen Q, Thorpe J, Gee J, Ding Q. Autophagy, proteasomes, lipofuscin, and oxidative stress in the aging brain. Int J Biochem Cell Biol. 2004;36(12):2376–91.

    Article  CAS  PubMed  Google Scholar 

  9. Plaza-Zabala A, Sierra-Torre V, Sierra A. Autophagy and microglia: novel partners in neurodegeneration and aging. Int J Mol Sci. 2017;18(3)

    Google Scholar 

  10. Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956;11(3):298–300.

    Article  CAS  PubMed  Google Scholar 

  11. Santos RX, Correia SC, Zhu X, Smith MA, Moreira PI, Castellani RJ, et al. Mitochondrial DNA oxidative damage and repair in aging and Alzheimer's disease. Antioxid Redox Signal. 2013;18(18):2444–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pratico D, Sung S. Lipid peroxidation and oxidative imbalance: early functional events in Alzheimer's disease. J Alzheimers Dis. 2004;6(2):171–5.

    Article  CAS  PubMed  Google Scholar 

  13. Nicolle MM, Gonzalez J, Sugaya K, Baskerville KA, Bryan D, Lund K, et al. Signatures of hippocampal oxidative stress in aged spatial learning-impaired rodents. Neuroscience. 2001;107(3):415–31.

    Article  CAS  PubMed  Google Scholar 

  14. Gemma C, Vila J, Bachstetter A, Bickford PC. Oxidative stress and the aging brain: from theory to prevention. In: Riddle DR, editor. Brain aging: models, methods, and mechanisms. Frontiers in neuroscience. Boca Raton (FL); 2007.

    Google Scholar 

  15. Barrientos RM, Kitt MM, Watkins LR, Maier SF. Neuroinflammation in the normal aging hippocampus. Neuroscience. 2015;309:84–99.

    Article  CAS  PubMed  Google Scholar 

  16. Kuzumaki N, Ikegami D, Imai S, Narita M, Tamura R, Yajima M, et al. Enhanced IL-1beta production in response to the activation of hippocampal glial cells impairs neurogenesis in aged mice. Synapse. 2010;64(9):721–8.

    CAS  PubMed  Google Scholar 

  17. Nolan Y, Maher FO, Martin DS, Clarke RM, Brady MT, Bolton AE, et al. Role of interleukin-4 in regulation of age-related inflammatory changes in the hippocampus. J Biol Chem. 2005;280(10):9354–62.

    Article  CAS  PubMed  Google Scholar 

  18. Desplats P, Gutierrez AM, Antonelli MC, Frasch MG. Microglial memory of early life stress and inflammation: susceptibility to neurodegeneration in adulthood. Neurosci Biobehav Rev. 2020;117:232–42.

    Article  PubMed  Google Scholar 

  19. Azevedo FA, Carvalho LR, Grinberg LT, Farfel JM, Ferretti RE, Leite RE, et al. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol. 2009;513(5):532–41.

    Article  PubMed  Google Scholar 

  20. Turner DA, Deupree DL. Functional elongation of CA1 hippocampal neurons with aging in Fischer 344 rats. Neurobiol Aging. 1991;12(3):201–10.

    Article  CAS  PubMed  Google Scholar 

  21. Wilson IA, Ikonen S, Gallagher M, Eichenbaum H, Tanila H. Age-associated alterations of hippocampal place cells are subregion specific. J Neurosci. 2005;25(29):6877–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kumar A, Foster TC. Enhanced long-term potentiation during aging is masked by processes involving intracellular calcium stores. J Neurophysiol. 2004;91(6):2437–44.

    Article  PubMed  Google Scholar 

  23. Barnes CA, Rao G, McNaughton BL. Functional integrity of NMDA-dependent LTP induction mechanisms across the lifespan of F-344 rats. Learn Mem. 1996;3(2–3):124–37.

    Article  CAS  PubMed  Google Scholar 

  24. Kelly KM, Nadon NL, Morrison JH, Thibault O, Barnes CA, Blalock EM. The neurobiology of aging. Epilepsy Res. 2006;68 Suppl 1:S5–20.

    Article  CAS  PubMed  Google Scholar 

  25. Kaplan MS. Formation and turnover of neurons in young and senescent animals: an electronmicroscopic and morphometric analysis. Ann N Y Acad Sci. 1985;457:173–92.

    Article  CAS  PubMed  Google Scholar 

  26. Gould E, Reeves AJ, Fallah M, Tanapat P, Gross CG, Fuchs E. Hippocampal neurogenesis in adult Old World primates. Proc Natl Acad Sci U S A. 1999;96(9):5263–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Freundlieb N, Francois C, Tande D, Oertel WH, Hirsch EC, Hoglinger GU. Dopaminergic substantia nigra neurons project topographically organized to the subventricular zone and stimulate precursor cell proliferation in aged primates. J Neurosci. 2006;26(8):2321–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nibu K, Kondo K, Ohta Y, Ishibashi T, Rothstein JL, Kaga K. Expression of NeuroD and TrkB in developing and aged mouse olfactory epithelium. Neuroreport. 2001;12(8):1615–9.

