Skip to main content

Fuzzy Sets Theory and Human Reliability: Review, Applications, and Contributions

  • Chapter
  • First Online:
Linguistic Methods Under Fuzzy Information in System Safety and Reliability Analysis

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 414))

Abstract

Human reliability analysis (HRA) has drawn increasing attention from both academic and industry sectors to proactively enhance system safety in recent decades. HRA mainly focuses on identifying, quantifying, modeling, and preventing human error which is recognized as the most complicated and leading cause in major accidents occurring. However, HRA practitioners have often experienced several serious issues in modeling human behavior owing to rare quantitative data, great uncertainty, and considerable complexity of human behavior. In recent years, fuzzy set theory (FST) has been substantially employed to relax some important challenges in numerous domains from healthcare to nuclear power plants. However, few academic attempts have been made to demonstrate how, and to what extent, HRA has been improved through the FST perspective. Accordingly, this chapter reviews state-of-the-art scientific research to reveal the applications, importance, and contributions of FST onto HRA and its related concerns. It explains the abovementioned aspects by (a) predicting human error probability, (b) quantifying influence of performance shaping factors in human performance, (c) modeling intra-dependency among these factors, (d) incorporating human error into probabilistic safety and risk analysis, (e) modeling human behavior and finally, (f) characterizing the uncertainty analysis in HRA by incorporating fuzzy set theory. This chapter offers useful insights into main challenges, gaps, and demands in HRA from both academic and industrial perspectives considering the FST point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Zarei, F. Khan, R. Abbassi, Importance of human reliability in process operation: a critical analysis. Reliab. Eng. Syst. Saf. 211, 107607 (2021)

    Google Scholar 

  2. E. Zarei, I. Mohammadfam, M.M. Aliabadi, A. Jamshidi, F. Ghasemi, Efficiency prediction of control room operators based on human reliability analysis and dynamic decision-making style in the process industry. Process Saf. Prog. 35(2), 192–199 (2016)

    Article  Google Scholar 

  3. M. Havlikova, M. Jirgl, Z. Bradac, Human reliability in man-machine systems. Procedia Engineering. 100, 1207–1214 (2015)

    Article  Google Scholar 

  4. R. Islam, R. Abbassi, V. Garaniya, F. Khan, Development of a human reliability assessment technique for the maintenance procedures of marine and offshore operations. J. Loss Prev. Process Ind. 50, 416–428 (2017)

    Article  Google Scholar 

  5. A. Abbaspour, M. Saremi, A. Alibabaei, P.S. Moghanlu, Determining the optimal human reliability analysis (HRA) method in healthcare systems using Fuzzy ANP and Fuzzy TOPSIS. Journal of Patient Safety and Risk Management. 25(3), 123–133 (2020)

    Article  Google Scholar 

  6. M. Philippart, Human reliability analysis methods and tools, in Space Safety and Human Performance (Elsevier, 2018), pp. 501–568

    Google Scholar 

  7. X. Zhou, X. Deng, Y. Deng, S. Mahadevan, Dependence assessment in human reliability analysis based on D numbers and AHP. Nucl. Eng. Des. 313, 243–252 (2017)

    Article  Google Scholar 

  8. A. Angelopoulou, K. Mykoniatis, N.R. Boyapati, Industry 4.0: the use of simulation for human reliability assessment. Procedia Manuf. 42, 296–301 (2020)

    Google Scholar 

  9. B. Kim, R.R. Bishu, Uncertainty of human error and fuzzy approach to human reliability analysis. Int. J. Uncertain Fuzziness Knowledge-Based Syst. 14(01), 111–129 (2006)

    Article  Google Scholar 

  10. X. Deng, W. Jiang, Dependence assessment in human reliability analysis using an evidential network approach extended by belief rules and uncertainty measures. Ann. Nucl. Energy 117, 183–193 (2018)

    Article  Google Scholar 

  11. V.G. Krymsky, F.M. Akhmedzhanov, Assessment of human reliability under the conditions of uncertainty: SPAR-H methodology interpreted in terms of interval-valued probabilities. ASCE-ASME J. Risk Uncertainty Eng. Syst. Part B: Mech. Eng. 7(2), 020907 (2021)

    Google Scholar 

  12. K.M. Groth, A. Mosleh, Deriving causal Bayesian networks from human reliability analysis data: a methodology and example model. Proc. Inst. Mech. Eng. Part O J. Risk Reliab. 226(4), 361–379 (2012)

    Google Scholar 

  13. L. Mkrtchyan, L. Podofillini, V.N. Dang, Bayesian belief networks for human reliability analysis: a review of applications and gaps. Reliab. Eng. Syst. Saf. 139, 1–16 (2015)

    Article  Google Scholar 

  14. M.R. Martins, M.C. Maturana, Application of Bayesian Belief networks to the human reliability analysis of an oil tanker operation focusing on collision accidents. Reliab. Eng. Syst. Saf. 110, 89–109 (2013)

    Article  Google Scholar 

  15. L. Podofillini, V.N. Dang, A Bayesian approach to treat expert-elicited probabilities in human reliability analysis model construction. Reliab. Eng. Syst. Saf. 117, 52–64 (2013)

    Article  Google Scholar 

  16. M. Konstandinidou, Z. Nivolianitou, C. Kiranoudis, N. Markatos, A fuzzy modeling application of CREAM methodology for human reliability analysis. Reliab. Eng. Syst. Saf. 91(6), 706–716 (2006)

    Article  Google Scholar 

  17. M. Marseguerra, E. Zio, M. Librizzi, Human reliability analysis by fuzzy “CREAM.” Risk Anal. Int. J. 27(1), 137–154 (2007)

    Article  Google Scholar 

  18. Q. Zhou, Y.D. Wong, H.S. Loh, K.F. Yuen, A fuzzy and Bayesian network CREAM model for human reliability analysis—the case of tanker shipping. Saf. Sci. 105, 149–157 (2018)

    Article  Google Scholar 

  19. Q. Lin, D. Wang, Facility layout planning with SHELL and Fuzzy AHP Method Based on human reliability for operating theatre. J. Healthcare Eng. 2019 (2019)

    Google Scholar 

  20. N. Wang, X. Du, M. Zhang, C. Xu, X. Lu, An improved weighted fuzzy CREAM model for quantifying human reliability in subway construction: modeling, validation, and application. Human Factors Ergon. Manuf. Serv. Ind. 30(4), 248–265 (2020)

    Article  Google Scholar 

  21. E. Zarei, M. Yazdi, R. Abbassi, F. Khan, A hybrid model for human factor analysis in process accidents: FBN-HFACS. J. Loss Prev. Process Ind. 57, 142–155 (2019)

    Article  Google Scholar 

  22. A. Rostamabadi, M. Jahangiri, E. Zarei, M. Kamalinia, S. Banaee, M.R. Samaei, A novel fuzzy Bayesian network-HFACS (FBN-HFACS) model for analyzing human and organization factors (HOFs) in process accidents. Process Saf. Environ. Prot. 132, 59–72 (2019)

    Article  Google Scholar 

  23. A.M. Kumar, S. Rajakarunakaran, V.A. Prabhu, Application of Fuzzy HEART and expert elicitation for quantifying human error probabilities in LPG refuelling station. J. Loss Prev. Process Ind. 48, 186–198 (2017)

    Article  Google Scholar 

  24. L.A. Zadeh. Fuzzy sets. Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers by Lotfi A Zadeh: World Scientific, pp. 394–432 (1996)

    Google Scholar 

  25. S.S. Rivera, P.A. Baziuk, J.E. NúñezMcLeod (eds.), Fuzzy uncertainties in human reliability analysis, in Proceedings of the World Congress on Engineering (2011)

    Google Scholar 

  26. A. Jones, A. Kaufmann, H.-J. Zimmermann, Fuzzy Sets Theory and Applications (Springer Science & Business Media, 2012)

    Google Scholar 

  27. L.W.Rook, Jr., Reduction of Human Error in Industrial Production (Sandia Labs, Albuquerque, N. Mex.(USA), 1962)

    Google Scholar 

  28. L.-X. Hou, R. Liu, H.-C. Liu, S. Jiang, Two decades on human reliability analysis: a bibliometric analysis and literature review. Ann. Nuclear Energy 151, 107969 (2021)

    Google Scholar 

  29. P.A. Baziuk, S.S. Rivera, J. Núñez Mc Leod, Fuzzy human reliability analysis: applications and contributions review. Adv. Fuzzy Syst. 2016 (2016)

    Google Scholar 

  30. S. Abrishami, N. Khakzad, S.M. Hosseini: A data-based comparison of BN-HRA models in assessing human error probability: an offshore evacuation case study. Reliab. Eng. Syst. Saf. 202, 107043 (2020)

    Google Scholar 

  31. R. Boring, Dynamic human reliability analysis: benefits and challenges of simulating human performance. Citeseer (2007)

    Google Scholar 

  32. T. Onisawa, A representation of human reliability using fuzzy concepts. Inf. Sci. 45(2), 153–173 (1988)

    Article  MathSciNet  Google Scholar 

  33. T. Onisawa, Y. Nishiwaki, Fuzzy human reliability analysis on the Chernobyl accident. Fuzzy Sets Syst. 28(2), 115–127 (1988)

    Article  Google Scholar 

  34. L.A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning—I. Inf. Sci. 8(3), 199–249 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  35. X. Chen, X. Liu, Y. Qin, An extended CREAM model based on analytic network process under the type-2 fuzzy environment for human reliability analysis in the high-speed train operation. Qual. Reliab. Eng. Int. 37(1), 284–308 (2021)

    Article  Google Scholar 

  36. M. Karthick, T.P. Robert, C.S. Kumar, HFACS-based FAHP implementation to identify critical factors influencing human error occurrence in nuclear plant control room. Soft. Comput. 24(21), 16577–16591 (2020)

    Article  Google Scholar 

  37. P.-c Li, G.-h Chen, L.-c Dai, Li Z, Fuzzy logic-based approach for identifying the risk importance of human error. Saf. Sci. 48(7), 902–913 (2010)

    Article  Google Scholar 

  38. E. Zio, P. Baraldi, M. Librizzi, L. Podofillini, V.N. Dang, A fuzzy set-based approach for modeling dependence among human errors. Fuzzy Sets Syst. 160(13), 1947–1964 (2009)

    Article  MathSciNet  Google Scholar 

  39. A. Azadeh, A.H. Farmand, Z.J. Sharahi, Performance assessment and optimization of HSE management systems with human error and ambiguity by an integrated fuzzy multivariate approach in a large conventional power plant manufacturer. J. Loss Prev. Process Ind. 25(3), 594–603 (2012)

    Article  Google Scholar 

  40. S.K. Tyagi, M. Akram, Human reliability evaluation for offshore platform musters using intuitionistic fuzzy sets. IEEE Trans. Fuzzy Syst. 21(6), 1115–1122 (2013)

    Article  Google Scholar 

  41. M.M. Aliabadi, Human error analysis in furnace start-up operation using HEART under intuitionistic fuzzy environment. J. Loss Prevention Process Ind. 69, 104372 (2021)

    Google Scholar 

  42. S.Y. Cho, Reliability analysis of systems using trapezoidal fuzzy neutrosophic sets. J. Knowl. Inf. Technol. Syst. 11(3), 293–299 (2016)

    Google Scholar 

  43. S. Ayber, N. Erginel (eds.), Developing the neutrosophic Fuzzy FMEA method as evaluating risk assessment tool, in International Conference on Intelligent and Fuzzy Systems (Springer, 2019)

    Google Scholar 

  44. M. Kamal, U.M. Modibbo, A. AlArjani, I. Ali, Neutrosophic fuzzy goal programming approach in selective maintenance allocation of system reliability. Complex Intell. Syst. 7(2), 1045–1059 (2021)

    Article  Google Scholar 

  45. M. Yazdi, N.A. Golilarz, A. Nedjati, K.A. Adesina, Intelligent Fuzzy Pythagorean Bayesian Decision Making of Maintenance Strategy Selection in Offshore Sectors, eds. by C. Kahraman, S. Cebi, S. Cevik Onar, B. Oztaysi, A.C. Tolga, I.U. Sari. Intelligent and Fuzzy Techniques for Emerging Conditions and Digital Transformation. INFUS 2021. Lecture Notes in Networks and Systems, vol. 308. (Springer, Cham, 2022). https://doi.org/10.1007/978-3-030-85577-2_70

  46. A. Kumar, M. Ram, Reliability analysis for environment systems using dual hesitant fuzzy set, in Advanced Fuzzy Logic Approaches in Engineering Science (IGI Global, 2019), pp. 162–73

    Google Scholar 

  47. M. Yazdi, Risk assessment based on novel intuitionistic fuzzy-hybrid-modified TOPSIS approach. Saf. Sci. 110, 438–48 (2018). https://doi.org/10.1016/j.ssci.2018.03.005

  48. N.E. Oz, S. Mete, F. Serin, M. Gul, Risk assessment for clearing and grading process of a natural gas pipeline project: an extended TOPSIS model with Pythagorean fuzzy sets for prioritizing hazards. Hum. Ecol. Risk Assess. Int. J. 25(6), 1615–1632 (2019)

    Article  Google Scholar 

  49. M. Yazdi, Acquiring and sharing tacit knowledge in failure diagnosis analysis using intuitionistic and pythagorean assessments. J. Fail. Anal. Prev. 19(2), 369–386 (2019)

    Article  MathSciNet  Google Scholar 

  50. M. Yazdi, Footprint of knowledge acquisition improvement in failure diagnosis analysis. Qual. Reliab. Engng. Int. 35, 405–422 (2019). https://doi.org/10.1002/qre.2408doi.org/10.1002/qre.2408

  51. M. Yazdi, A. Nedjati, E. Zarei, R. Abbassi, A novel extension of DEMATEL approach for probabilistic safety analysis in process systems. Saf. Sci. 121, 119–136 (2020)

    Article  Google Scholar 

  52. F. Kutlu Gündoğdu, C. Kahraman, Spherical fuzzy sets and spherical fuzzy TOPSIS method. J. Intell. Fuzzy Syst. 36(1), 337–352 (2019)

    Article  Google Scholar 

  53. C. Kahraman, F.K. Gündoğdu, Decision Making with Spherical Fuzzy Sets: Theory and Applications (Springer Nature, 2020)

    Google Scholar 

  54. F.K. Gündoğdu, C. Kahraman, A novel fuzzy TOPSIS method using emerging interval-valued spherical fuzzy sets. Eng. Appl. Artif. Intell. 85, 307–323 (2019)

    Article  Google Scholar 

  55. S. Gupta, P. Kumar, N.C. Karmakar, S.K. Palei (eds.), Quantification of human error rate in underground coal mines—a fuzzy mapping and rough set based approach, in 2013 IEEE International Conference on Industrial Engineering and Engineering Management (IEEE, 2013)

    Google Scholar 

  56. P. Kumar, S. Gupta, Y.R. Gunda, Estimation of human error rate in underground coal mines through retrospective analysis of mining accident reports and some error reduction strategies. Saf. Sci. 123, 104555 (2020)

    Google Scholar 

  57. E. Akyuz, Quantitative human error assessment during abandon ship procedures in maritime transportation. Ocean Eng. 120, 21–29 (2016)

    Article  Google Scholar 

  58. S.-T. Ung, Evaluation of human error contribution to oil tanker collision using fault tree analysis and modified fuzzy Bayesian Network based CREAM. Ocean Eng. 179, 159–172 (2019)

    Article  Google Scholar 

  59. P. Erdem, E. Akyuz: An interval type-2 fuzzy SLIM approach to predict human error in maritime transportation. Ocean Eng. 232, 109161 (2021)

    Google Scholar 

  60. D. Gertman, H. Blackman, J. Marble, J. Byers, C. Smith, The SPAR-H human reliability analysis method. US Nuclear Regulatory Commission 230(4), 35 (2005)

    Google Scholar 

  61. Ghasemi F, Ghasemi A, Kalatpour O: Prediction of human error probability during the hydrocarbon road tanker loading operation using a hybrid technique of fuzzy sets, Bayesian network and CREAM. Int. J. Occup. Saf. Ergon., 1–11 (2021)

    Google Scholar 

  62. G. Odu, Weighting methods for multi-criteria decision making technique. J. Appl. Sci. Environ. Manag. 23(8), 1449–1457 (2019)

    Google Scholar 

  63. B. Németh, A. Molnár, S. Bozóki, K. Wijaya, A. Inotai, J.D. Campbell et al., Comparison of weighting methods used in multicriteria decision analysis frameworks in healthcare with focus on low-and middle-income countries. J. Comparative Effect. Res. 8(4), 195–204 (2019)

    Article  Google Scholar 

  64. M.-C. Chiu, M.-C. Hsieh, Latent human error analysis and efficient improvement strategies by fuzzy TOPSIS in aviation maintenance tasks. Appl. Ergon. 54, 136–147 (2016)

    Article  Google Scholar 

  65. S.T. Ung, W.M. Shen, A novel human error probability assessment using fuzzy modeling. Risk Ana. Int. J. 31(5), 745–757 (2011)

    Article  Google Scholar 

  66. F. Castiglia, M. Giardina, E. Tomarchio, THERP and HEART integrated methodology for human error assessment. Radiat. Phys. Chem. 116, 262–266 (2015)

    Article  Google Scholar 

  67. J. Geng, S. Murè, G. Baldissone, G. Camuncoli, M. Demichela (eds.), Human error probability estimation in ATEX-HMI area classification: from THERP to FUZZY CREAM, in Proceedings of International Conference on Chemical & Process Engineering (ICheaP12), Milan (Italy) (2015)

    Google Scholar 

  68. M. Abbassinia, O. Kalatpour, M. Motamedzade, A. Soltanian, I. Mohammadfam, Dynamic human error assessment in emergency using fuzzy Bayesian cream. J. Res. Health Sci. 20(1), e00468 (2020)

    Google Scholar 

  69. M.P. Sinabariba, M. Ghifari, E. Muslim, B. Moch (eds.), Analysis of human error risk with human reliability methods in construction projects, in IOP Conference Series: Materials Science and Engineering (IOP Publishing, 2020)

    Google Scholar 

  70. J. Zhao, S. Zeng, J. Guo (ed.), Human error oriented stochastic hybrid automation for human system interaction, in 2016 Annual Reliability and Maintainability Symposium (RAMS) (IEEE, 2016)

    Google Scholar 

  71. L. Swaanika, R. Sujatha, D. Nagarajan, Estimation of human error using fuzzy relation. Int. J. Innov. Technol. Explor. Eng. (IJITEE) 8(8) (2019)

    Google Scholar 

  72. J.C. Williams, HEART—a proposed method for achieving high reliability in process operation by means of human factors engineering technology, in Proceedings of a Symposium on the Achievement of Reliability in Operating Plant (Safety and Reliability Society (SaRS), NEC, Birmingham, 1985)

    Google Scholar 

  73. Y. Kim, J. Park, W. Jung, I. Jang, P.H. Seong, A statistical approach to estimating effects of performance shaping factors on human error probabilities of soft controls. Reliab. Eng. Syst. Saf. 142, 378–387 (2015)

    Article  Google Scholar 

  74. S. Kang, P.H. Seong, Performance shaping factor taxonomy for human reliability analysis on mitigating nuclear power plant accidents caused by extreme external hazards. Ann. Nuclear Energy 145, 107533 (2020)

    Google Scholar 

  75. J. Rezaei, A concentration ratio for nonlinear best worst method. Int. J. Inf. Technol. Decis. Mak. 19(03), 891–907 (2020)

    Article  Google Scholar 

  76. S. Kovacevic, L. Papic, G. Janackovic, S. Savic, The analysis of human error as causes in the maintenance of machines: a case study in mining companies. S. Afr. J. Ind. Eng. 27(4), 193–202 (2016)

    Google Scholar 

  77. S.-T. Ung, V. Williams, H. Chen, S. Bonsall, J. Wang, Human error assessment and management in port operations using fuzzy AHP. Mar. Technol. Soc. J. 40(1), 73–86 (2006)

    Article  Google Scholar 

  78. J. Hu, L. Zhang, Q. Wang, B. Tian, A structured hazard identification method of human error for shale gas fracturing operation. Hum. Ecol. Risk Assess. Int. J. 25(5), 1189–1206 (2019)

    Article  Google Scholar 

  79. I.J.L. dos Santos, J.E. França, L.F.M. Santos, A.N. Haddad, Allocation of performance shaping factors in the risk assessment of an offshore installation. J. Loss Prevention Process Ind. 64, 104085 (2020)

    Google Scholar 

  80. G.F. Can, E.K. Delice, An advanced human error assessment approach: HEART and AV-DEMATEL. Human Factors Ergon. Manuf. Serv. Ind. 30(1), 29–49 (2020)

    Article  Google Scholar 

  81. W. Wang, X. Liu, Y. Qin, A modified HEART method with FANP for human error assessment in high-speed railway dispatching tasks. Int. J. Ind. Ergon. 67, 242–258 (2018)

    Article  Google Scholar 

  82. F. Mahdi Rezaie, A.M. Fakoor Saghih, N. Motahari Farimani, A novel hybrid approach based on CREAM and fuzzy ANP to evaluate human resource reliability in the urban railway. J. Transp. Saf. Secur., 1–39 (2020)

    Google Scholar 

  83. W. Wang, X. Liu, S. Liu, A hybrid evaluation method for human error probability by using extended DEMATEL with Z-numbers: a case of cargo loading operation. Int. J. Ind. Ergon. 84, 103158 (2021)

    Google Scholar 

  84. A.A. Nurdiawati, L. Handoko, H.N. Amrullah, D. Dermawan, M. Shah, F. Hamzah (eds.), Human error probability analysis of overhead crane operation in steel fabrication company using SLIM-DEMATEL-ANP method, in MATEC Web of Conferences (EDP Sciences, 2018)

    Google Scholar 

  85. I. Mohammadfam, M.M. Aliabadi, A.R. Soltanian, M. Tabibzadeh, M. Mahdinia, Investigating interactions among vital variables affecting situation awareness based on Fuzzy DEMATEL method. Int. J. Ind. Ergon. 74, 102842 (2019)

    Google Scholar 

  86. M.O. Barrios, H.F. Jiménez, S.N. Isaza (eds.), Comparative analysis between ANP and ANP-DEMATEL for six sigma project selection process in a healthcare provider, in International Workshop on Ambient Assisted Living (Springer, 2014)

    Google Scholar 

  87. A. Azizi, B. Malekmohammadi, H.R. Jafari, H. Nasiri, V.A. Parsa, Land suitability assessment for wind power plant site selection using ANP-DEMATEL in a GIS environment: case study of Ardabil province, Iran. Environ. Monitor. Assess. 186(10), 6695–6709 (2014)

    Article  Google Scholar 

  88. G. Sakthivel, M. Ilangkumaran, A. Gaikwad, A hybrid multi-criteria decision modeling approach for the best biodiesel blend selection based on ANP-TOPSIS analysis. Ain Shams Eng. J. 6(1), 239–256 (2015)

    Article  Google Scholar 

  89. J.E. Skogdalen, J.E. Vinnem, Quantitative risk analysis offshore—human and organizational factors. Reliab. Eng. Syst. Saf. 96(4), 468–479 (2011)

    Article  Google Scholar 

  90. F.I. Khan, S. Abbasi, Major accidents in process industries and an analysis of causes and consequences. J. Loss Prev. Process Ind. 12(5), 361–378 (1999)

    Article  Google Scholar 

  91. W. Wang, X. Jiang, X. Ren, H. Tan, Q. Cao (eds.), A simplified construction model for system safety analysis and quantified risk assessment: a case study of vehicle leaved road, in 2009 4th International Conference on Computer Science & Education (IEEE, 2009)

    Google Scholar 

  92. E. Zarei, N. Khakzad, V. Cozzani, G. Reniers, Safety analysis of process systems using Fuzzy Bayesian Network (FBN). J. Loss Prev. Process Ind. 57, 7–16 (2019)

    Article  Google Scholar 

  93. A. Nedjati, M. Yazdi, R. Abbassi, A sustainable perspective of optimal site selection of giant air-purifiers in large metropolitan areas. Environ. Dev. Sustain. (2021). https://doi.org/10.1007/s10668-021-01807-0

  94. S. Adumene, M. Okwu, M. Yazdi, M. Afenyo, R. Islam, C.U. Orji, et al., Dynamic logistics disruption risk model for offshore supply vessel operations in Arctic waters. Marit. Transp. Res. 2, 100039 (2021). https://doi.org/10.1016/j.martra.2021.100039

  95. M. Yazdi, F. Khan, R. Abbassi, R. Rusli, Improved DEMATEL methodology for effective safety management decision-making. Saf. Sci. 127, 104705 (2020). https://doi.org/10.1016/j.ssci.2020.104705

  96. L. Zhang, X. Wu, Y. Qin, M.J. Skibniewski, W. Liu, Towards a fuzzy Bayesian network based approach for safety risk analysis of tunnel-induced pipeline damage. Risk Anal. 36(2), 278–301 (2016)

    Article  Google Scholar 

  97. L. Zhang, X. Wu, M.J. Skibniewski, J. Zhong, Y. Lu, Bayesian-network-based safety risk analysis in construction projects. Reliab. Eng. Syst. Saf. 131, 29–39 (2014)

    Article  Google Scholar 

  98. W. Wang, X. Jiang, S. Xia, Q. Cao, Incident tree model and incident tree analysis method for quantified risk assessment: an in-depth accident study in traffic operation. Saf. Sci. 48(10), 1248–1262 (2010)

    Article  Google Scholar 

  99. F. Castiglia, M. Giardina, Fuzzy risk analysis of a modern γ-ray industrial irradiator. Health Phys. 100(6), 622–631 (2011)

    Article  Google Scholar 

  100. S. Bouharati, P. Allag, M. Belmahdi, M. Bounechada, S. Boumaïza (eds.), Risk factors analysis using the fuzzyfication of reason’s model, in 2014 1st International Conference on Information and Communication Technologies for Disaster Management (ICT-DM) (IEEE, 2014)

    Google Scholar 

  101. D. Ren, W. Zheng, Quantitative analysis methodology of non-deterministic causal relationship in risk analysis. Int. J. Secur. Its Appl. 9(8), 261–274 (2015)

    Google Scholar 

  102. M. Ahmad, M. Pontiggia, M.C. Leva (eds.), Integration of human and organizational factors with quantitative risk assessment based on accident investigation, in Proceedings of the 49th ESReDA Seminar (2015). https://wwwresearchgate.snet/publication/289985155

  103. T.A. Kletz, Accident investigation: keep asking “why?” J. Hazard. Mater. 130(1–2), 69–75 (2006)

    Article  Google Scholar 

  104. H. Book, Reducing Error and Influencing Behaviour, Health and Safety Guidance HSG48/HSG (Health and Safety Executive (HSE), Great Britain, 2009)

    Google Scholar 

  105. F. Liu, M. Yang, P. Shi (eds.), Verification and validation of fuzzy rules-based human behavior models, in 2008 Asia Simulation Conference-7th International Conference on System Simulation and Scientific Computing (IEEE, 2008)

    Google Scholar 

  106. G. Batchuluun, J.H. Kim, H.G. Hong, J.K. Kang, K.R. Park, Fuzzy system based human behavior recognition by combining behavior prediction and recognition. Expert Syst. Appl. 81, 108–133 (2017)

    Article  Google Scholar 

  107. A. Rostamabadi, M. Jahangiri, E. Zarei, M. Kamalinia, M. Alimohammadlou, A novel Fuzzy Bayesian Network approach for safety analysis of process systems; An application of HFACS and SHIPP methodology. J. Clean. Prod. 244, 118761 (2020)

    Google Scholar 

  108. J. Petronijevic, A. Etienne, J.-Y. Dantan, Human factors under uncertainty: a manufacturing systems design using simulation-optimisation approach. Comput. Ind. Eng. 127, 665–676 (2019)

    Article  Google Scholar 

  109. J. Mullins, Y. Ling, S. Mahadevan, L. Sun, A. Strachan, Separation of aleatory and epistemic uncertainty in probabilistic model validation. Reliab. Eng. Syst. Saf. 147, 49–59 (2016)

    Article  Google Scholar 

  110. H. Abdo, Dealing with Uncertainty in Risk Analysis: Combining Safety and Security (Université Grenoble Alpes, 2017)

    Google Scholar 

  111. J. Hu, Q. Zhou, A. McKeand, T. Xie, S.-K. Choi, A model validation framework based on parameter calibration under aleatory and epistemic uncertainty. Struct. Multidiscip. Optim. 63(2), 645–660 (2021)

    Article  Google Scholar 

  112. A. Mishra, E. Ahmadisharaf, B.L. Benham, D.L. Gallagher, K.H. Reckhow, E.P. Smith, Two-phase Monte Carlo simulation for partitioning the effects of epistemic and aleatory uncertainty in TMDL modeling. J. Hydrol. Eng. 24(1), 04018058 (2019)

    Article  Google Scholar 

  113. Q. Wang, L. Zhang, J. Hu, An integrated method of human error likelihood assessment for shale-gas fracturing operations based on SPA and UAHP. Process Saf. Environ. Prot. 123, 105–115 (2019)

    Article  Google Scholar 

  114. H.-N. Cho, H.-H. Choi, Y.-B. Kim, A risk assessment methodology for incorporating uncertainties using fuzzy concepts. Reliab. Eng. Syst. Saf. 78(2), 173–183 (2002)

    Article  Google Scholar 

  115. S. Dekker, E. Hollnagel, Human factors and folk models. Cogn. Technol. Work 6(2), 79–86 (2004)

    Article  Google Scholar 

  116. T.B. Sheridan, Telerobotics, Automation, and Human Supervisory Control (MIT Press, 1992)

    Google Scholar 

  117. P. Baraldi, M. Librizzi, E. Zio, L. Podofillini, V.N. Dang, Two techniques of sensitivity and uncertainty analysis of fuzzy expert systems. Expert Syst. Appl. 36(10), 12461–12471 (2009)

    Article  Google Scholar 

  118. P. Baraldi, L. Podofillini, L. Mkrtchyan, E. Zio, V.N. Dang, Comparing the treatment of uncertainty in Bayesian networks and fuzzy expert systems used for a human reliability analysis application. Reliab. Eng. Syst. Saf. 138, 176–193 (2015)

    Article  Google Scholar 

  119. F. Vanderhaegen, S. Zieba, S. Enjalbert, P. Polet, A Benefit/Cost/Deficit (BCD) model for learning from human errors. Reliab. Eng. Syst. Saf. 96(7), 757–766 (2011)

    Article  Google Scholar 

  120. M. Yazdi, A. Nedjati, E. Zarei, R. Abbassi, A reliable risk analysis approach using an extension of best-worst method based on democratic-autocratic decision-making style. J. Clean. Prod. 256, 120418 (2020)

    Google Scholar 

  121. E. Zarei, F.Khan, M. Yazdi, A dynamic risk model to analyze hydrogen infrastructure. Int. J. Hydrogen Energy 46(5), 4626–4643 (2021)

    Google Scholar 

  122. M. Yazdi, N.A. Golilarz, K.A. Adesina, A. Nedjati, Probabilistic Risk Analysis of Process Systems Considering Epistemic and Aleatory Uncertainties. A Comparison Study. Int. J. Uncertainty, Fuzziness Knowledge-Based Syst. 29, 181–207 (2021). https://doi.org/10.1142/S0218488521500098

  123. R.L. Boring, D.D. Dudenhoeffer, B.P. Hallbert, B.F. Gore, Modeling human reliability analysis using MIDAS. Citeseer (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gholamizadeh, K., Zarei, E., Omidvar, M., Yazdi, M. (2022). Fuzzy Sets Theory and Human Reliability: Review, Applications, and Contributions. In: Yazdi, M. (eds) Linguistic Methods Under Fuzzy Information in System Safety and Reliability Analysis. Studies in Fuzziness and Soft Computing, vol 414. Springer, Cham. https://doi.org/10.1007/978-3-030-93352-4_5

Download citation

Publish with us

Policies and ethics