Skip to main content

Review on Microbial Bioinformatics: Novel and Promoting Trend for Microbiomics Research and Applications

  • Conference paper
  • First Online:
The 15th International Conference Interdisciplinarity in Engineering (Inter-Eng 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 386))

Included in the following conference series:

  • 688 Accesses

Abstract

The recent biotechnological advances and the rapid development of next-generation sequencing technologies accompanied by efficient computational facilities and tools have led to explosive and extensive data generation from finished complete genomes and draft genomes, because of this development, an urgent need arises for fast computing and automated approaches to analyze these bio big-data issued from microbial genomes and metagenomes in effective and a comparative way. Bioinformatics has come to play this major role via microbial bioinformatics and microbiomics which fill in the gap between just data accumulation and theoretical speculations to solution discovery and ready for use applications. In this perspective, our review gives an overview on microbial bioinformatics disciplines and subdisciplines and surveys their items, roles, influencing technologies and challenges, as well as lists the most microbial bioinformatics and metagenomics online resources, assemblers, and software, Furthermore, summarizes all the possible biotechnological applications of microbial bioinformatics and microbiomics in agriculture, food, medicine, industry, energy, and environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sousa, S.A., Leitão, J.H., Martins, R.C., Sanches, J.M., Suri, J.S., Giorgetti, A.: Bioinformatics applications in life sciences and technologies. Biomed. Res. Int. 2016, 3603827 (2016)

    Google Scholar 

  2. Zeevi, D., Korem, T., Zmora, N., Halpern, Z., Elinav, E., Segal, E.: Personalized nutrition by prediction of glycemic responses. Cell 163, 1079–1094 (2015)

    Google Scholar 

  3. Xie, K., Guo, L., Bai, Y., Liu, W., Yan, J., Bucher, M.: Microbiomics and plant health: an interdisciplinary and international workshop on the plant microbiome. Mol. Plant 12(1), 1–3 (2019)

    Google Scholar 

  4. Carriço, J.A., Rossi, M., Moran-Gilad, J., Van Domselaar, G., Ramirez, M.: A primer on microbial bioinformatics for nonbioinformaticians. Clin. Microbiol. Infect. 24(4), 342–349 (2018)

    Google Scholar 

  5. Chen, I.M.A., et al.: IMG/M: integrated genome and metagenome comparative data analysis system. Nucleic Acids Res. 45(D1), D507–D516 (2017)

    Google Scholar 

  6. Peng, Y., Leung, H.C., Yiu, S.M., Chin, F.Y.: IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28(11), 1420–1428 (2012)

    Google Scholar 

  7. Mitchell, A.L., et al.: EBI Metagenomics in 2017: enriching the analysis of microbial communities, from sequence reads to assemblies. Nucleic Acids Res. 46(D1), D726–D735 (2018)

    MathSciNet  Google Scholar 

  8. MG-RAST: (n.d.) http://metagenomics.anl.gov/ Accessed 28 March 2018

  9. Namiki, T., Hachiya, T., Tanaka, H., Sakakibara, Y.: MetaVelvet: an extension of velvet assembler to de novo metagenome assembly from short sequence reads. Nucleic Acids Res. 40(20), e155–e155 (2012)

    Google Scholar 

  10. Li, D., Liu, C.M., Luo, R., Sadakane, K., Lam, T.W.: MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31(10), 1674–1676 (2015)

    Google Scholar 

  11. Boisvert, S., Raymond, F., Godzaridis, É., Laviolette, F., Corbeil, J.: Ray meta: scalable de novo metagenome assembly and profiling. Genome Biol. 13(12), 1–13 (2012)

    Google Scholar 

  12. Chen, Q.L., Cui, H.L., Su, J.Q., Penuelas, J., Zhu, Y.G.: Antibiotic resistomes in plant microbiomes. Trends Plant Sci. 24(6), 530–541 (2019)

    Google Scholar 

  13. del Carmen Orozco-Mosqueda, M., del Carmen Rocha-Granados, M., Glick, B.R., Santoyo, G.: Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms. Microbiol. Res. 208, 25–31 (2018)

    Google Scholar 

  14. Compant, S., Samad, A., Faist, H., Sessitsch, A.: A review on the plant microbiome: ecology, functions, and emerging trends in microbial application. J. Adv. Res. 19, 29–37 (2019)

    Google Scholar 

  15. Bakker, P.A., Berendsen, R.L., Doornbos, R.F., Wintermans, P.C., Pieterse, C.M.: The rhizosphere revisited: root microbiomics. Front. Plant Sci. 4, 165 (2013)