    Article  CAS  PubMed  Google Scholar 

  29. Saaltink DJ, Vreugdenhil E. Stress, glucocorticoid receptors, and adult neurogenesis: a balance between excitation and inhibition? Cell Mol Life Sci. 2014;71(13):2499–515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nacher J, Alonso-Llosa G, Rosell DR, McEwen BS. NMDA receptor antagonist treatment increases the production of new neurons in the aged rat hippocampus. Neurobiol Aging. 2003;24(2):273–84.

    Article  CAS  PubMed  Google Scholar 

  31. Conde JR, Streit WJ. Microglia in the aging brain. J Neuropathol Exp Neurol. 2006;65(3):199–203.

    Article  PubMed  Google Scholar 

  32. van Praag H, Christie BR, Sejnowski TJ, Gage FH. Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci U S A. 1999;96(23):13427–31.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Speisman RB, Kumar A, Rani A, Pastoriza JM, Severance JE, Foster TC, et al. Environmental enrichment restores neurogenesis and rapid acquisition in aged rats. Neurobiol Aging. 2013;34(1):263–74.

    Article  PubMed  Google Scholar 

  34. Smith DE, Rapp PR, McKay HM, Roberts JA, Tuszynski MH. Memory impairment in aged primates is associated with focal death of cortical neurons and atrophy of subcortical neurons. J Neurosci. 2004;24(18):4373–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dickson DW, Crystal HA, Mattiace LA, Masur DM, Blau AD, Davies P, et al. Identification of normal and pathological aging in prospectively studied nondemented elderly humans. Neurobiol Aging. 1992;13(1):179–89.

    Article  CAS  PubMed  Google Scholar 

  36. Wang DS, Bennett DA, Mufson EJ, Mattila P, Cochran E, Dickson DW. Contribution of changes in ubiquitin and myelin basic protein to age-related cognitive decline. Neurosci Res. 2004;48(1):93–100.

    Article  CAS  PubMed  Google Scholar 

  37. Peters A, Sethares C. Aging and the myelinated fibers in prefrontal cortex and corpus callosum of the monkey. J Comp Neurol. 2002;442(3):277–91.

    Article  PubMed  Google Scholar 

  38. Blalock EM, Chen KC, Sharrow K, Herman JP, Porter NM, Foster TC, et al. Gene microarrays in hippocampal aging: statistical profiling identifies novel processes correlated with cognitive impairment. J Neurosci. 2003;23(9):3807–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sugiyama I, Tanaka K, Akita M, Yoshida K, Kawase T, Asou H. Ultrastructural analysis of the paranodal junction of myelinated fibers in 31-month-old-rats. J Neurosci Res. 2002;70(3):309–17.

    Article  CAS  PubMed  Google Scholar 

  40. Chen D, Huang Y, Shi Z, Li J, Zhang Y, Wang K, et al. Demyelinating processes in aging and stroke in the central nervous system and the prospect of treatment strategy. CNS Neurosci Ther. 2020;26(12):1219–29.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Peters A, Sethares C. Is there remyelination during aging of the primate central nervous system? J Comp Neurol. 2003;460(2):238–54.

    Article  PubMed  Google Scholar 

  42. Wolf SA, Boddeke HW, Kettenmann H. Microglia in physiology and disease. Annu Rev Physiol. 2017;79:619–43.

    Article  CAS  PubMed  Google Scholar 

  43. Wang JL, Xu CJ. Astrocytes autophagy in aging and neurodegenerative disorders. Biomed Pharmacother. 2020;122:109691.

    Article  CAS  PubMed  Google Scholar 

  44. Rocha SM, Cristovao AC, Campos FL, Fonseca CP, Baltazar G. Astrocyte-derived GDNF is a potent inhibitor of microglial activation. Neurobiol Dis. 2012;47(3):407–15.

    Article  CAS  PubMed  Google Scholar 

  45. Farina C, Aloisi F, Meinl E. Astrocytes are active players in cerebral innate immunity. Trends Immunol. 2007;28(3):138–45.

    Article  CAS  PubMed  Google Scholar 

  46. Jha MK, Jo M, Kim JH, Suk K. Microglia-astrocyte crosstalk: an intimate molecular conversation. Neuroscientist. 2019;25(3):227–40.

    Article  CAS  PubMed  Google Scholar 

  47. Streit WJ, Sammons NW, Kuhns AJ, Sparks DL. Dystrophic microglia in the aging human brain. Glia. 2004;45(2):208–12.

    Article  PubMed  Google Scholar 

  48. Matcovitch-Natan O, Winter DR, Giladi A, Vargas Aguilar S, Spinrad A, Sarrazin S, et al. Microglia development follows a stepwise program to regulate brain homeostasis. Science. 2016;353(6301):aad8670.

    Article  PubMed  CAS  Google Scholar 

  49. Benmamar-Badel A, Owens T, Wlodarczyk A. Protective microglial subset in development, aging, and disease: lessons from transcriptomic studies. Front Immunol. 2020;11:430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Elmore MR, Najafi AR, Koike MA, Dagher NN, Spangenberg EE, Rice RA, et al. Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron. 2014;82(2):380–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lopez-Redondo F, Nakajima K, Honda S, Kohsaka S. Glutamate transporter GLT-1 is highly expressed in activated microglia following facial nerve axotomy. Brain Res Mol Brain Res. 2000;76(2):429–35.

