Skip to main content

Fluid Responsiveness as a Physiologic Endpoint to Improve Successful Weaning

  • Chapter
  • First Online:
Annual Update in Intensive Care and Emergency Medicine 2022

Part of the book series: Annual Update in Intensive Care and Emergency Medicine ((AUICEM))

  • 1620 Accesses

Abstract

Fluid overload is a major factor in the morbidity and mortality of critically ill patients. Fluid responsiveness has been used not only to resuscitate patients but also to de-resuscitate patients following hemodynamic stabilization. As fluid overload has also been implicated in weaning failure, the parameters of fluid responsiveness could thus also be used to optimize patient status before initiating weaning trails and extubation in order to prevent re-intubation due to fluid overload. In this chapter, we will discuss the physiologic considerations of the possible clinical use of fluid responsiveness in the context of weaning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368–77.

    Article  CAS  PubMed  Google Scholar 

  2. Evans L, Rhodes A, Alhazzani W, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Crit Care Med. 2021;49:e1063–143.

    Article  PubMed  Google Scholar 

  3. Cecconi M, Hofer C, Teboul JL, et al. Fluid challenges in intensive care: the FENICE study. Intensive Care Med. 2015;41:1529–37.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hernández G, Ospina-Tascón GA, Damiani LP, et al. Effect of a resuscitation strategy targeting peripheral perfusion status vs serum lactate levels on 28-day mortality among patients with septic shock: the ANDROMEDA-SHOCK randomized clinical trial. JAMA. 2019;321:654–64.

    Article  PubMed  PubMed Central  Google Scholar 

  5. O’Connor ME, Prowle JR. Fluid overload. Crit Care Clin. 2015;31:803–21.

    Article  PubMed  Google Scholar 

  6. Malbrain M, Marik PE, Witters I, et al. Fluid overload, de-resuscitation, and outcomes in critically ill or injured patients: a systematic review with suggestions for clinical practice. Anaesthesiol Intensive Ther. 2014;46:361–80.

    Article  PubMed  Google Scholar 

  7. Malbrain M, Waele DE, Honoré P. Assessment of fluid overload in critically ill patients: role of bioelectrical impedance analysis. In: Vincent JL, editor. Annual update in intensive care and emergency medicine 2018. Heidelberg: Springer; 2018. p. 417–36.

    Chapter  Google Scholar 

  8. Bagshaw SM, Brophy PD, Cruz D, Ronco C. Fluid balance as a biomarker: impact of fluid overload on outcome in critically ill patients with acute kidney injury. Crit Care. 2008;12:169.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cecconi M, Backer D, Antonelli M, et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014;40:1795–815.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Heart N, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network, Wiedemann HP, Wheeler AP, et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354:2564–75.

    Article  Google Scholar 

  11. Malbrain ML, Chiumello D, Pelosi P, et al. Incidence and prognosis of intraabdominal hypertension in a mixed population of critically ill patients: a multiple-center epidemiological study. Crit Care Med. 2005;33:315–22.

    Article  PubMed  Google Scholar 

  12. Alsous F, Khamiees M, DeGirolamo A, Amoateng-Adjepong Y, Manthous CA. Negative fluid balance predicts survival in patients with septic shock. Chest. 2000;117:1749–54.

    Article  CAS  PubMed  Google Scholar 

  13. Dessap A, Roche-Campo F, Kouatchet A, et al. Natriuretic peptide–driven fluid management during ventilator weaning. Am J Respir Crit Care. 2012;186:1256–63.

    Article  CAS  Google Scholar 

  14. Fagon JY, Chastre J, Vuagnat A, Trouillet JL, Novara A, Gibert C. Nosocomial pneumonia and mortality among patients in intensive care units. JAMA. 1996;275:866–9.

    Article  CAS  PubMed  Google Scholar 

  15. Selvan K, Edriss H, Sigler M, Nugent KM. Complications and resource utilization associated with mechanical ventilation in a medical intensive care unit in 2013. J Intensive Care Med. 2015;32:146–50.

    Article  Google Scholar 

  16. Epstein SK, Ciubotaru RL. Independent effects of etiology of failure and time to reintubation on outcome for patients failing extubation. Am J Respir Crit Care Med. 1998;158:489–93.

    Article  CAS  PubMed  Google Scholar 

  17. Thille AW, Richard J-CM, Brochard L. The decision to extubate in the intensive care unit. Am J Respir Crit Care. 2013;187:1294–302.

    Article  Google Scholar 

  18. Boles J-M, Bion J, Connors A, et al. Weaning from mechanical ventilation. Eur Respir J. 2007;29:1033–56.

    Article  PubMed  Google Scholar 

  19. Esteban A, Ferguson ND, Meade MO, et al. Evolution of mechanical ventilation in response to clinical research. Am J Respir Crit Care. 2008;177:170–7.

    Article  Google Scholar 

  20. McConville JF, Kress JP. Weaning patients from the ventilator. N Engl J Med. 2012;367:2233–9.

    Article  CAS  PubMed  Google Scholar 

  21. Ely WE, Baker AM, Dunagan DP, et al. Effect on the duration of mechanical ventilation of identifying patients capable of breathing spontaneously. N Engl J Med. 1996;335:1864–9.

    Article  CAS  PubMed  Google Scholar 

  22. Girard TD, Kress JP, Fuchs BD, et al. Efficacy and safety of a paired sedation and ventilator weaning protocol for mechanically ventilated patients in intensive care (awakening and breathing controlled trial): a randomised controlled trial. Lancet. 2008;371:126–34.

    Article  PubMed  Google Scholar 

  23. Blackwood B, Alderdice F, Burns K, Cardwell C, Lavery G, O’Halloran P. Use of weaning protocols for reducing duration of mechanical ventilation in critically ill adult patients: Cochrane systematic review and meta-analysis. BMJ. 2011;342:c7237.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Dasta JF, McLaughlin TP, Mody SH, Piech CT. Daily cost of an intensive care unit day: the contribution of mechanical ventilation. Crit Care Med. 2005;33:1266–71.

    Article  PubMed  Google Scholar 

  25. Ouellette DR, Patel S, Girard TD, et al. Liberation from mechanical ventilation in critically ill adults: an official American College of Chest Physicians/American Thoracic Society clinical practice guideline: inspiratory pressure augmentation during spontaneous breathing trials, protocols minimizing sedation, and noninvasive ventilation immediately after extubation. Chest. 2017;151:166–80.

    Article  PubMed  Google Scholar 

  26. Béduneau G, Pham T, Schortgen F, et al. Epidemiology of weaning outcome according to a new definition. The WIND study. Am J Respir Crit Care. 2017;195:772–83.

    Article  Google Scholar 

  27. Teboul JL. Weaning-induced cardiac dysfunction: where are we today? Intensive Care Med. 2014;40:1069–79.

    Article  PubMed  Google Scholar 

  28. Dres M, Teboul JL, Anguel N, Guerin L, Richard C, Monnet X. Passive leg raising performed before a spontaneous breathing trial predicts weaning-induced cardiac dysfunction. Intensive Care Med. 2015;41:487–94.

    Article  PubMed  Google Scholar 

  29. Pinsky MR. Breathing as exercise: the cardiovascular response to weaning from mechanical ventilation. Intensive Care Med. 2000;26:1164–6.

    Article  CAS  PubMed  Google Scholar 

  30. Pinsky MR. Cardiovascular effects of ventilator support and withdrawal. Anesth Analg. 1994;79:567–76.

    CAS  Google Scholar 

  31. Pinsky MR. Breathing as exercise: the cardiovascular response to weaning from mechanical variation. In: Pinsky MR, Brochard L, Mancebo J, Antonelli M, editors. Applied Physiology in Intensive Care Medicine 2. Berlin: Springer; 2012. p. 323–5.

    Chapter  Google Scholar 

  32. Ferré A, Guillot M, Lichtenstein D, et al. Lung ultrasound allows the diagnosis of weaning-induced pulmonary oedema. Intensive Care Med. 2019;45:1–8.

    Article  Google Scholar 

  33. Epstein SK. Decision to extubate. Intensive Care Med. 2002;28:535–46.

    Article  CAS  PubMed  Google Scholar 

  34. Lemaire F, Teboul JL, Cinotti L, et al. Acute left ventricular dysfunction during unsuccessful weaning from mechanical ventilation. Anesthesiology. 1988;69:171–9.

    Article  CAS  PubMed  Google Scholar 

  35. Liu J, Shen F, Teboul JL, et al. Cardiac dysfunction induced by weaning from mechanical ventilation: incidence, risk factors, and effects of fluid removal. Crit Care. 2016;20:369.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Routsi C, Stanopoulos I, Kokkoris S, Sideris A, Zakynthinos S. Weaning failure of cardiovascular origin: how to suspect, detect and treat-a review of the literature. Ann Intensive Care. 2019;9:6.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Vignon P. Cardiovascular failure and weaning. Ann Transl Med. 2018;6:354.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Silversides JA, Fitzgerald E, Manickavasagam US, et al. Deresuscitation of patients with iatrogenic fluid overload is associated with reduced mortality in critical illness. Crit Care Med. 2018;46:1600.

    Article  PubMed  Google Scholar 

  39. Goldstein S, Bagshaw S, Cecconi M, et al. Pharmacological management of fluid overload. Br J Anaesth. 2014;113:756–63.

    Article  PubMed  Google Scholar 

  40. Malbrain MLNG, Van Regenmortel N, Saugel B, et al. Principles of fluid management and stewardship in septic shock: it is time to consider the four D’s and the four phases of fluid therapy. Ann Intensive Care. 2018;8:66.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Cordemans C, Laet I, Regenmortel N, et al. Aiming for a negative fluid balance in patients with acute lung injury and increased intra-abdominal pressure: a pilot study looking at the effects of PAL-treatment. Ann Intensive Care. 2012;2:S15.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Costanzo M, Saltzberg MT, Jessup M, et al. Ultrafiltration is associated with fewer rehospitalizations than continuous diuretic infusion in patients with decompensated heart failure: results from UNLOAD. J Card Fail. 2010;16:277–84.

    Article  PubMed  Google Scholar 

  43. Bagshaw SM, Gibney RT, Kruger P, Hassan I, McAlister FA, Bellomo R. The effect of low-dose furosemide in critically ill patients with early acute kidney injury: a pilot randomized blinded controlled trial (the SPARK study). J Crit Care. 2017;42:138–46.

    Article  CAS  PubMed  Google Scholar 

  44. Douglas IS, Alapat PM, Corl KA, et al. Fluid response evaluation in sepsis hypotension and shock: a randomized clinical trial. Chest. 2020;158:1431–45.

    Article  PubMed  Google Scholar 

  45. Jozwiak M, Monnet X, Teboul JL. Prediction of fluid responsiveness in ventilated patients. Ann Transl Med. 2018;6:352.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Arabi YM, Schultz MJ, Salluh JI. Intensive care medicine in 2050: global perspectives. Intensive Care Med. 2017;43:1695–9.

    Article  PubMed  Google Scholar 

  47. Monnet X, Marik PE, Teboul JL. Prediction of fluid responsiveness: an update. Ann Intensive Care. 2016;6:111.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

Funded by FONDECYT-ANID. CHILE. Project number N° 1200248.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Bakker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Castro, R., Born, P., Bakker, J. (2022). Fluid Responsiveness as a Physiologic Endpoint to Improve Successful Weaning. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2022. Annual Update in Intensive Care and Emergency Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-93433-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93433-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93432-3

  • Online ISBN: 978-3-030-93433-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics