Skip to main content

Emergency Decision Making Fuzzy-Expert Aided Disaster Management System

  • Chapter
  • First Online:
Linguistic Methods Under Fuzzy Information in System Safety and Reliability Analysis

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 414))

Abstract

Imprecise information and the inaccessibility to data about disasters have been the major factor militating against the efficiency of decision makers and thus compounding decision-making process. Robust mathematical approaches are required to respond to disaster in a timely and adequate manner. A new integrated emergency decision-making approach incorporating the best–worst method (BWM), Z numbers, and Zero‐sum game is implemented to estimate the importance weights of criteria, the payoffs, and for ranking the various alternative emergency solutions. The efficacy of the proposed approach is illustrated with the Golestan flood disaster of 2019 and an airline emergency relief supplies delivery system is obtained as the optimum solution to the case examined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bankoff, G. Frerks, D. Hilhorst, Mapping Vulnerability: Disasters, Development and People, London (2004)

    Google Scholar 

  2. L. Zhou, X. Wu, Z. Xu, H. Fujita, Emergency decision making for natural disasters: an overview. Int. J. Disaster Risk Reduct. 27, 567–576 (2018). https://doi.org/10.1016/j.ijdrr.2017.09.037

    Article  Google Scholar 

  3. The rising cost of catastrophes, Econ. (2012). https://www.economist.com/leaders/2012/01/14/the-rising-cost-of-catastrophes

  4. M. Ebrahim, B. Nastaran, C. Timothy, Non-compensatory decision model for incorporating the sustainable development criteria in flood risk management plans. SN Appl. Sci. 2, 1–11 (2020). https://doi.org/10.1007/s42452-019-1695-6

    Article  Google Scholar 

  5. N. Chitsaz, M.E. Banihabib, Comparison of different multi criteria decision-making models in prioritizing flood management alternatives. Water Resour. Manage., 2503–2525 (2015). https://doi.org/10.1007/s11269-015-0954-6

  6. W. Douven, J. Buurman, Planning practice in support of economically and environmentally sustainable roads in floodplains: the case of the Mekong delta floodplains. J. Environ. Manage. 128, 161–168 (2013). https://doi.org/10.1016/j.jenvman.2013.04.048

    Article  Google Scholar 

  7. J. Ni, L. Sun, T. Li, Z. Huang, A.G.L. Borthwick, Assessment of flooding impacts in terms of sustainability in mainland China. J. Environ. Manage. 91, 1930–1942 (2010). https://doi.org/10.1016/j.jenvman.2010.02.010

    Article  Google Scholar 

  8. M. Yazdi, N.A. Golilarz, A. Nedjati, K.A. Adesina, Intelligent Fuzzy Pythagorean Bayesian Decision Making of Maintenance Strategy Selection in Offshore Sectors. In: C. Kahraman, S. Cebi, S. Cevik Onar, B. Oztaysi, A.C. Tolga, I.U. Sari (eds). Intelligent and Fuzzy Techniques for Emerging Conditions and Digital Transformation. INFUS 2021. Lecture Notes in Networks and Systems, vol. 308. (Springer, Cham, 2022). https://doi.org/10.1007/978-3-030-85577-2_70

  9. M. Li, P. Cao, Computers & Industrial Engineering Extended TODIM method for multi-attribute risk decision making problems in emergency response. Comput. Ind. Eng. 135, 1286–1293 (2019). https://doi.org/10.1016/j.cie.2018.06.027

    Article  Google Scholar 

  10. M. Yazdi, S. Kabir, M. Walker, Uncertainty handling in fault tree based risk assessment: State of the art and future perspectives. Process Saf. Environ. Prot. 131, 89–104 (2019). https://doi.org/10.1016/j.psep.2019.09.003

    Article  Google Scholar 

  11. L. Zhang, Y. Wang, X. Zhao, A new emergency decision support methodology based on multi-source knowledge in 2-tuple linguistic model. Knowledge-Based Syst. 144, 77–87 (2018). https://doi.org/10.1016/j.knosys.2017.12.026

    Article  Google Scholar 

  12. S. Daneshvar, M. Yazdi, K.A. Adesina, Fuzzy smart failure modes and effects analysis to improve safety performance of system: case study of an aircraft landing system. Qual. Reliab. Eng. Int., 1–20 (2020). https://doi.org/10.1002/qre.2607

  13. F. Nawaz, M.R. Asadabadi, N.K. Janjua, O.K. Hussain, E. Chang, M. Saberi, An MCDM method for cloud service selection using a Markov chain and the best-worst method. Knowledge-Based Syst. 159, 120–131 (2018). https://doi.org/10.1016/j.knosys.2018.06.010

    Article  Google Scholar 

  14. J. Ding, J. Cai, G. Guo, C. Chen, An emergency decision-making method for urban rainstorm water-logging : a China study. Sustainability, 1–21 (2018). https://doi.org/10.3390/su10103453

  15. M. Chen, Z. Dong, W. Jia, X. Ni, H. Yao, Multi-objective joint optimal operation of reservoir system and analysis of objectives competition mechanism: a case study in the upper reach of the Yangtze River. Water Artic. 11 (2019). https://doi.org/10.3390/w11122542

  16. M. Yazdi, A perceptual computing-based method to prioritize intervention actions in the probabilistic risk assessment techniques. Qual. Reliab. Eng. Int., 1–27 (2019). https://doi.org/10.1002/qre.2566

  17. M. Yazdi, Introducing a heuristic approach to enhance the reliability of system safety assessment. Qual. Reliab. Eng. Int., 1–27 (2019). https://doi.org/10.1002/qre.2545

  18. S.P. Simonovic, S. Ahmad, Computer-based model for flood evacuation emergency planning. Nat. Hazards, 25–51 (2005)

    Google Scholar 

  19. J. Rezaei, Best-worst multi-criteria decision-making method. Omega (United Kingdom) 53, 49–57 (2015). https://doi.org/10.1016/j.omega.2014.11.009

    Article  Google Scholar 

  20. L.A. Zadeh, A note on Z-numbers. Inf. Sci. (Ny) 181, 2923–2932 (2011). https://doi.org/10.1016/j.ins.2011.02.022

    Article  MATH  Google Scholar 

  21. Y. Chen, M. Larbani, Two-person zero-sum game approach for fuzzy multiple attribute decision making problems. Fuzzy Sets Syst. 157, 34–51 (2006). https://doi.org/10.1016/j.fss.2005.06.004

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Yazdi, A review paper to examine the validity of Bayesian network to build rational consensus in subjective probabilistic failure analysis. Int. J. Syst. Assur. Eng. Manag. 10, 1–18 (2019). https://doi.org/10.1007/s13198-018-00757-7

    Article  Google Scholar 

  23. M. Mohammadi, J. Rezaei, Bayesian best-worst method: a probabilistic group decision making model. Omega (United Kingdom), 1–8 (2019). https://doi.org/10.1016/j.omega.2019.06.001

  24. S. Vahedberdi, A. Kornejady, M. Ownegh, Application of the Coupled TOPSIS—Mahalanobis Distance for Multi-hazard-Based Management of the Target Districts (Springer, Netherlands, 2019). https://doi.org/10.1007/s11069-019-03617-0

  25. R.A. Aliev, W. Pedrycz, O.H. Huseynov, Functions defined on a set of Z-numbers. Inf. Sci. 423, 353–375 (2018). https://doi.org/10.1016/j.ins.2017.09.056

    Article  MathSciNet  MATH  Google Scholar 

  26. H. Aboutorab, M. Saberi, M.R. Asadabadi, O. Hussain, E. Chang, ZBWM: The Z-number extension of Best Worst Method and its application for supplier development. Expert Syst. Appl. 107, 115–125 (2018). https://doi.org/10.1016/j.eswa.2018.04.015

    Article  Google Scholar 

  27. S. Yousefzadeh, K. Yaghmaeian, A.H. Mahvi, S. Nasseri, N. Alavi, R. Nabizadeh, Comparative analysis of hydrometallurgical methods for the recovery of Cu from circuit boards: optimization using response surface and selection of the best technique by two-step fuzzy AHP-TOPSIS method. J. Clean. Prod. 249, 119401 (2020). https://doi.org/10.1016/j.jclepro.2019.119401

    Article  Google Scholar 

  28. Y. Koca, O. Muge, Solving two-player zero sum games with fuzzy payoffs when players have different risk attitudes. Qual. Reliab. Eng. Int., 1461–1474 (2018). https://doi.org/10.1002/qre.2322

  29. J. Xu, J.Y. Dong, S.P. Wan, J. Gao, Multiple attribute decision making with triangular intuitionistic fuzzy numbers based on zero-sum game approach. Iran. J. Fuzzy Syst. 16, 97–112 (2019)

    MathSciNet  MATH  Google Scholar 

  30. J. Frigout, S. Tasseel-ponche, A. Delafontaine, Strategy and decision making in Karate. Front. Psychol. 10, 1–9 (2020). https://doi.org/10.3389/fpsyg.2019.03025

  31. A. Nedjati, M. Yazdi, R. Abbassi, A sustainable perspective of optimal site selection of giant air-purifiers in large metropolitan areas. Environ. Dev. Sustain (2021). https://doi.org/10.1007/s10668-021-01807-0

  32. M. Yazdi, F. Khan, R. Abbassi, R. Rusli, Improved DEMATEL methodology for effective safety management decision-making. Saf. Sci. 127, 104705 (2020). https://doi.org/10.1016/j.ssci.2020.104705

  33. V. Ibáñez-Forés, M.D. Bovea, V. Pérez-Belis, A holistic review of applied methodologies for assessing and selecting the optimal technological alternative from a sustainability perspective. J. Clean. Prod. 70, 259–281 (2014). https://doi.org/10.1016/j.jclepro.2014.01.082

  34. K. Govindan, S. Rajendran, J. Sarkis, P. Murugesan, Multi criteria decision making approaches for green supplier evaluation and selection: a literature review. J. Clean. Prod. 98, 66–83 (2015). https://doi.org/10.1016/j.jclepro.2013.06.046

  35. M. Yazdi, N.A. Golilarz, K.A. Adesina, A. Nedjati, Probabilistic risk analysis of process systems considering epistemic and aleatory uncertainties: a comparison study. Int. J. Uncertainty, Fuzziness Knowl.-Based Syst. 29, 181–207 (2021). https://doi.org/10.1142/S0218488521500098

  36. W. Ingwersen, H. Cabezas, A. V Weisbrod, T. Eason, B. Demeke, X. Ma, T.R. Hawkins, S.-J. Lee, J.C. Bare, M. Ceja, Integrated metrics for improving the life cycle approach to assessing product system. Sustainability 6 (2014). https://doi.org/10.3390/su6031386

  37. M. Yazdi, F. Khan, R. Abbassi, Microbiologically influenced corrosion (MIC) management using Bayesian inference. Ocean Eng. (2021). https://doi.org/10.1016/j.oceaneng.2021.108852

    Article  Google Scholar 

  38. J. Ma, Y. Zheng, B. Wu, L. Wang, Equilibrium topology of multi-agent systems with two leaders. Automatica 73, 200–206 (2016). https://doi.org/10.1016/j.automatica.2016.07.005

    Article  MATH  Google Scholar 

  39. L.A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning-I. Inf. Sci. (Ny). 249 (1975)

    Google Scholar 

  40. K. Binmore, Playing for Real: A Text on Game Theory (Oxford University Press, New York, 2007)

    Book  Google Scholar 

  41. Iran International, Unprecedented Flood in North of Iran (2019)

    Google Scholar 

  42. R.A. Aliev, A.V. Alizadeh, O.H. Huseynov, The arithmetic of discrete Z-numbers. Inf. Sci. (Ny) 290, 134–155 (2015). https://doi.org/10.1016/j.ins.2014.08.024

    Article  MathSciNet  MATH  Google Scholar 

  43. B. Kang, Y. Deng, K. Hewage, R. Sadiq, A method of measuring uncertainty for Z-number. IEEE Trans. FUZZY Syst. 27, 731–738 (2019)

    Article  Google Scholar 

  44. F.E. Boran, S. Genç, M. Kurt, D. Akay, A multi-criteria intuitionistic fuzzy group decision making for supplier selection with TOPSIS method. Expert Syst. Appl. 36, 11363–11368 (2009). https://doi.org/10.1016/j.eswa.2009.03.039

    Article  Google Scholar 

  45. H. Gupta, M.K. Barua, A framework to overcome barriers to green innovation in SMEs using BWM and Fuzzy TOPSIS. Sci. Total Environ. 633, 122–139 (2018). https://doi.org/10.1016/j.scitotenv.2018.03.173

    Article  Google Scholar 

  46. M. Behzadian, S. Khanmohammadi Otaghsara, M. Yazdani, J. Ignatius, A state-of the-art survey of TOPSIS applications. Expert Syst. Appl. 39, 13051–13069 (2012). https://doi.org/10.1016/j.eswa.2012.05.056

  47. S.C. Zhang, H. Wang, Z. Liu, S. Zeng, Y. Jin, T. Baležentis, A comprehensive evaluation of the community environment adaptability for elderly people based on the improved TOPSIS. Information 10 (2019). https://doi.org/10.3390/info10120389

  48. D.A. Wood, Supplier selection for development of petroleum industry facilities, applying multi-criteria decision making techniques including fuzzy and intuitionistic fuzzy TOPSIS with flexible entropy weighting. J. Nat. Gas Sci. Eng. 28, 594–612 (2016). https://doi.org/10.1016/j.jngse.2015.12.021

    Article  Google Scholar 

  49. S. Sharma, S. Balan, An integrative supplier selection model using Taguchi loss function, TOPSIS and multi criteria goal programming. J. Intell. Manuf. 24, 1123–1130 (2013). https://doi.org/10.1007/s10845-012-0640-y

    Article  Google Scholar 

  50. S. Ramya, V. Devadas, Integration of GIS, AHP and TOPSIS in evaluating suitable locations for industrial development: a case of Tehri Garhwal district, Uttarakhand, India. J. Clean. Prod. 238, 117872 (2019). https://doi.org/10.1016/j.jclepro.2019.117872

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Adesina, K.A., Yazdi, M., Omidvar, M. (2022). Emergency Decision Making Fuzzy-Expert Aided Disaster Management System. In: Yazdi, M. (eds) Linguistic Methods Under Fuzzy Information in System Safety and Reliability Analysis. Studies in Fuzziness and Soft Computing, vol 414. Springer, Cham. https://doi.org/10.1007/978-3-030-93352-4_6

Download citation

Publish with us

Policies and ethics