    Article  CAS  PubMed  Google Scholar 

  52. Akiyoshi R, Wake H, Kato D, Horiuchi H, Ono R, Ikegami A, et al. Microglia enhance synapse activity to promote local network synchronization. eNeuro. 2018;5(5)

    Google Scholar 

  53. Biber K, Neumann H, Inoue K, Boddeke HW. Neuronal 'On' and 'Off' signals control microglia. Trends Neurosci. 2007;30(11):596–602.

    Article  CAS  PubMed  Google Scholar 

  54. Cox FF, Carney D, Miller AM, Lynch MA. CD200 fusion protein decreases microglial activation in the hippocampus of aged rats. Brain Behav Immun. 2012;26(5):789–96.

    Article  CAS  PubMed  Google Scholar 

  55. Sheridan GK, Wdowicz A, Pickering M, Watters O, Halley P, O'Sullivan NC, et al. CX3CL1 is up-regulated in the rat hippocampus during memory-associated synaptic plasticity. Front Cell Neurosci. 2014;8:233.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Deczkowska A, Keren-Shaul H, Weiner A, Colonna M, Schwartz M, Amit I. Disease-associated microglia: a universal immune sensor of neurodegeneration. Cell. 2018;173(5):1073–81.

    Article  CAS  PubMed  Google Scholar 

  57. Vivar C, van Praag H. Functional circuits of new neurons in the dentate gyrus. Front Neural Circ. 2013;7:15.

    Google Scholar 

  58. Sultan S, Li L, Moss J, Petrelli F, Casse F, Gebara E, et al. Synaptic integration of adult-born hippocampal neurons is locally controlled by astrocytes. Neuron. 2015;88(5):957–72.

    Article  CAS  PubMed  Google Scholar 

  59. Kreisel T, Wolf B, Keshet E, Licht T. Unique role for dentate gyrus microglia in neuroblast survival and in VEGF-induced activation. Glia. 2019;67(4):594–618.

    Article  PubMed  Google Scholar 

  60. Monje ML, Toda H, Palmer TD. Inflammatory blockade restores adult hippocampal neurogenesis. Science. 2003;302(5651):1760–5.

    Article  CAS  PubMed  Google Scholar 

  61. Ziv Y, Ron N, Butovsky O, Landa G, Sudai E, Greenberg N, et al. Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat Neurosci. 2006;9(2):268–75.

    Article  CAS  PubMed  Google Scholar 

  62. Kalaria RN, Hase Y. Neurovascular ageing and age-related diseases. Subcell Biochem. 2019;91:477–99.

    Article  CAS  PubMed  Google Scholar 

  63. del Zoppo GJ. Aging and the neurovascular unit. Ann N Y Acad Sci. 2012;1268:127–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Toth P, Tarantini S, Tucsek Z, Ashpole NM, Sosnowska D, Gautam T, et al. Resveratrol treatment rescues neurovascular coupling in aged mice: role of improved cerebromicrovascular endothelial function and downregulation of NADPH oxidase. Am J Physiol Heart Circ Physiol. 2014;306(3):H299–308.

    Article  CAS  PubMed  Google Scholar 

  65. Meszaros A, Molnar K, Nogradi B, Hernadi Z, Nyul-Toth A, Wilhelm I, et al. Neurovascular Inflammaging in health and disease. Cell. 2020;9(7)

    Google Scholar 

  66. Tarantini S, Tran CHT, Gordon GR, Ungvari Z, Csiszar A. Impaired neurovascular coupling in aging and Alzheimer's disease: contribution of astrocyte dysfunction and endothelial impairment to cognitive decline. Exp Gerontol. 2017;94:52–8.

    Article  CAS  PubMed  Google Scholar 

  67. Sorond FA, Kiely DK, Galica A, Moscufo N, Serrador JM, Iloputaife I, et al. Neurovascular coupling is impaired in slow walkers: the MOBILIZE Boston Study. Ann Neurol. 2011;70(2):213–20.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Elahy M, Jackaman C, Mamo JC, Lam V, Dhaliwal SS, Giles C, et al. Blood-brain barrier dysfunction developed during normal aging is associated with inflammation and loss of tight junctions but not with leukocyte recruitment. Immun Ageing. 2015;12:2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Haeger A, Mangin JF, Vignaud A, Poupon C, Grigis A, Boumezbeur F, et al. Imaging the aging brain: study design and baseline findings of the SENIOR cohort. Alzheimers Res Ther. 2020;12(1):77.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Salat DH, Buckner RL, Snyder AZ, Greve DN, Desikan RS, Busa E, et al. Thinning of the cerebral cortex in aging. Cereb Cortex. 2004;14(7):721–30.

    Article  PubMed  Google Scholar 

  71. Fjell AM, Walhovd KB. Structural brain changes in aging: courses, causes and cognitive consequences. Rev Neurosci. 2010;21(3):187–221.

