Skip to main content

Taurine and Its Anticancer Functions: In Vivo and In Vitro Study

  • Chapter
  • First Online:
Taurine 12

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1370))

Abstract

Taurine (2-aminoethanesulfonic acid) is a natural amino acid that is found widely in all mammalian tissues. Several studies have demonstrated that taurine has anti-inflammatory, antioxidant, and hypoglycemic effects. Recently, taurine not only mitigates the side effects of chemotherapy in cancer but also possesses antitumor properties, including inhibiting cancer cell proliferation and inducing apoptosis in certain cancers by differential regulating proapoptotic and antiapoptotic proteins. Antitumor studies of taurine are still in their infancy, and the mechanism of its antitumor effect is not fully understood. In this regard, it is worthwhile to study the antitumor mechanism of taurine, which may provide clues to develop new synthetic therapeutic molecules. In this mini review, we summarize the main effects of taurine that have shown suppressing actions in the initiation and progression of cancers. The underlying molecular mechanism also suggested that taurine can be a potential clinical application in tumor therapy. In addition, with the in-depth study of different biological functions of taurine, we found that many systemic diseases are associated with taurine. In this review, the research progress of taurine’s antitumor effect is briefly summarized including the in vivo and in vitro studies in our laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Akt:

Phosphorylated protein kinase B

AOM:

Azomethane

CDDP:

Cisplatin

COX-2:

Cyclooxygenase

CTX:

Cyclophosphamide

DOX:

Doxorubicin

FAS:

Fatty acid synthase

IFO:

Ifosfamide

MST1:

Human mammalian sterile 20-like kinases 1

PTEN:

Phosphatase and tensin homolog deleted from chromosome 10

PUMA:

p53-upregulated modulator of apoptosis

QOL:

Quality of life

TauT:

Taurine transporter

YAP:

Caspase-3 and downregulated yes-associated protein

References

  • Badary OA (1998) Taurine attenuates fanconi syndrome induced by ifosfamide without compromising its antitumor activity. Oncol Res 10(7):355–360

    CAS  PubMed  Google Scholar 

  • Cossu F, Milani M, Mastrangelo E, Lecis D (2019) Targeting the BIR domains of inhibitor of apoptosis (IAP) proteins in cancer treatment. Comput Struct Biotechnol J 17:142–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Agouza IM, Eissa SS, El Houseini MM, El-Nashar DE, Abd El Hameed OM (2011) Taurine: a novel tumor marker for enhanced detection of breast cancer among female patients. Angiogenesis 14(3):321–330

    Article  PubMed  CAS  Google Scholar 

  • El Idrissi A, Boukarrou L, L’Amoreaux W (2009) Taurine supplementation and pancreatic remodeling. Adv Exp Med Biol 643:353–358

    Article  PubMed  CAS  Google Scholar 

  • Gaucher D, Arnault E, Husson Z, Froger N, Dubus E, Gondouin P, Dherbecourt D, Degardin J, Simonutti M, Fouquet S, Benahmed MA, Elbayed K, Namer IJ, Massin P, Sahel JA, Picaud S (2012) Taurine deficiency damages retinal neurones: cone photoreceptors and retinal ganglion cells. Amino Acids 43(5):1979–1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghavami S, Shojaei S, Yeganeh B, Ande SR, Jangamreddy JR, Mehrpour M, Christoffersson J, Chaabane W, Moghadam AR, Kashani HH, Hashemi M, Owji AA, Los MJ (2014) Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog Neurobiol 112:24–49

    Article  CAS  PubMed  Google Scholar 

  • Hassan M, Watari H, AbuAlmaaty A, Ohba Y, Sakuragi N (2014) Apoptosis and molecular targeting therapy in cancer. Biomed Res Int 2014:150845

    PubMed  PubMed Central  Google Scholar 

  • He F, Ma N, Midorikawa K, Hiraku Y, Oikawa S, Zhang Z, Huang G, Takeuchi K, Murata M (2018) Taurine exhibits an apoptosis-inducing effect on human nasopharyngeal carcinoma cells through PTEN/Akt pathways in vitro. Amino Acids 50(12):1749–1758

    Article  CAS  PubMed  Google Scholar 

  • He F, Ma N, Midorikawa K, Hiraku Y, Oikawa S, Mo Y, Zhang Z, Takeuchi K, Murata M (2019) Anti-cancer mechanisms of taurine in human nasopharyngeal carcinoma cells. Adv Exp Med Biol 1155:533–541

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim HM, Abdel Ghaffar FR, El-Elaimy IA, Gouida MS, Abd El Latif HM (2018) Antitumor and immune-modulatory efficacy of dual-treatment based on levamisole and/or taurine in Ehrlich ascites carcinoma-bearing mice. Biomed Pharmacother 106:43–49

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Oishi S, Takai M, Kimura Y, Uozumi Y, Fujio Y, Schaffer SW, Azuma J (2010) Cardiac and skeletal muscle abnormality in taurine transporter-knockout mice. J Biomed Sci 17(Suppl 1):S20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ito T, Schaffer SW, Azuma J (2011) The potential usefulness of taurine on diabetes mellitus and its complications. Amino Acids 42(5):1529–1539

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johnson-Arbor K, Dubey R (2021) Doxorubicin. In: StatPearls (Internet). StatPearls Publishing, Treasure Island

    Google Scholar 

  • Khalil RM, Abdo WS, Saad A, Khedr EG (2017) Muscle proteolytic system modulation through the effect of taurine on mice bearing muscular atrophy. Mol Cell Biochem 444(1–2):161–168

    PubMed  Google Scholar 

  • Kilb W, Fukuda A (2017) Taurine as an essential neuromodulator during perinatal cortical development. Front Cell Neurosci 11:328

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim T, Kim AK (2013) Taurine enhances anticancer activity of cisplatin in human cervical cancer cells. Adv Exp Med Biol 776:189–198

    Article  CAS  PubMed  Google Scholar 

  • Kim YS, Kim EK, Hwang JW, Kim WS, Shin WB, Natarajan SB, Moon SH, Jeon BT, Park PJ (2017) Taurine attenuates doxorubicin-induced toxicity on B16F10 cells. Adv Exp Med Biol 975(Pt 2):1179–1190

    Article  PubMed  CAS  Google Scholar 

  • Li H, Ruan WJ, Liu LQ, Wan HF, Yang XH, Zhu WF, Yu LH, Zhang XL, Wan FS (2019) Impact of taurine on the proliferation and apoptosis of human cervical carcinoma cells and its mechanism. Chin Med J (Engl) 132(8):948–956

    Article  CAS  Google Scholar 

  • Maher SG, Condron CE, Bouchier-Hayes DJ, Toomey DM (2005) Taurine attenuates CD3/interleukin-2-induced T cell apoptosis in an in vitro model of activation-induced cell death (AICD). Clin Exp Immunol 139(2):279–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcinkiewicz J, Kontny E (2012) Taurine and inflammatory diseases. Amino Acids 46(1):7–20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakanishi A, Kitagishi Y, Ogura Y, Matsuda S (2014) The tumor suppressor PTEN interacts with p53 in hereditary cancer (review). Int J Oncol 44(6):1813–1819

    Article  CAS  PubMed  Google Scholar 

  • Pandya K, Clark GJ, Lau-Cam CA (2017) Investigation of the role of a supplementation with taurine on the effects of hypoglycemic-hypotensive therapy against diabetes-induced nephrotoxicity in rats. Adv Exp Med Biol 975(Pt 1):371–400

    Article  CAS  PubMed  Google Scholar 

  • Puzio-Kuter AM (2011) The role of p53 in metabolic regulation. Genes Cancer 2(4):385–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redmond HP, Stapleton PP, Neary P, Bouchier-Hayes D (1998) Immunonutrition: the role of taurine. Nutrition 14(7–8):599–604

    Article  CAS  PubMed  Google Scholar 

  • Refai NS, Louka ML, Halim HY, Montasser I (2019) Long non-coding RNAs (CASC2 and TUG1) in hepatocellular carcinoma: clinical significance. J Gene Med 21(9):e3112

    Article  CAS  PubMed  Google Scholar 

  • Sadzuka Y, Matsuura M, Sonobe T (2009) The effect of taurine, a novel biochemical modulator, on the antitumor activity of doxorubicin. Biol Pharm Bull 32(9):1584–1587

    Article  CAS  PubMed  Google Scholar 

  • Schaffer SW, Jong CJ, Ramila KC, Azuma J (2010) Physiological roles of taurine in heart and muscle. J Biomed Sci 17(Suppl 1):S2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shimada K, Jong CJ, Takahashi K, Schaffer SW (2015) Role of ROS production and turnover in the antioxidant activity of taurine. Adv Exp Med Biol 803:581–596

    Article  CAS  PubMed  Google Scholar 

  • Songbo M, Lang H, Xinyong C, Bin X, Ping Z, Liang S (2019) Oxidative stress injury in doxorubicin-induced cardiotoxicity. Toxicol Lett 307:41–48

    Article  CAS  PubMed  Google Scholar 

  • Taha Z, Janse van Rensburg HJ, Yang X (2018) The hippo pathway: immunity and cancer. Cancers (Basel) 10(4):94

    Article  CAS  Google Scholar 

  • Tang Y, Choi EJ, Cheong SH, Hwang YJ, Arokiyaraj S, Park PJ, Moon SH, Kim EK (2015) Effect of taurine on prostate-specific antigen level and migration in human prostate cancer cells. Adv Exp Med Biol 803:203–214

    Article  CAS  PubMed  Google Scholar 

  • Tsunekawa M, Wang S, Kato T, Yamashita T, Ma N (2017) Taurine administration mitigates cisplatin induced acute nephrotoxicity by decreasing DNA damage and inflammation: an immunocytochemical study. Adv Exp Med Biol 975(Pt 2):703–716

    Article  CAS  PubMed  Google Scholar 

  • Tu S, Zhang XL, Wan HF, Xia YQ, Liu ZQ, Yang XH, Wan FS (2018) Effect of taurine on cell proliferation and apoptosis human lung cancer A549 cells. Oncol Lett 15(4):5473–5480

    PubMed  PubMed Central  Google Scholar 

  • Vanitha MK, Anandakumar P, Sakthisekaran D (2018) Taurine abrogates mammary carcinogenesis through induction of apoptosis in Sprague-Dawley rats. J Biochem Mol Toxicol 32(10):e22204

    Article  PubMed  CAS  Google Scholar 

  • Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ (2011) Natural innate and adaptive immunity to cancer. Annu Rev Immunol 29:235–271

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Ma N, He F, Kawanishi S, Kobayashi H, Oikawa S, Murata M (2020) Taurine attenuates carcinogenicity in ulcerative colitis-colorectal cancer mouse model. Oxidative Med Cell Longev 2020:7935917

    Google Scholar 

  • Zhang X, Du W, Shen F, Wang J (1997) Research on effects of taurine on the transplanted tumor of mice. Wei Sheng Yan Jiu 26(5):321–324

    PubMed  Google Scholar 

  • Zhang X, Lu H, Wang Y, Liu C, Zhu W, Zheng S, Wan F (2014a) Taurine induces the apoptosis of breast cancer cells by regulating apoptosis-related proteins of mitochondria. Int J Mol Med 35(1):218–226

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Tu S, Wang Y, Xu B, Wan F (2014b) Mechanism of taurine-induced apoptosis in human colon cancer cells. Acta Biochim Biophys Sin Shanghai 46(4):261–272

    Article  CAS  PubMed  Google Scholar 

  • Zhang XD, Sun P, Zhu DL, Xie N (2014c) Inhibitory effect of taurine in hypoxia-induced rat pulmonary artery smooth muscle cell proliferation and signal transduction mechanism. Zhongguo Zhong Yao Za Zhi 39(10):1902–1907

    CAS  PubMed  Google Scholar 

  • Zhang W, Liu K, Pei Y, Ma J, Tan J, Zhao J (2018) Mst1 regulates non-small cell lung cancer A549 cell apoptosis by inducing mitochondrial damage via ROCK1/Factin pathways. Int J Oncol 53(6):2409–2422

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao N, Wang L, Mou HY, Liang M, Yue W (2009) Synergism and attenuation effects of taurine on cyclophosphamide. Ai Zheng 28(3):244–248

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ma, N., He, F., Kawanokuchi, J., Wang, G., Yamashita, T. (2022). Taurine and Its Anticancer Functions: In Vivo and In Vitro Study. In: Schaffer, S.W., El Idrissi, A., Murakami, S. (eds) Taurine 12. Advances in Experimental Medicine and Biology, vol 1370. Springer, Cham. https://doi.org/10.1007/978-3-030-93337-1_11

Download citation

Publish with us

Policies and ethics