    Google Scholar 

  16. Dubey, A., et al.: Soil microbiome: a key player for conservation of soil health under changing climate. Biodivers. Conserv. 28(8–9), 2405–2429 (2019)

    Google Scholar 

  17. Simonet, P.: Terragenome, an international consortium for the sequencing of a reference soil metagenome. In: The Soil Metagenome: Prospects on basic and applied research A workshop to promote the Italian Soil Metagenomic Project(2010)

    Google Scholar 

  18. Vogel, T.M., et al.: TerraGenome: a consortium for the sequencing of a soil metagenome. Nat. Rev. Microbiol. 7(4), 252–252 (2009)

    Google Scholar 

  19. Dominati, E., Patterson, M., Mackay, A.: A framework for classifying and quantifying the natural capital and ecosystem services of soils. Ecol. Econ. 69(9), 1858–1868 (2010)

    Google Scholar 

  20. Hodkinson, B.P., Grice, E.A.: Next-generation sequencing: a review of technologies and tools for wound microbiome research. Adv. Wound Care 4(1), 50–58 (2015)

    Google Scholar 

  21. Rampelli, S., et al.: Shotgun metagenomics of gut microbiota in humans with up to extreme longevity and the increasing role of xenobiotic degradation. mSystems (2020). https://doi.org/10.1128/mSystems.00124-20

    Article  Google Scholar 

  22. Morris, A., et al.: Comparison of the respiratory microbiome in healthy nonsmokers and smokers. Am. J. Respir. Crit. Care Med. 187(10), 1067–1075 (2013)

    Google Scholar 

  23. Herbst, T., et al.: Dysregulation of allergic airway inflammation in the absence of microbial colonization. Am. J. Respir. Crit. Care Med. 184(2), 198–205 (2011)

    Google Scholar 

  24. Hilty, M., et al.: Disordered microbial communities in asthmatic airways. PLoS One 5(1), e8578 (2010)

    Google Scholar 

  25. Jiménez-Sánchez, G., Philp, J.: Omics and the bioeconomy: applications of genomics hold great potential for a future bio-based economy and sustainable development. EMBO Rep. 16(1), 17–20 (2015)

    Google Scholar 

  26. Rosa, B.A., Hallsworth-Pepin, K., Martin, J., Wollam, A., Mitreva, M.: Genome sequence of Christensenella minuta DSM 22607T. Genome Announce. 5, e01451-e1516 (2017)

    Google Scholar 

  27. Bäckhed, F., et al.: Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17(5), 690–703 (2015)

    Google Scholar 

  28. van Schaik, W.: The human gut resistome. Philos. Trans. R. Soc. B. Biol. Sci. 370(1670), 20140087 (2015)

    Google Scholar 

  29. Suen, G., et al.: An insect herbivore microbiome with high plant biomass-degrading capacity. PLoS Genet. 6(9), e1001129 (2010)

    Google Scholar 

  30. Griffiths, J.A., Mazmanian, S.K.: Emerging evidence linking the gut microbiome to neurologic disorders. Genome Med. 10(1), 1–3 (2018)

    Google Scholar 

  31. Zivkovic, A.M., German, J.B., Lebrilla, C.B., Mills, D.A.: Human milk glycobiome and its impact on the infant gastrointestinal microbiota. Proc. Natl. Acad. Sci. 108(Supplement 1), 4653–4658 (2011)

    Google Scholar 

  32. Gonzalez-Perez, A., et al.: Computational approaches to identify functional genetic variants in cancer genomes. Nat. Methods 10(8), 723 (2013)

    Google Scholar 

  33. Pallen, M.J., Wren, B.W.: Bacterial pathogenomics. Nature 449(7164), 835–842 (2007)

    Google Scholar 

  34. Gallimidi, A.B., et al.: Periodontal pathogens Porphyromonas gingivalis and Fusobacterium nucleatum promote tumor progression in an oral-specific chemical carcinogenesis model. Oncotarget 6(26), 22613–22623 (2015)

    Google Scholar 

  35. Vipperla, K., O’Keefe, S.J.: Diet, microbiota, and dysbiosis: a ‘recipe’ for colorectal cancer. Food Funct. 7(4), 1731–1740 (2016)

    Google Scholar 

  36. Wang, H., et al.: Microbiomic differences in tumor and paired-normal tissue in head and neck squamous cell carcinomas. Genome Med. (2017). https://doi.org/10.1186/s13073-017-0405-5