    Article  PubMed  Google Scholar 

  72. Jacobs B, Driscoll L, Schall M. Life-span dendritic and spine changes in areas 10 and 18 of human cortex: a quantitative Golgi study. J Comp Neurol. 1997;386(4):661–80.

    Article  CAS  PubMed  Google Scholar 

  73. Pakkenberg B, Gundersen HJ. Neocortical neuron number in humans: effect of sex and age. J Comp Neurol. 1997;384(2):312–20.

    Article  CAS  PubMed  Google Scholar 

  74. Ge Y, Grossman RI, Babb JS, Rabin ML, Mannon LJ, Kolson DL. Age-related total gray matter and white matter changes in normal adult brain. Part I: volumetric MR imaging analysis. AJNR Am J Neuroradiol. 2002;23(8):1327–33.

    PubMed  PubMed Central  Google Scholar 

  75. Marner L, Nyengaard JR, Tang Y, Pakkenberg B. Marked loss of myelinated nerve fibers in the human brain with age. J Comp Neurol. 2003;462(2):144–52.

    Article  PubMed  Google Scholar 

  76. Takahashi T, Murata T, Omori M, Kosaka H, Takahashi K, Yonekura Y, et al. Quantitative evaluation of age-related white matter microstructural changes on MRI by multifractal analysis. J Neurol Sci. 2004;225(1–2):33–7.

    Article  PubMed  Google Scholar 

  77. Ota M, Obata T, Akine Y, Ito H, Ikehira H, Asada T, et al. Age-related degeneration of corpus callosum measured with diffusion tensor imaging. NeuroImage. 2006;31(4):1445–52.

    Article  PubMed  Google Scholar 

  78. Davis SW, Dennis NA, Buchler NG, White LE, Madden DJ, Cabeza R. Assessing the effects of age on long white matter tracts using diffusion tensor tractography. NeuroImage. 2009;46(2):530–41.

    Article  PubMed  Google Scholar 

  79. Zahr NM, Rohlfing T, Pfefferbaum A, Sullivan EV. Problem solving, working memory, and motor correlates of association and commissural fiber bundles in normal aging: a quantitative fiber tracking study. NeuroImage. 2009;44(3):1050–62.

    Article  PubMed  Google Scholar 

  80. Dennis EL, Thompson PM. Functional brain connectivity using fMRI in aging and Alzheimer's disease. Neuropsychol Rev. 2014;24(1):49–62.

    Article  PubMed  PubMed Central  Google Scholar 

  81. de Groot JC, de Leeuw FE, Oudkerk M, van Gijn J, Hofman A, Jolles J, et al. Cerebral white matter lesions and cognitive function: the Rotterdam Scan Study. Ann Neurol. 2000;47(2):145–51.

    Article  PubMed  Google Scholar 

  82. Resnick SM, Pham DL, Kraut MA, Zonderman AB, Davatzikos C. Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain. J Neurosci. 2003;23(8):3295–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Raz N, Gunning-Dixon F, Head D, Rodrigue KM, Williamson A, Acker JD. Aging, sexual dimorphism, and hemispheric asymmetry of the cerebral cortex: replicability of regional differences in volume. Neurobiol Aging. 2004;25(3):377–96.

    Article  PubMed  Google Scholar 

  84. Gunning-Dixon FM, Head D, McQuain J, Acker JD, Raz N. Differential aging of the human striatum: a prospective MR imaging study. AJNR Am J Neuroradiol. 1998;19(8):1501–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Pfefferbaum A, Adalsteinsson E, Sullivan EV. Frontal circuitry degradation marks healthy adult aging: evidence from diffusion tensor imaging. NeuroImage. 2005;26(3):891–9.

    Article  PubMed  Google Scholar 

  86. Rypma B, D'Esposito M. Isolating the neural mechanisms of age-related changes in human working memory. Nat Neurosci. 2000;3(5):509–15.

    Article  CAS  PubMed  Google Scholar 

  87. Rypma B, Berger JS, Genova HM, Rebbechi D, D'Esposito M. Dissociating age-related changes in cognitive strategy and neural efficiency using event-related fMRI. Cortex. 2005;41(4):582–94.

    Article  PubMed  Google Scholar 

  88. Volkow ND, Logan J, Fowler JS, Wang GJ, Gur RC, Wong C, et al. Association between age-related decline in brain dopamine activity and impairment in frontal and cingulate metabolism. Am J Psychiatry. 2000;157(1):75–80.

    Article  CAS  PubMed  Google Scholar 

  89. Kaasinen V, Kemppainen N, Nagren K, Helenius H, Kurki T, Rinne JO. Age-related loss of extrastriatal dopamine D(2) -like receptors in women. J Neurochem. 2002;81(5):1005–10.

    Article  CAS  PubMed  Google Scholar 

  90. Chen PS, Yang YK, Lee YS, Yeh TL, Lee IH, Chiu NT, et al. Correlation between different memory systems and striatal dopamine D2/D3 receptor density: a single photon emission computed tomography study. Psychol Med. 2005;35(2):197–204.

