Skip to main content

Landscape of Immunotherapy in Lung Cancer

  • Chapter
  • First Online:
Cancer Metastasis Through the Lymphovascular System
  • 1037 Accesses

Abstract

Lung cancer is the leading cause of cancer-related mortality not only in the USA but also worldwide. There have been many advances and research in treatment protocols for non-small cell lung cancer in the last few years. Screening with low-dose CT scan for smokers aged ≥65 years has offered a mortality benefit of 20% and a 6.7% decrease in all-cause mortality. The changing landscape of treatment from platinum compounds to tyrosine kinase inhibitors to immune checkpoint inhibitors has dramatically helped in increasing the survival of those high-risk individuals. Different trials that have been carried out to study the efficacy and effectiveness of different drugs give us a different perspective in determining the most appropriate treatment for an individual patient. The checkpoint inhibitors have become the first-line treatment option for patients with NSCLC as monotherapy or in combination with chemotherapeutic drugs. The role of biomarkers such as PD-L1 in tailoring the treatment for NSCLC has been very crucial. However, there is still a need to study different biomarkers and the correct combination and sequence of immune checkpoint inhibitors to be administered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.

    Article  Google Scholar 

  2. Ada G. The coming of age of tumour immunotherapy. Immunol Cell Biol. 1999;77(2):180–5.

    Article  CAS  Google Scholar 

  3. Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373(17):1627–39.

    Article  CAS  Google Scholar 

  4. JM TR, Kmieciak M, Manjili MH, Knutson KL. Tumor immunoediting and immunosculpting pathways to cancer progression. Sem Cancer Biol. 2009;17(4):275–87.

    Google Scholar 

  5. Page DB, Bourla AB, Daniyan A, Naidoo J, Smith E, Smith M, et al. Tumor immunology and cancer immunotherapy: summary of the 2014 SITC primer. J Immunother Cancer. 2015;3(1):1–10.

    Article  Google Scholar 

  6. Carbone DP, Reck M, Paz-Ares L, Creelan B, Horn L, Steins M, et al. First-line nivolumab in stage IV or recurrent non-small-cell lung cancer. N Engl J Med. 2017;376(25):2415–26.

    Article  CAS  Google Scholar 

  7. Rossi A, Di Maio M. Platinum-based chemotherapy in advanced non-small-cell lung cancer: optimal number of treatment cycles. Expert Rev Anticancer Ther. 2016;16(6):653–60.

    Article  CAS  Google Scholar 

  8. Garon EB, Cao D, Alexandris E, John WJ, Yurasov S, Perol M. A randomized, double-blind, phase III study of docetaxel and ramucirumab versus docetaxel and placebo in the treatment of stage IV non-small-cell lung cancer after disease progression after 1 previous platinum-based therapy (REVEL): treatment rationale an. Clin Lung Cancer. 2012;13(6):505–9.

    Article  CAS  Google Scholar 

  9. Miyauchi E, Inoue A. Immune checkpoint therapy for non-small-cell lung cancer. Japanese J Cancer Chemother. 2016;43(6):666–71.

    CAS  Google Scholar 

  10. Postow MA, Callahan MK, Wolchok JD. Immune checkpoint blockade in cancer therapy. J Clin Oncol. 2015;33(17):1974–82.

    Article  CAS  Google Scholar 

  11. Xia B, Herbst R. Immune checkpoint therapy for non-small-cell lung cancer: an update. Immunotherapy. 2016;8(3):279–98.

    Article  CAS  Google Scholar 

  12. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64.

    Article  CAS  Google Scholar 

  13. Dixon KO, Schorer M, Nevin J, Etminan Y, Amoozgar Z, Kondo T, et al. Functional anti-TIGIT antibodies regulate development of autoimmunity and antitumor immunity. J Immunol. 2018;200(8):3000–7.

    Article  CAS  Google Scholar 

  14. Solomon BL, Garrido-Laguna I. TIGIT: a novel immunotherapy target moving from bench to bedside. Cancer Immunol Immunother. 2018;67(11):1659–67.

    Article  CAS  Google Scholar 

  15. ascopubs.org. https://ascopubs.org/doi/abs/10.1200/JCO.2020.38.15_suppl.9503

  16. merck.com. https://www.merck.com/news/merck-presents-promising-new-data-for-three-investigational-medicines-from-diverse-and-expansive-oncology-pipeline-at-esmo-virtual-congress-2020/

  17. Duma N, Santana-Davila R, Molina JR. Non–small cell lung cancer: epidemiology, screening, diagnosis, and treatment. Mayo Clin Proc. 2019;94(8):1623–40.

    Article  CAS  Google Scholar 

  18. Wang L, Yue HU, Wang S, Shen J, Wang X. Biomarkers of immunotherapy in non-small cell lung cancer (review). Oncol Lett. 2020;20(5):1–14.

    Google Scholar 

  19. Gandhi L, Rodríguez-Abreu D, Gadgeel S, Esteban E, Felip E, De Angelis F, et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med. 2018;378(22):2078–92.

    Article  CAS  Google Scholar 

  20. Nosaki K, Saka H, Hosomi Y, Baas P, de Castro G, Reck M, et al. Safety and efficacy of pembrolizumab monotherapy in elderly patients with PD-L1–positive advanced non–small-cell lung cancer: pooled analysis from the KEYNOTE-010, KEYNOTE-024, and KEYNOTE-042 studies. Lung Cancer. 2019;135(July):188–95. Available from: https://doi.org/10.1016/j.lungcan.2019.07.004

    Article  Google Scholar 

  21. Patel SP, Kurzrock R. PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol Cancer Ther. 2015;14(4):847–56.

    Article  CAS  Google Scholar 

  22. Johnson DB, Frampton GM, Rioth MJ, Yusko E, Xu Y, Guo X, et al. Targeted next generation sequencing identifies markers of response to PD-1 blockade. Cancer Immunol Res. 2016;4(11):959–67.

    Article  CAS  Google Scholar 

  23. Tray N, Weber JS, Adams S. Predictive biomarkers for checkpoint immunotherapy: current status and challenges for clinical application. Cancer Immunol Res. 2018;6(10):1122–8.

    Article  CAS  Google Scholar 

  24. Rizvi H, Sanchez-Vega F, La K, Chatila W, Jonsson P, Halpenny D, et al. Molecular determinants of response to anti-programmed cell death (PD)-1 and anti-programmed death-ligand 1 (PD-L1) blockade in patients with non-small-cell lung cancer profiled with targeted next-generation sequencing. J Clin Oncol. 2018;36(7):633–41.

    Article  CAS  Google Scholar 

  25. Geng Y, Shao Y, He W, Hu W, Xu Y, Chen J, et al. Prognostic role of tumor-infiltrating lymphocytes in lung cancer: a meta-analysis. Cell Physiol Biochem. 2015;37(4):1560–71.

    Article  CAS  Google Scholar 

  26. Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Emma J, Taylor M, et al. Immune Resistance. Nature. 2015;515(7528):568–71.

    Article  Google Scholar 

  27. Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csöszi T, Fülöp A, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375(19):1823–33.

    Article  CAS  Google Scholar 

  28. Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R, et al. Durvalumab after chemoradiotherapy in stage III non–small-cell lung cancer. N Engl J Med. 2017;377(20):1919–29.

    Article  CAS  Google Scholar 

  29. fda.gov. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-atezolizumab-first-line-treatment-metastatic-nsclc-high-pd-l1-expression

  30. Spigel D, de Marinis F, Giaccone G, Reinmuth N, Vergnenegre A, Barrios CH, et al. IMpower110: interim overall survival (OS) analysis of a phase III study of atezolizumab (atezo) vs platinum-based chemotherapy (chemo) as first-line (1L) treatment (tx) in PD-L1–selected NSCLC. Ann Oncol. 2019;30(October):v915.

    Article  Google Scholar 

  31. Moreno V, Gil-Martin M, Johnson ML, Aljumaily R, Lopez Criado P, Northfelt DW, et al. Cemiplimab, a human monoclonal anti-PD-1, plus radiotherapy (RT) in advanced non-small cell lung cancer (NSCLC): results from a phase I expansion cohort (EC 2). Ann Oncol. 2018;29(December):x26.

    Article  Google Scholar 

  32. Sezer A, Kilickap S, Gümüş M, Bondarenko I, Özgüroğlu M, Gogishvili M, et al. LBA52 EMPOWER-lung 1: phase III first-line (1L) cemiplimab monotherapy vs platinum-doublet chemotherapy (chemo) in advanced non-small cell lung cancer (NSCLC) with programmed cell death-ligand 1 (PD-L1) ≥50%. Ann Oncol. 2020;31:S1182–3.

    Article  Google Scholar 

  33. Patnaik A, Powell SF, Gentzler RD, Martins RG, Stevenson JP, Jalal SI, et al. study. 2019;17(11):1497–1508.

    Google Scholar 

  34. Paz-Ares L, Luft A, Vicente D, Tafreshi A, Gümüş M, Mazières J, et al. Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. N Engl J Med. 2018;379(21):2040–51.

    Article  CAS  Google Scholar 

  35. Socinski MA, Jotte RM, Cappuzzo F, Orlandi F, Stroyakovskiy D, Nogami N, et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N Engl J Med. 2018;378(24):2288–301.

    Article  CAS  Google Scholar 

  36. Stinchcombe TE. IMpower 131: the exception to the rule. J Thorac Oncol. 2020;15(8):1258–60.

    Article  Google Scholar 

  37. Rizvi NA, Cho BC, Reinmuth N, Lee KH, Luft A, Ahn MJ, et al. Durvalumab with or without Tremelimumab vs standard chemotherapy in first-line treatment of metastatic non-small cell lung cancer: the MYSTIC phase 3 randomized clinical trial. JAMA Oncol. 2020;6(5):661–74.

    Article  Google Scholar 

  38. Med CC. Nivolumab plus ipilimumab as first-line treatment for advanced non-small-cell lung cancer (CheckMate 012): results of an open- label, phase 1, multicohort study. 2015;40(4):1291–1296.

    Google Scholar 

  39. Hellmann MD, Paz Ares L, Bernabe Caro R, Zurawski B, Kim SW, Carcereny Costa E, et al. Nivolumab plus ipilimumab in advanced non-small-cell lung cancer. N Engl J Med. 2019;381(21):2020–31.

    Article  CAS  Google Scholar 

  40. ascopost.com. https://ascopost.com/issues/july-25-2020/nivolumabipilimumab-shows-benefit-in-patients-with-non-small-cell-lung-cancer-and-brain-metastases/

  41. clinicaltrials.gov. https://clinicaltrials.gov/ct2/show/results/NCT03215706

  42. Rohaan MW, Wilgenhof S, Haanen JBAG. Adoptive cellular therapies: the current landscape. Virchows Arch. 2019;474(4):449–61.

    Article  Google Scholar 

  43. Wang J, Wang X. Beyond chemotherapy and targeted therapy: adoptive cellular therapy in non-small cell lung cancer. Mol Biol Rep. 2014;41(9):6317–23.

    Article  CAS  Google Scholar 

  44. cancerresearch.org. https://www.cancerresearch.org/immunotherapy/treatment-types/adoptive-cell-therapy

  45. https://clinicaltrials.gov/ct2/show/NCT03330834

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sanghavi, N., Farwa, U., Khurshid, F., Husain, H. (2022). Landscape of Immunotherapy in Lung Cancer. In: Leong, S.P., Nathanson, S.D., Zager, J.S. (eds) Cancer Metastasis Through the Lymphovascular System. Springer, Cham. https://doi.org/10.1007/978-3-030-93084-4_68

Download citation

Publish with us

Policies and ethics