    Article  Google Scholar 

  37. Stewart, R.D., et al.: Assembly of 913 microbial genomes from metagenomic sequencing of the cow rumen. Nat. Commun. (2018). https://doi.org/10.1038/s41467-018-03317-6

    Article  Google Scholar 

  38. Ghanbari, M., Kneifel, W., Domig, K.J.: A new view of the fish gut microbiome: advances from next-generation sequencing. Aquaculture 448, 464–475 (2015)

    Google Scholar 

  39. Soetan, K.O., Awosanya, E.A.: Bioinformatics and its application in animal health: a review. Trop. Vet. 33(1–2), 3–22 (2015)

    Google Scholar 

  40. Sun, H.Z.: Feedomics: promises for food security with sustainable food animal production. TrAC, Trends Anal. Chem. 107, 130–141 (2018)

    Google Scholar 

  41. Wikberg, J., et al.: Introduction to pharmaceutical bioinformatics. Oakleaf Academic (2010)

    Google Scholar 

  42. Wrighton, K.H.: Discovering antibiotics through soil metagenomics. Nat. Rev. Drug Discovery 17(4), 241 (2018)

    Google Scholar 

  43. Hover, B.M., et al.: Culture-independent discovery of the malacidins as calcium-dependent antibiotics with activity against multidrug-resistant Gram-positive pathogens. Nat. Microbiol. 3(4), 415–422 (2018)

    Google Scholar 

  44. Li, L., et al.: Colistin and amoxicillin combinatorial exposure alters the human intestinal microbiota and antibiotic resistome in the simulated human intestinal microbiota. Sci. Total Environ. 750, 141415 (2021)

    Google Scholar 

  45. Wallen-Russell, C.: The role of every-day cosmetics in altering the skin microbiome: a study using biodiversity. Cosmetics 6(1), 2 (2018)

    Google Scholar 

  46. Fang, H., et al.: An FDA bioinformatics tool for microbial genomics research on molecular characterization of bacterial foodborne pathogens using microarrays. BMC Bioinf. 11(6), 1–11 (2010)

    Google Scholar 

  47. Brul, S., Schuren, F., Montijn, R., Keijser, B.J.F., Van der Spek, H., Oomes, S.J.C.M.: The impact of functional genomics on microbiological food quality and safety. Int. J. Food Microbiol. 112(3), 195–199 (2006)

    Google Scholar 

  48. Mari, A., Scala, E., Palazzo, P., Ridolfi, S., Zennaro, D., Carabella, G.: Bioinformatics applied to allergy: allergen databases, from collecting sequence information to data integration. The Allergome platform as a model. Cell. Immunol. 244(2), 97–100 (2006)

    Google Scholar 

  49. Waidha, K.M., Jabalia, N., Singh, D., Jha, A., Kaur, R.: Bioinformatics approaches in food industry: an overview. In: National Conference on Recent Trends in Biomedical Engineering, Cancer Biology, Bioinformatics and Applied Biotechnology (BECBAB-2015) vol. 1, pp. 1–4 (2015)

    Google Scholar 

  50. Tilocca, B., et al.: Milk microbiota: characterization methods and role in cheese production. J. Proteomics 210, 103534 (2020)

    Google Scholar 

  51. He, M., Tan, C.P., Liu, Y., Xu, Y.J.: Foodomics: a new perspective on gut probiotics nutrition and health research. Curr. Opin. Food Sci. 41, 146–151 (2021)

    Google Scholar 

  52. Alkema, W., Boekhorst, J., Wels, M., van Hijum, S.A.: Microbial bioinformatics for food safety and production. Brief. Bioinform. 17(2), 283–292 (2016)

    Google Scholar 

  53. Zhang, H., et al.: dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 46(W1), W95–W101 (2018)

    Google Scholar 

  54. Paul, D., Pandey, G., Pandey, J., Jain, R.K.: Accessing microbial diversity for bioremediation and environmental restoration. Trends Biotechnol. 23(3), 135–142 (2005)

    Google Scholar 

  55. Sinha, S.: Role of bioinformatics in climate change studies. J. Sci 1, 1–8 (2015)

    Google Scholar 

  56. Gupta, C., Prakash, D.G., Gupta, S.: Role of microbes in combating global warming. Int. J. Pharm. Sci. Lett. 4, 359–363 (2014)

    Google Scholar 

  57. Dubey, A., et al.: Soil microbiome: a key player for conservation of soil health under changing climate. Biodivers. Conserv. 28(8–9), 2405–2429 (2019)

    Google Scholar 

  58. Coutinho, F.H., Gregoracci, G.B., Walter, J.M., Thompson, C.C., Thompson, F.L.: Metagenomics sheds light on the ecology of marine microbes and their viruses. Trends Microbiol. 26(11), 955–965 (2018)

    Google Scholar 

  59. McLeod, M.P., Eltis, L.D.: Genomic Insights into the Aerobic Pathways for Degradation of Organic Pollutants, pp. 1–23. Caister Academic Press, Norfolk (2008)

    Google Scholar 

  60. Vogel, T.M., et al.: TerraGenome: a consortium for the sequencing of a soil metagenome. Nat. Rev. Microbiol. 7(4), 252–252 (2009)

    Google Scholar 

  61. Baldrian, P.: Forest microbiome: diversity, complexity and dynamics. FEMS Microbiol. Rev. 41(2), 109–130 (2017)

    Google Scholar 

  62. Kerepesi, C., Grolmusz, V.: The “Giant Virus Finder” discovers an abundance of giant viruses in the Antarctic dry valleys. Adv. Virol. 162(6), 1671–1676 (2017)

    Google Scholar 

  63. OECD Megascience Forum Working Group on Biological Informatics: Final Report of the OECD Megascience Forum Working Group on Biological Informatics, January, 1–74 (1999)

    Google Scholar 

  64. Verma, S., Pandey, A.K.: Omics tools: approaches for microbiomes analysis to enhance bioenergy production. In: Kashyap, B.K., Solanki, M.K., Kamboj, D.V., Pandey, A.K. (eds.) Waste to Energy: Prospects and Applications, pp. 207–234. Springer, Singapore (2020). https://doi.org/10.1007/978-981-33-4347-4_9

    Chapter  Google Scholar 

  65. Li, L.L., McCorkle, S.R., Monchy, S., Taghavi, S., van der Lelie, D.: Bioprospecting metagenomes: glycosyl hydrolases for converting biomass. Biotechnol. Biofuels 2(1), 1–11 (2009)

    Google Scholar 

  66. de Carvalho, L.M., et al.: Bioinformatics applied to biotechnology: A review towards bioenergy research. Biomass Bioenergy 123, 195–224 (2019)

    Google Scholar 

  67. Gaspari, M., et al.: Microbial dynamics in biogas digesters treating lipid-rich substrates via genome-centric metagenomics. Sci. Total Environ. 778, 146296 (2021)

    Google Scholar 

  68. Dhanjal, D.S., Sharma, D.: Microbial metagenomics for industrial and environmental bioprospecting: the unknown envoy. In: Singh, J., Sharma, D., Kumar, G., Sharma, N.R. (eds.) Microbial Bioprospecting for Sustainable Development, pp. 327–352. Springer, Singapore (2018). https://doi.org/10.1007/978-981-13-0053-0_18

    Chapter  Google Scholar 

  69. Ettema, T.J., de Vos, W.M., van der Oost, J.: Discovering novel biology by in silico archaeology. Nat. Rev. Microbiol. 3(11), 859–869 (2005)

    Google Scholar 

  70. Cano, R.J., Toranzos, G.A., Santiago-Rodriguez, T.M.: Special Issue “Microbial Paleogenomics: The Role of Microbes on Evolutionary Trends and Future Discoveries”. A special issue of Genes (ISSN 2073-4425) (2018)

    Google Scholar 

  71. Santiago-Rodriguez, T.M., et al.: Gut microbiome and putative resistome of Inca and Italian nobility mummies. Genes 8(11), 310 (2017)

    Google Scholar 

  72. Sereno, D., Dorkeld, F., Akhoundi, M., Perrin, P.: Pathogen species identification from metagenomes in ancient remains: the challenge of identifying human pathogenic species of Trypanosomatidae via bioinformatic tools. Genes 9(8), 418 (2018)

    Google Scholar 

Download references

Acknowledgment

Thanks, are due to Jouf University and their Deanship of Library Affairs for providing necessary documentations for the completion of this work. The author also, wishes to thank anonymous referees for their helpful comments during the review process.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cheba, B.A. (2022). Review on Microbial Bioinformatics: Novel and Promoting Trend for Microbiomics Research and Applications. In: Moldovan, L., Gligor, A. (eds) The 15th International Conference Interdisciplinarity in Engineering. Inter-Eng 2021. Lecture Notes in Networks and Systems, vol 386. Springer, Cham. https://doi.org/10.1007/978-3-030-93817-8_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93817-8_64

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93816-1

  • Online ISBN: 978-3-030-93817-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics