Skip to main content

Effects of Taurine on Anxiety-Like and Locomotor Behavior of Mice

  • Conference paper
Taurine 7

Abstract

Taurine is one of the most abundant free amino acids especially in excitable tissues, with wide physiological actions. We have previously reported that chronic supplementation of taurine in drinking water to mice increases brain excitability, mainly through alterations in the inhibitory GABAergic system. In this study we investigated the effects of chronic versus acute taurine treatment on anxiety-like and locomotor behaviors using two behavioral tests: elevated plus-maze and open-field. These two test conditions generated different levels of anxiety, and both anxiolytic and anxiogenic effects of taurine could be assessed. We used two paradigms for taurine treatment: Acute injection versus chronic supplementation. In the open field test, taurine supplementation increased whereas taurine injection suppressed locomotor activity. We found that taurine supplementation induced an increase in the total distance traveled, the overall movement speed, the time the animals spent mobile, the number of line crossings, and the time the animals entered the center zone. In the elevated arm maze, taurine injection suppressed anxiety whereas taurine supplementation was anxiogenic. The major findings of this are two folds: First these results suggest that taurine might play a role in the modulation of anxiety and locomotor activity. Second, taurine when injected acutely had opposite effects than when administered chronically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barbeau A, Inoue N, Tsukada Y, Butterworth RF (1975) The neuropharmacology of taurine. Life Sci 17:669–678

    Article  PubMed  CAS  Google Scholar 

  • Belzung C, Griebel G (2001) Measuring normal and pathological anxiety-like behaviour in mice:a review. Behav Brain Res 125:141–149

    Article  PubMed  CAS  Google Scholar 

  • Benrabh H, Bourre JM, Lefauconnier JM (1995) Taurine transport at the blood-brain barrier: an in vivo brain perfusion study. Brain Res 692:57–65

    Article  PubMed  CAS  Google Scholar 

  • Bourin M, Hascoet M (2003) The mouse light/dark box test. Eur J Pharmacol 463:55–65

    Article  PubMed  CAS  Google Scholar 

  • Bueno CH, Zangrossi Jr. H, Viana MB (2005) The inactivation of the basolateral nucleus of the rat amygdala has an anxiolytic effect in the elevated T-maze and light/dark transition tests. Braz J Med Biol Res 38:1697–1701

    Article  PubMed  CAS  Google Scholar 

  • Chen SW, Xin Q, Kong WX, Min L, Li JF (2003) Anxiolytic-like effect of succinic acid in mice. Life Sci 73:3257–3264

    Article  PubMed  CAS  Google Scholar 

  • El Idrissi A, Trenkner E (2004) Taurine as a modulator of excitatory and inhibitory neurotransmission. Neurochem Res 29:189-197

    Article  PubMed  CAS  Google Scholar 

  • Danober L, Pape HC (1998) Strychnine-sensitive glycine responses in neurons of the lateral amygdala: an electrophysiological and immunocytochemical characterization. Neuroscience 85:427–441

    Article  PubMed  CAS  Google Scholar 

  • Dawson and Tricklebank MD (1995) Use of the elevated plus-maze in the search for novel anxiolytic agents. Trends in Pharm Sci 16:33–36

    Article  CAS  Google Scholar 

  • Guidotti A, Badiani G, Pepeu G (1972) Taurine distribution in cat brain. J Neurochem 19:431–435

    Article  PubMed  CAS  Google Scholar 

  • Hayes KC, Carey SY, Schmidt SY (1975) Retinal degeneration associated with taurine deficiency in the cat. Science 188:949

    Article  PubMed  CAS  Google Scholar 

  • Ikeda HC (1977) Effects of taurine on alcohol withdrawal. Lancet 2 (8036):509

    Article  PubMed  CAS  Google Scholar 

  • Joseph and Emson (1976) Taurine and cobalt induced epilepsy in the rat: a biochemical and electrocorticographic study. J Neurochem 27:1495–1501

    Google Scholar 

  • Kulkarni and Reddy DS (1996) Animal behavioral models for testing antianxiety agents. Methods and Findings in Experimental and Clinical Pharmacology 18:219–230

    Google Scholar 

  • McCool BA, Botting SK (2000) Characterization of strychnine-sensitive glycine receptors in acutely isolated adult rat basolateral amygdala neurons. Brain Res 859:341–351

    Article  PubMed  CAS  Google Scholar 

  • Medina JH, DeRobertis E (1984) Taurine modulation of the benzodiazepine gamma-aminobutyric acid receptor complex in brain membranes. J Neurochem 42:1212–1217

    Article  PubMed  CAS  Google Scholar 

  • Perry TL (1976) Hereditary mental depression with taurine deficiency: futher studies, including a therapeutic trial of taurine administration. In: Huxtable R, Barbeau A (eds) Taurine, Raven Press, New York, pp 365–374

    Google Scholar 

  • Ramos A, Mormede P (1998) Stress and emotionality: a multidimensional and genetic approach. Neurosci Biobehav Rev 22:33–57

    Article  PubMed  CAS  Google Scholar 

  • Rex A, Morgenstern E, Fink H (2002) Anxiolytic-like effects of Kava-Kava in the elevated plus maze test – a comparison with diazepam. Prog Neuro-Psychopharmacol Biol Psychiatry 26:855–860

    Article  CAS  Google Scholar 

  • Rickels K, Schweizer E (1997) The clinical presentation of generalized anxiety in primary-care setting: practical concepts of classification and management. J Clin Psychiatry 58:4–9

    PubMed  Google Scholar 

  • Rodgers RJ, Dalvi A (1997) Anxiety, defence and the elevated plus-maze. Neurosci Biobehav Rev 21:801–810

    Article  PubMed  CAS  Google Scholar 

  • Sanberg RP, Ossenkopp KP (1977) Dose-response effects of taurine on some open-field behaviors in the rat. Psychopharmacology 53:207–209

    Article  PubMed  CAS  Google Scholar 

  • Sanders SK, Shekhar A (1995) Regulation of anxiety by GABAA receptors in the rat amygdale. Pharmacol Biochem Behav 52:701–706

    Article  PubMed  CAS  Google Scholar 

  • Shaw RK, Heine JD (1965) Ninhydrin positive substances present in different areas of normal rat brain. J Neurochem 12:151–155

    Article  PubMed  CAS  Google Scholar 

  • Wall PM, Messier C (2001) Methodological and conceptual issues in the use of the elevated plus-maze as a psychological measurement instrument of animal anxiety-like behavior. Neurosci Biobehav Rev 25:275–286

    Article  PubMed  CAS  Google Scholar 

  • Zangrossi H, Graeff FG (1994) Behavioral effects of intra-amygdala injections of GABA and 5-HT acting drugs in the elevated plus-maze. Braz J Med Biol Res 27:2453–2456

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this paper

Cite this paper

Idrissi, A.E., Boukarrou, L., Heany, W., Malliaros, G., Sangdee, C., Neuwirth, L. (2009). Effects of Taurine on Anxiety-Like and Locomotor Behavior of Mice. In: Azuma, J., Schaffer, S.W., Ito, T. (eds) Taurine 7. Advances in Experimental Medicine and Biology, vol 643. Springer, New York, NY. https://doi.org/10.1007/978-0-387-75681-3_21

Download citation

Publish with us

Policies and ethics