    Article  CAS  PubMed  Google Scholar 

  91. Bonifazi P, Erramuzpe A, Diez I, Gabilondo I, Boisgontier MP, Pauwels L, et al. Structure-function multi-scale connectomics reveals a major role of the fronto-striato-thalamic circuit in brain aging. Hum Brain Mapp. 2018;39(12):4663–77.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Sullivan EV, Marsh L, Pfefferbaum A. Preservation of hippocampal volume throughout adulthood in healthy men and women. Neurobiol Aging. 2005;26(7):1093–8.

    Article  PubMed  Google Scholar 

  93. Catchlove SJ, Parrish TB, Chen Y, Macpherson H, Hughes ME, Pipingas A. Regional cerebrovascular reactivity and cognitive performance in healthy aging. J Exp Neurosci. 2018;12:1179069518785151.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Boskovic Z, Meier S, Wang Y, Milne MR, Onraet T, Tedoldi A, et al. Regulation of cholinergic basal forebrain development, connectivity, and function by neurotrophin receptors. Neuronal Signals. 2019;3(1):NS20180066.

    Article  CAS  Google Scholar 

  95. Mena-Segovia J. Structural and functional considerations of the cholinergic brainstem. J Neural Transm (Vienna). 2016;123(7):731–6.

    Article  CAS  Google Scholar 

  96. Szutowicz A, Bielarczyk H, Jankowska-Kulawy A, Pawelczyk T, Ronowska A. Acetyl-CoA the key factor for survival or death of cholinergic neurons in course of neurodegenerative diseases. Neurochem Res. 2013;38(8):1523–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Maurer SV, Williams CL. The cholinergic system modulates memory and hippocampal plasticity via its interactions with non-neuronal cells. Front Immunol. 2017;8:1489.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Gamage R, Wagnon I, Rossetti I, Childs R, Niedermayer G, Chesworth R, et al. Cholinergic modulation of glial function during aging and chronic neuroinflammation. Front Cell Neurosci. 2020;14:577912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hommel B, Li KZ, Li SC. Visual search across the life span. Dev Psychol. 2004;40(4):545–58.

    Article  PubMed  Google Scholar 

  100. Madden DJ, Whiting WL, Cabeza R, Huettel SA. Age-related preservation of top-down attentional guidance during visual search. Psychol Aging. 2004;19(2):304–9.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Zhivago KA, Shashidhara S, Garani R, Purokayastha S, Rao NP, Murthy A, et al. Perceptual priming can increase or decrease with aging. Front Aging Neurosci. 2020;12:576922.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Belanger S, Belleville S, Gauthier S. Inhibition impairments in Alzheimer's disease, mild cognitive impairment and healthy aging: effect of congruency proportion in a Stroop task. Neuropsychologia. 2010;48(2):581–90.

    Article  PubMed  Google Scholar 

  103. Cohen-Shikora ER, Diede NT, Bugg JM. The flexibility of cognitive control: age equivalence with experience guiding the way. Psychol Aging. 2018;33(6):924–39.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Trick LM, Perl T, Sethi N. Age-related differences in multiple-object tracking. J Gerontol B Psychol Sci Soc Sci. 2005;60(2):P102–5.

    Article  PubMed  Google Scholar 

  105. Vallesi A, Tronelli V, Lomi F, Pezzetta R. Age differences in sustained attention tasks: a meta-analysis. Psychon Bull Rev. 2021;

    Google Scholar 

  106. Spencer WD, Raz N. Differential effects of aging on memory for content and context: a meta-analysis. Psychol Aging. 1995;10(4):527–39.

    Article  CAS  PubMed  Google Scholar 

  107. Brown LA, Brockmole JR. The role of attention in binding visual features in working memory: evidence from cognitive ageing. Q J Exp Psychol (Hove). 2010;63(10):2067–79.

    Article  Google Scholar 

  108. Salthouse TA. The processing-speed theory of adult age differences in cognition. Psychol Rev. 1996;103(3):403–28.

    Article  CAS  PubMed  Google Scholar 

  109. Crawford TJ, Higham S, Mayes J, Dale M, Shaunak S, Lekwuwa G. The role of working memory and attentional disengagement on inhibitory control: effects of aging and Alzheimer's disease. Age (Dordr). 2013;35(5):1637–50.

    Article  Google Scholar 

  110. Cheke LG. What-where-when memory and encoding strategies in healthy aging. Learn Mem. 2016;23(3):121–6.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Koen JD, Yonelinas AP. The effects of healthy aging, amnestic mild cognitive impairment, and Alzheimer's disease on recollection and familiarity: a meta-analytic review. Neuropsychol Rev. 2014;24(3):332–54.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Sauzeon H, N'Kaoua B, Pala PA, Taillade M, Auriacombe S, Guitton P. Everyday-like memory for objects in ageing and Alzheimer's disease assessed in a visually complex environment: the role of executive functioning and episodic memory. J Neuropsychol. 2016;10(1):33–58.

    Article  PubMed  Google Scholar 

  113. Burnside K, Hope C, Gill E, Morcom AM. Effects of perceptual similarity but not semantic association on false recognition in aging. PeerJ. 2017;5:e4184.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Heine MK, Ober BA, Shenaut GK. Naturally occurring and experimentally induced tip-of-the-tongue experiences in three adult age groups. Psychol Aging. 1999;14(3):445–57.

    Article  CAS  PubMed  Google Scholar 

  115. Ward EV, Berry CJ, Shanks DR, Moller PL, Czsiser E. Aging predicts decline in explicit and implicit memory: a life-span study. Psychol Sci. 2020;31(9):1071–83.

    Article  PubMed  Google Scholar 

  116. Davis EE, Foy EA, Giovanello KS, Campbell KL. Implicit associative memory remains intact with age and extends to target-distractor pairs. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn. 2021;28(3):455–71.

    Article  PubMed  Google Scholar 

  117. Schwab JF, Schuler KD, Stillman CM, Newport EL, Howard JH, Howard DV. Aging and the statistical learning of grammatical form classes. Psychol Aging. 2016;31(5):481–7.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Duverne S, Lemaire P. Arithmetic split effects reflect strategy selection: an adult age comparative study in addition comparison and verification tasks. Can J Exp Psychol. 2005;59(4):262–78.

    Article  PubMed  Google Scholar 

  119. Schmicker M, Menze I, Koch D, Rumpf U, Muller P, Pelzer L, et al. Decision-making deficits in elderly can be alleviated by attention training. J Clin Med. 2019;8(8)

    Google Scholar 

  120. Duchek JM, Balota DA, Thomas JB, Snyder AZ, Rich P, Benzinger TL, et al. Relationship between Stroop performance and resting state functional connectivity in cognitively normal older adults. Neuropsychology. 2013;27(5):516–28.

    Article  PubMed  Google Scholar 

  121. Gunning-Dixon FM, Raz N. The cognitive correlates of white matter abnormalities in normal aging: a quantitative review. Neuropsychology. 2000;14(2):224–32.

    Article  CAS  PubMed  Google Scholar 

  122. Soderlund H, Nilsson LG, Berger K, Breteler MM, Dufouil C, Fuhrer R, et al. Cerebral changes on MRI and cognitive function: the CASCADE study. Neurobiol Aging. 2006;27(1):16–23.

    Article  PubMed  Google Scholar 

  123. Lavrencic LM, Richardson C, Harrison SL, Muniz-Terrera G, Keage HAD, Brittain K, et al. Is there a link between cognitive reserve and cognitive function in the oldest-old? J Gerontol A Biol Sci Med Sci. 2018;73(4):499–505.

    Article  PubMed  Google Scholar 

  124. Lavrencic LM, Churches OF, Keage HAD. Cognitive reserve is not associated with improved performance in all cognitive domains. Appl Neuropsychol Adult. 2018;25(5):473–85.

    Article  PubMed  Google Scholar 

  125. Arida RM, Teixeira-Machado L. The contribution of physical exercise to brain resilience. Front Behav Neurosci. 2020;14:626769.

    Article  PubMed  Google Scholar 

  126. Blanchet S, Chikhi S, Maltais D. The benefits of physical activities on cognitive and mental health in healthy and pathological aging. Geriatr Psychol Neuropsychiatr Vieil. 2018;16(2):197–205.

    PubMed  Google Scholar 

  127. Contreras-Vidal JL, Teulings HL, Stelmach GE. Elderly subjects are impaired in spatial coordination in fine motor control. Acta Psychol. 1998;100(1–2):25–35.

    Article  CAS  Google Scholar 

  128. Xiao L, Ohayon D, McKenzie IA, Sinclair-Wilson A, Wright JL, Fudge AD, et al. Rapid production of new oligodendrocytes is required in the earliest stages of motor-skill learning. Nat Neurosci. 2016;19(9):1210–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Carp J, Park J, Hebrank A, Park DC, Polk TA. Age-related neural dedifferentiation in the motor system. PLoS One. 2011;6(12):e29411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Mattay VS, Fera F, Tessitore A, Hariri AR, Das S, Callicott JH, et al. Neurophysiological correlates of age-related changes in human motor function. Neurology. 2002;58(4):630–5.

    Article  CAS  PubMed  Google Scholar 

  131. Ward NS, Swayne OB, Newton JM. Age-dependent changes in the neural correlates of force modulation: an fMRI study. Neurobiol Aging. 2008;29(9):1434–46.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Wang L, Zhang Y, Zhang J, Sang L, Li P, Yan R, et al. Aging changes effective connectivity of motor networks during motor execution and motor imagery. Front Aging Neurosci. 2019;11:312.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Li SC, Brehmer Y, Shing YL, Werkle-Bergner M, Lindenberger U. Neuromodulation of associative and organizational plasticity across the life span: empirical evidence and neurocomputational modeling. Neurosci Biobehav Rev. 2006;30(6):775–90.

    Article  PubMed  Google Scholar 

  134. Heuninckx S, Wenderoth N, Swinnen SP. Systems neuroplasticity in the aging brain: recruiting additional neural resources for successful motor performance in elderly persons. J Neurosci. 2008;28(1):91–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Heuninckx S, Wenderoth N, Debaere F, Peeters R, Swinnen SP. Neural basis of aging: the penetration of cognition into action control. J Neurosci. 2005;25(29):6787–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Li KZ, Lindenberger U. Relations between aging sensory/sensorimotor and cognitive functions. Neurosci Biobehav Rev. 2002;26(7):777–83.

    Article  PubMed  Google Scholar 

  137. Cham R, Perera S, Studenski SA, Bohnen NI. Striatal dopamine denervation and sensory integration for balance in middle-aged and older adults. Gait Posture. 2007;26(4):516–25.

    Article  PubMed  Google Scholar 

  138. Emborg ME, Ma SY, Mufson EJ, Levey AI, Taylor MD, Brown WD, et al. Age-related declines in nigral neuronal function correlate with motor impairments in rhesus monkeys. J Comp Neurol. 1998;401(2):253–65.

    Article  CAS  PubMed  Google Scholar 

  139. Bonin-Guillaume S, Hasbroucq T, Blin O. [Psychomotor retardation associated to depression differs from that of normal aging]. Psychol Neuropsychiatr Vieil. 2008;6(2):137–44.

    Google Scholar 

  140. Reuter-Lorenz PA, Lustig C. Brain aging: reorganizing discoveries about the aging mind. Curr Opin Neurobiol. 2005;15(2):245–51.

    Article  CAS  PubMed  Google Scholar 

  141. Harada T, Miyai I, Suzuki M, Kubota K. Gait capacity affects cortical activation patterns related to speed control in the elderly. Exp Brain Res. 2009;193(3):445–54.

    Article  PubMed  Google Scholar 

  142. Costello MC, Bloesch EK. Are older adults less embodied? A review of age effects through the lens of embodied cognition. Front Psychol. 2017;8:267.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Kuehn E, Perez-Lopez MB, Diersch N, Dohler J, Wolbers T, Riemer M. Embodiment in the aging mind. Neurosci Biobehav Rev. 2018;86:207–25.

    Article  PubMed  Google Scholar 

  144. Farina E, Baglio F, Pomati S, D'Amico A, Campini IC, Di Tella S, et al. The mirror neurons network in aging, mild cognitive impairment, and Alzheimer disease: a functional MRI study. Front Aging Neurosci. 2017;9:371.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Boyle PA, Yu L, Wilson RS, Leurgans SE, Schneider JA, Bennett DA. Person-specific contribution of neuropathologies to cognitive loss in old age. Ann Neurol. 2018;83(1):74–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Stern Y, Arenaza-Urquijo EM, Bartres-Faz D, Belleville S, Cantilon M, Chetelat G, et al. Whitepaper: defining and investigating cognitive reserve, brain reserve, and brain maintenance. Alzheimers Dement. 2020;16(9):1305–11.

    Article  PubMed  Google Scholar 

  147. Colangeli S, Boccia M, Verde P, Guariglia P, Bianchini F, Piccardi L. Cognitive reserve in healthy aging and Alzheimer's disease: a meta-analysis of fMRI studies. Am J Alzheimers Dis Other Dement. 2016;31(5):443–9.

    Article  Google Scholar 

  148. Maas DA, Valles A, Martens GJM. Oxidative stress, prefrontal cortex hypomyelination and cognitive symptoms in schizophrenia. Transl Psychiatry. 2017;7(7):e1171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Jackowski AP, Araujo Filho GM, Almeida AG, Araujo CM, Reis M, Nery F, et al. The involvement of the orbitofrontal cortex in psychiatric disorders: an update of neuroimaging findings. Braz J Psychiatry. 2012;34(2):207–12.

    Article  PubMed  Google Scholar 

  150. Fischer CE, Aguera-Ortiz L. Psychosis and dementia: risk factor, prodrome, or cause? Int Psychogeriatr. 2018;30(2):209–19.

    Article  PubMed  Google Scholar 

  151. Gossink FT, Vijverberg E, Krudop W, Scheltens P, Stek ML, Pijnenburg YAL, et al. Predicting progression in the late onset frontal lobe syndrome. Int Psychogeriatr. 2019;31(5):743–8.

    Article  PubMed  Google Scholar 

  152. Mendez MF, Parand L, Akhlaghipour G. Bipolar disorder among patients diagnosed with frontotemporal dementia. J Neuropsychiatry Clin Neurosci. 2020;32(4):376–84.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Mischel W. Toward an integrative science of the person. Annu Rev Psychol. 2004;55:1–22.

    Article  PubMed  Google Scholar 

  154. Goldberg LR. An alternative “description of personality”: the big-five factor structure. J Pers Soc Psychol. 1990;59(6):1216–29.

    Article  CAS  PubMed  Google Scholar 

  155. Roberts BW, Walton KE, Viechtbauer W. Patterns of mean-level change in personality traits across the life course: a meta-analysis of longitudinal studies. Psychol Bull. 2006;132(1):1–25.

    Article  PubMed  Google Scholar 

  156. Sadeq NA, Molinari V. Personality and its relationship to depression and cognition in older adults: implications for practice. Clin Gerontol. 2018;41(5):385–98.

    Article  PubMed  Google Scholar 

  157. Wilson RS, Fleischman DA, Myers RA, Bennett DA, Bienias JL, Gilley DW, et al. Premorbid proneness to distress and episodic memory impairment in Alzheimer's disease. J Neurol Neurosurg Psychiatry. 2004;75(2):191–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Wright CI, Feczko E, Dickerson B, Williams D. Neuroanatomical correlates of personality in the elderly. NeuroImage. 2007;35(1):263–72.

    Article  PubMed  Google Scholar 

  159. DeYoung CG, Hirsh JB, Shane MS, Papademetris X, Rajeevan N, Gray JR. Testing predictions from personality neuroscience. Brain structure and the big five. Psychol Sci. 2010;21(6):820–8.

    Article  PubMed  Google Scholar 

  160. Kapogiannis D, Sutin A, Davatzikos C, Costa P Jr, Resnick S. The five factors of personality and regional cortical variability in the Baltimore longitudinal study of aging. Hum Brain Mapp. 2013;34(11):2829–40.

    Article  PubMed  Google Scholar 

  161. Wright CI, Williams D, Feczko E, Barrett LF, Dickerson BC, Schwartz CE, et al. Neuroanatomical correlates of extraversion and neuroticism. Cereb Cortex. 2006;16(12):1809–19.

    Article  PubMed  Google Scholar 

  162. Anglim J, Horwood S, Smillie LD, Marrero RJ, Wood JK. Predicting psychological and subjective well-being from personality: a meta-analysis. Psychol Bull. 2020;146(4):279–323.

    Article  PubMed  Google Scholar 

  163. Jeste DV, Oswald AJ. Individual and societal wisdom: explaining the paradox of human aging and high well-being. Psychiatry. 2014;77(4):317–30.

    Article  PubMed  Google Scholar 

  164. Kunzmann U, Little TD, Smith J. Is age-related stability of subjective well-being a paradox? Cross-sectional and longitudinal evidence from the Berlin Aging Study. Psychol Aging. 2000;15(3):511–26.

    Article  CAS  PubMed  Google Scholar 

  165. Windsor TD, Anstey KJ. Age differences in psychosocial predictors of positive and negative affect: a longitudinal investigation of young, midlife, and older adults. Psychol Aging. 2010;25(3):641–52.

    Article  PubMed  Google Scholar 

  166. Mayordomo T, Viguer P, Sales A, Satorres E, Melendez JC. Resilience and coping as predictors of well-being in adults. J Psychol. 2016;150(7):809–21.

    Article  PubMed  Google Scholar 

  167. Blanco-Molina M, Pinazo-Hernandis S, Tomas JM. Subjective Well-being key elements of successful aging: a study with lifelong learners older adults from Costa Rica and Spain. Arch Gerontol Geriatr. 2019;85:103897.

    Article  PubMed  Google Scholar 

  168. Rathbone CJ, Holmes EA, Murphy SE, Ellis JA. Autobiographical memory and well-being in aging: the central role of semantic self-images. Conscious Cogn. 2015;33:422–31.

    Article  PubMed  Google Scholar 

  169. Braun T, Schmukle SC, Kunzmann U. Stability and change in subjective well-being: the role of performance-based and self-rated cognition. Psychol Aging. 2017;32(2):105–17.

    Article  PubMed  Google Scholar 

  170. Zaninotto P, Steptoe A. Association between subjective well-being and living longer without disability or illness. JAMA Netw Open. 2019;2(7):e196870.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Costantini D, Marasco V, Moller AP. A meta-analysis of glucocorticoids as modulators of oxidative stress in vertebrates. J Comp Physiol B. 2011;181(4):447–56.

    CAS  PubMed  Google Scholar 

  172. Zannas AS, Arloth J, Carrillo-Roa T, Iurato S, Roh S, Ressler KJ, et al. Lifetime stress accelerates epigenetic aging in an urban, African American cohort: relevance of glucocorticoid signaling. Genome Biol. 2015;16:266.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Rapoport SI. Integrated phylogeny of the primate brain, with special reference to humans and their diseases. Brain Res Brain Res Rev. 1990;15(3):267–94.

    Article  CAS  PubMed  Google Scholar 

  174. Dong BE, Chen H, Sakata K. BDNF deficiency and enriched environment treatment affect neurotransmitter gene expression differently across ages. J Neurochem. 2020;154(1):41–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Wong GH, Yap PL. Active ageing to gerotranscendence. Ann Acad Med Singap. 2016;45(2):41–3.

    Article  PubMed  Google Scholar 

Download references

Conflict of Interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphanie Miot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miot, S., Chancel, R., Blain, H. (2022). Aged-Related Physiological Changes: CNS Function. In: Flaatten, H., Guidet, B., Vallet, H. (eds) The Very Old Critically Ill Patients. Lessons from the ICU. Springer, Cham. https://doi.org/10.1007/978-3-030-94133-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94133-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94132-1

  • Online ISBN: 978-3-030-94133-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics