Skip to main content

Advertisement

Log in

TIGIT: a novel immunotherapy target moving from bench to bedside

  • Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Treatment strategies for patients with advanced solid tumors have traditionally been based on three different paradigms: surgery, cytotoxics (chemotherapy or radiation therapy) and targeted therapies. Immunotherapy has emerged as a novel treatment paradigm in our armamentarium. Unfortunately, most patients still do not benefit from immunotherapy. These patients often have “cold tumors” characterized by a paucity of effector T cells in the tumor microenvironment, low mutational load, low neoantigen burden and often an immunosuppressive tumor microenvironment. TIGIT is an immunoreceptor inhibitory checkpoint that has been implicated in tumor immunosurveillance. Expression of TIGIT has been demonstrated in both NK cells and T cells and plays a role in their activation and maturation. TIGIT competes with immunoactivator receptor CD226 (DNAM-1) for the same set of ligands: CD155 (PVR or poliovirus receptor) and CD112 (Nectin-2 or PVRL2). TIGIT’s role in tumor immunosurveillance is analogous to the PD-1/PD-L1 axis in tumor immunosuppression. Both TIGIT and PD-1 are upregulated in a variety of different cancers. Anti-TIGIT antibodies have demonstrated synergy with anti-PD-1/PD-L1 antibodies in pre-clinical models. Currently, there are multiple first-in-man phase I trials hoping to exploit this new pathway and improve response rates with existing immunotherapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

FGL2:

Fibrinogen-like protein 2

ITT:

Immunoreceptor tail tyrosine

MTD:

Maximum-tolerated dosing

PVR:

Poliovirus receptor

PVRL2:

Poliovirus receptor-related 2

TIGIT:

T cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain

References

  1. Eggermont AMM, Chiarion-Sileni V, Grob J-J, Dummer R, Wolchok JD, Schmidt H, Hamid O, Robert C, Ascierto PA, Richards JM, Lebbé C, Ferraresi V, Smylie M, Weber JS, Maio M, Bastholt L, Mortier L, Thomas L, Tahir S, Hauschild A, Hassel JC, Hodi FS, Taitt C, de Pril V, de Schaetzen G, Suciu S, Testori A (2016) Prolonged survival in stage III melanoma with ipilimumab adjuvant therapy. N Engl J Med 375(19):1845–1855. https://doi.org/10.1056/NEJMoa1611299

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, Chow LQ, Vokes EE, Felip E, Holgado E, Barlesi F, Kohlhäufl M, Arrieta O, Burgio MA, Fayette J, Lena H, Poddubskaya E, Gerber DE, Gettinger SN, Rudin CM, Rizvi N, Crinò L, Blumenschein GRJ, Antonia SJ, Dorange C, Harbison CT, Graf Finckenstein F, Brahmer JR (2015) Nivolumab versus docetaxel in advanced nonsquamous non–small-cell lung cancer. N Engl J Med 373(17):1627–1639. https://doi.org/10.1056/NEJMoa1507643

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Ferris RL, Blumenschein GJ, Fayette J, Guigay J, Colevas AD, Licitra L, Harrington K, Kasper S, Vokes EE, Even C, Worden F, Saba NF, Iglesias Docampo LC, Haddad R, Rordorf T, Kiyota N, Tahara M, Monga M, Lynch M, Geese WJ, Kopit J, Shaw JW, Gillison ML (2016) Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med 375(19):1856–1867. https://doi.org/10.1056/NEJMoa1602252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M, Schuster SJ, Millenson MM, Cattry D, Freeman GJ, Rodig SJ, Chapuy B, Ligon AH, Zhu L, Grosso JF, Kim SY, Timmerman JM, Shipp MA, Armand P (2015) PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med 372(4):311–319. https://doi.org/10.1056/NEJMoa1411087

    Article  CAS  PubMed  Google Scholar 

  5. Bellmunt J, de Wit R, Vaughn DJ, Fradet Y, Lee J-L, Fong L, Vogelzang NJ, Climent MA, Petrylak DP, Choueiri TK, Necchi A, Gerritsen W, Gurney H, Quinn DI, Culine S, Sternberg CN, Mai Y, Poehlein CH, Perini RF, Bajorin DF (2017) Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N Engl J Med 376(11):1015–1026. https://doi.org/10.1056/NEJMoa1613683

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Nghiem PT, Bhatia S, Lipson EJ, Kudchadkar RR, Miller NJ, Annamalai L, Berry S, Chartash EK, Daud A, Fling SP, Friedlander PA, Kluger HM, Kohrt HE, Lundgren L, Margolin K, Mitchell A, Olencki T, Pardoll DM, Reddy SA, Shantha EM, Sharfman WH, Sharon E, Shemanski LR, Shinohara MM, Sunshine JC, Taube JM, Thompson JA, Townson SM, Yearley JH, Topalian SL, Cheever MA (2016) PD-1 blockade with pembrolizumab in advanced merkel-cell carcinoma. N Engl J Med 374(26):2542–2552. https://doi.org/10.1056/NEJMoa1603702

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Drugs@FDA pembrolizumab. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/125514s024lbl.pdf. Accessed 7 Oct 2017

  8. Zhang B, Zhao W, Li H, Chen Y, Tian H, Li L, Zhang L, Gao C, Zheng J (2016) Immunoreceptor TIGIT inhibits the cytotoxicity of human cytokine-induced killer cells by interacting with CD155. Cancer Immunol Immunother 65(3):305–314. https://doi.org/10.1007/s00262-016-1799-4

    Article  PubMed  CAS  Google Scholar 

  9. Kurtulus S, Sakuishi K, Ngiow S-F, Joller N, Tan DJ, Teng MWL, Smyth MJ, Kuchroo VK, Anderson AC (2015) TIGIT predominantly regulates the immune response via regulatory T cells. J Clin Investig 125(11):4053–4062. https://doi.org/10.1172/JCI81187

    Article  PubMed  PubMed Central  Google Scholar 

  10. Inozume T, Yaguchi T, Furuta J, Harada K, Kawakami Y, Shimada S (2016) Melanoma cells control antimelanoma CTL responses via interaction between TIGIT and CD155 in the effector phase. J Investig Dermatol 136(1):255–263. https://doi.org/10.1038/JID.2015.404

    Article  PubMed  CAS  Google Scholar 

  11. Yu X, Harden K, Gonzalez LC, Francesco M, Chiang E, Irving B, Tom I, Ivelja S, Refino CJ, Clark H, Eaton D, Grogan JL (2009) The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat Immunol 10(1):48–57. https://doi.org/10.1038/ni.1674

    Article  PubMed  CAS  Google Scholar 

  12. Levy O, Chan C, Cojocaru G, Liang S, Ophir E, Ganguly S, Kotturi M, Friedman T, Murter B, Dassa L, Leung L, Greenwald S, Azulay M, Kumar S, Alteber Z, Pan X, Drake A, Salomon R, Machlenkin A, Hunter J, Levine Z, Pardoll D, White M (2017) Discovery and development of COM701, a therapeutic antibody targeting the novel immune checkpoint PVRIG. In: Proceedings of the American association for cancer research annual meeting 2017; 2017 Apr 1–5; Washington, DC. Philadelphia (PA): Cancer Res 77 (13 suppl; Abstract 581). https://doi.org/10.1158/1538-7445.am2017-581

    Article  Google Scholar 

  13. Johnston RJ, Comps-Agrar L, Hackney J, Yu X, Huseni M, Yang Y, Park S, Javinal V, Chiu H, Irving B, Eaton DL, Grogan JL (2014) The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function. Cancer Cell 26(6):923–937. https://doi.org/10.1016/j.ccell.2014.10.018

    Article  PubMed  CAS  Google Scholar 

  14. Srivastava MK, Yun R, Mayes E, Yu J, Jie H-B, Axelrod F, Xie M-H, Monteon J, Lam A, Ji M, Liu Y, Lewicki J, Hoey T, Gurney A, Park AI (2017) Anti-Tigit induces T cell mediated anti-tumor immune response and combines with immune checkpoint inhibitors to enhance strong and long term anti-tumor immunity. In: Proceedings of the American association for cancer research annual meeting 2017; 2017 Apr 1–5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 77 (13 suppl; Abstract 2612). https://doi.org/10.1158/1538-7445.am2017-2612

    Article  Google Scholar 

  15. Joller N, Hafler JP, Brynedal B, Kassam N, Spoerl S, Levin SD, Sharpe AH, Kuchroo VK (2011) Cutting edge: TIGIT has T cell-intrinsic inhibitory functions. J Immunol 186(3):1338–1342. https://doi.org/10.4049/jimmunol.1003081

    Article  PubMed  CAS  Google Scholar 

  16. Stanietsky N, Simic H, Arapovic J, Toporik A, Levy O, Novik A, Levine Z, Beiman M, Dassa L, Achdout H, Stern-Ginossar N, Tsukerman P, Jonjic S, Mandelboim O (2009) The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity. Proc Natl Acad Sci USA 106(42):17858–17863. https://doi.org/10.1073/pnas.0903474106

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chauvin JM, Pagliano O, Fourcade J, Sun Z, Wang H, Sander C, Kirkwood JM, Chen TH, Maurer M, Korman AJ, Zarour HM (2015) TIGIT and PD-1 impair tumor antigen-specific CD8(+) T cells in melanoma patients. J Clin Investig 125(5):2046–2058. https://doi.org/10.1172/JCI80445

    Article  PubMed  PubMed Central  Google Scholar 

  18. Liu S, Zhang H, Li M, Hu D, Li C, Ge B, Jin B, Fan Z (2013) Recruitment of Grb2 and SHIP1 by the ITT-like motif of TIGIT suppresses granule polarization and cytotoxicity of NK cells. Cell Death Differ 20(3):456–464. https://doi.org/10.1038/cdd.2012.141

    Article  PubMed  CAS  Google Scholar 

  19. He Y, Peng H, Sun R, Wei H, Ljunggren HG, Yokoyama WM, Tian Z (2017) Contribution of inhibitory receptor TIGIT to NK cell education. J Autoimmun 81:1–12. https://doi.org/10.1016/j.jaut.2017.04.001

    Article  PubMed  CAS  Google Scholar 

  20. Bi J, Zhang Q, Liang D, Xiong L, Wei H, Sun R, Tian Z (2014) T-cell Ig and ITIM domain regulates natural killer cell activation in murine acute viral hepatitis. Hepatology 59(5):1715–1725. https://doi.org/10.1002/hep.26968

    Article  PubMed  CAS  Google Scholar 

  21. Shibuya A, Campbell D, Hannum C, Yssel H, Franz-Bacon K, McClanahan T, Kitamura T, Nicholl J, Sutherland GR, Lanier LL, Phillips JH (1996) DNAM-1, a novel adhesion molecule involved in the cytolytic function of T lymphocytes. Immunity 4(6):573–581

    Article  CAS  PubMed  Google Scholar 

  22. Nagumo Y, Iguchi-Manaka A, Yamashita-Kanemaru Y, Abe F, Bernhardt G, Shibuya A, Shibuya K (2014) Increased CD112 expression in methylcholanthrene-induced tumors in CD155-deficient mice. PLoS One 9(11):e112415. https://doi.org/10.1371/journal.pone.0112415

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Pende D, Bottino C, Castriconi R, Cantoni C, Marcenaro S, Rivera P, Spaggiari GM, Dondero A, Carnemolla B, Reymond N, Mingari MC, Lopez M, Moretta L, Moretta A (2005) PVR (CD155) and Nectin-2 (CD112) as ligands of the human DNAM-1 (CD226) activating receptor: involvement in tumor cell lysis. Mol Immunol 42(4):463–469. https://doi.org/10.1016/j.molimm.2004.07.028

    Article  PubMed  CAS  Google Scholar 

  24. Lozano E, Dominguez-Villar M, Kuchroo V, Hafler DA (2012) The TIGIT/CD226 axis regulates human T cell function. J Immunol 188(8):3869–3875. https://doi.org/10.4049/jimmunol.1103627

    Article  PubMed  CAS  Google Scholar 

  25. Li M, Xia P, Du Y, Liu S, Huang G, Chen J, Zhang H, Hou N, Cheng X, Zhou L, Li P, Yang X, Fan Z (2014) T-cell immunoglobulin and ITIM domain (TIGIT) receptor/poliovirus receptor (PVR) ligand engagement suppresses interferon-gamma production of natural killer cells via beta-arrestin 2-mediated negative signaling. J Biol Chem 289(25):17647–17657. https://doi.org/10.1074/jbc.M114.572420

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Kong Y, Zhu L, Schell TD, Zhang J, Claxton DF, Ehmann WC, Rybka WB, George MR, Zeng H, Zheng H (2016) T-cell immunoglobulin and ITIM domain (TIGIT) associates with CD8 + T-cell exhaustion and poor clinical outcome in AML patients. Clin Cancer Res 22(12):3057–3066. https://doi.org/10.1158/1078-0432.CCR-15-2626

    Article  PubMed  CAS  Google Scholar 

  27. Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299(5609):1057–1061. https://doi.org/10.1126/science.1079490

    Article  CAS  PubMed  Google Scholar 

  28. Joller N, Lozano E, Burkett Patrick R, Patel B, Xiao S, Zhu C, Xia J, Tan Tze G, Sefik E, Yajnik V, Sharpe Arlene H, Quintana Francisco J, Mathis D, Benoist C, Hafler David A, Kuchroo Vijay K (2014) Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses. Immunity 40(4):569–581. https://doi.org/10.1016/j.immuni.2014.02.012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Tahara-Hanaoka S, Shibuya K, Onoda Y, Zhang H, Yamazaki S, Miyamoto A, Honda S, Lanier LL, Shibuya A (2004) Functional characterization of DNAM-1 (CD226) interaction with its ligands PVR (CD155) and nectin-2 (PRR-2/CD112). Int Immunol 16(4):533–538

    Article  CAS  PubMed  Google Scholar 

  30. Bottino C, Castriconi R, Pende D, Rivera P, Nanni M, Carnemolla B, Cantoni C, Grassi J, Marcenaro S, Reymond N, Vitale M, Moretta L, Lopez M, Moretta A (2003) Identification of PVR (CD155) and Nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. J Exp Med 198(4):557–567. https://doi.org/10.1084/jem.20030788

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Fuchs A, Cella M, Giurisato E, Shaw AS, Colonna M (2004) Cutting edge: CD96 (Tactile) promotes NK cell-target cell adhesion by interacting with the poliovirus receptor (CD155). J Immunol 172(7):3994–3998. https://doi.org/10.4049/jimmunol.172.7.3994

    Article  PubMed  CAS  Google Scholar 

  32. Wang PL, O’Farrell S, Clayberger C, Krensky AM (1992) Identification and molecular cloning of tactile. A novel human T cell activation antigen that is a member of the Ig gene superfamily. J Immunol 148(8):2600–2608

    PubMed  CAS  Google Scholar 

  33. Chan CJ, Martinet L, Gilfillan S, Souza-Fonseca-Guimaraes F, Chow MT, Town L, Ritchie DS, Colonna M, Andrews DM, Smyth MJ (2014) The receptors CD96 and CD226 oppose each other in the regulation of natural killer cell functions. Nat Immunol 15:431. https://doi.org/10.1038/ni.2850

    Article  PubMed  CAS  Google Scholar 

  34. Blake SJ, Dougall WC, Miles JJ, Teng MW, Smyth MJ (2016) Molecular pathways: targeting CD96 and TIGIT for cancer immunotherapy. Clin Cancer Res 22(21):5183–5188. https://doi.org/10.1158/1078-0432.CCR-16-0933

    Article  PubMed  CAS  Google Scholar 

  35. Takahashi N, Sugaya M, Suga H, Oka T, Kawaguchi M, Miyagaki T, Fujita H, Inozume T, Sato S (2017) Increased soluble CD226 in sera of patients with cutaneous T-cell lymphoma mediates cytotoxic activity against tumor cells via CD155. J Investig Dermatol 137(8):1766–1773. https://doi.org/10.1016/j.jid.2017.03.025

    Article  PubMed  CAS  Google Scholar 

  36. Iguchi-Manaka A, Kai H, Yamashita Y, Shibata K, Tahara-Hanaoka S, Honda S, Yasui T, Kikutani H, Shibuya K, Shibuya A (2008) Accelerated tumor growth in mice deficient in DNAM-1 receptor. J Exp Med 205(13):2959–2964. https://doi.org/10.1084/jem.20081611

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Iguchi-Manaka A, Okumura G, Kojima H, Cho Y, Hirochika R, Bando H, Sato T, Yoshikawa H, Hara H, Shibuya A, Shibuya K (2016) Increased soluble CD155 in the serum of cancer patients. PLoS One 11(4):e0152982. https://doi.org/10.1371/journal.pone.0152982

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Martinez-Canales S, Cifuentes F, Lopez De Rodas Gregorio M, Serrano-Oviedo L, Galan-Moya EM, Amir E, Pandiella A, Gyorffy B, Ocana A (2017) Transcriptomic immunologic signature associated with favorable clinical outcome in basal-like breast tumors. PLoS One 12(5):e0175128. https://doi.org/10.1371/journal.pone.0175128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Fourcade J, Sun Z, Chauvin J-M, Ka M, Davar D, Pagliano O, Wang H, Saada S, Menna C, Amin R, Sander C, Kirkwood JM, Korman AJ, Zarour HM (2018) CD226 opposes TIGIT to disrupt Tregs in melanoma. JCI Insight. https://doi.org/10.1172/jci.insight.121157

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mima K, Sukawa Y, Nishihara R, Qian ZR, Yamauchi M, Inamura K, Kim SA, Masuda A, Nowak JA, Nosho K, Kostic AD, Giannakis M, Watanabe H, Bullman S, Milner DA, Harris CC, Giovannucci E, Garraway LA, Freeman GJ, Dranoff G, Chan AT, Garrett WS, Huttenhower C, Fuchs CS, Ogino S (2015) Fusobacterium nucleatum and T cells in colorectal carcinoma. JAMA Oncol 1(5):653–661. https://doi.org/10.1001/jamaoncol.2015.1377

    Article  PubMed  PubMed Central  Google Scholar 

  41. Mima K, Cao Y, Chan AT, Qian ZR, Nowak JA, Masugi Y, Shi Y, Song M, da Silva A, Gu M, Li W, Hamada T, Kosumi K, Hanyuda A, Liu L, Kostic AD, Giannakis M, Bullman S, Brennan CA, Milner DA, Baba H, Garraway LA, Meyerhardt JA, Garrett WS, Huttenhower C, Meyerson M, Giovannucci EL, Fuchs CS, Nishihara R, Ogino S (2016) Fusobacterium nucleatum in colorectal carcinoma tissue according to tumor location. Clin Transl Gastroenterol 7(11):e200. https://doi.org/10.1038/ctg.2016.53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Gur C, Ibrahim Y, Isaacson B, Yamin R, Abed J, Gamliel M, Enk J, Bar-On Y, Stanietsky-Kaynan N, Coppenhagen-Glazer S, Shussman N, Almogy G, Cuapio A, Hofer E, Mevorach D, Tabib A, Ortenberg R, Markel G, Miklic K, Jonjic S, Brennan CA, Garrett WS, Bachrach G, Mandelboim O (2015) Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity 42(2):344–355. https://doi.org/10.1016/j.immuni.2015.01.010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Masson D, Jarry A, Baury B, Blanchardie P, Laboisse C, Lustenberger P, Denis MG (2001) Overexpression of the CD155 gene in human colorectal carcinoma. Gut 49(2):236–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A (2017) Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168(4):707–723. https://doi.org/10.1016/j.cell.2017.01.017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, Schadendorf D, Dummer R, Smylie M, Rutkowski P, Ferrucci PF, Hill A, Wagstaff J, Carlino MS, Haanen JB, Maio M, Marquez-Rodas I, McArthur GA, Ascierto PA, Long GV, Callahan MK, Postow MA, Grossmann K, Sznol M, Dreno B, Bastholt L, Yang A, Rollin LM, Horak C, Hodi FS, Wolchok JD (2015) Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 373(1):23–34. https://doi.org/10.1056/NEJMoa1504030

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Zakharia Y, McWilliams R, Shaheen M, Grossman K, Drabick J, Milhem M, Rixie O, Khleif S, Lott R, Kennedy E, Munn D, Vahanian N, Link C (2017) Interim analysis of the Phase 2 clinical trial of the IDO pathway inhibitor indoximod in combination with pembrolizumab for patients with advanced melanoma. In: Proceedings of the American association for cancer research annual meeting 2017; 2017 Apr 1–5; Washington, DC Philadelphia (PA): AACR; Cancer Res 77 (13 suppl; Abstract CT117). https://doi.org/10.1158/1538-7445.am2017-ct117

    Article  Google Scholar 

  47. Park AI, Srivastava M, Mayes E, Jie H-B, Yun R, Murriel C, Xie M-h, Lam A, Ji M, Axelrod F, Monteon J, Lewicki J, Hoey T, Gurney A (2017) Antibody against TIGIT (T cell immunoreceptor with Ig and ITIM domains) induces anti-tumor immune response and generates long-term immune memory. In: Proceedings of the American association for cancer research annual meeting 2017; 2017 Apr 1–5; Washington, DC Philadelphia (PA): AACR; Cancer Res 77 (13 suppl; Abstract 2003). https://doi.org/10.1158/1538-7445.am2017-2003

    Article  Google Scholar 

  48. Zhu Y, Paniccia A, Schulick AC, Chen W, Koenig MR, Byers JT, Yao S, Bevers S, Edil BH (2016) Identification of CD112R as a novel checkpoint for human T cells. J Exp Med 213(2):167–176. https://doi.org/10.1084/jem.20150785

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Cattaruzza F, Yeung P, Wang M, Brunner A, Scolan EL, Cain J, Argast G, O’Young G, Liu Y, Cancilla B, Gurney A, Hoey T, Lewicki J, Kapoun A (2017) Pharmacodynamic biomarkers for anti-TIGIT treatment and prevalence of TIGIT expression in multiple solid tumor types. In: Proceedings of the American association for cancer research annual meeting 2017; 2017 Apr 1–5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 77 (13 suppl; Abstract 599). https://doi.org/10.1158/1538-7445.am2017-599

    Article  Google Scholar 

  50. Piasecki JC, Brasel K, Rosler R, Klucher KM, Peterson SR (2017) Discovery and characterization of novel antagonistic antibodies that bind with high affinity to human, cynomolgus, and murine TIGIT, an immune checkpoint receptor. In: Proceedings of the American association for cancer research annual meeting 2017; 2017 Apr 1–5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 77 (13 suppl; Abstract 578). https://doi.org/10.1158/1538-7445.am2017-578

    Article  Google Scholar 

  51. Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH (1995) Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3(5):541–547

    Article  CAS  PubMed  Google Scholar 

  52. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SAJR, Behjati S, Biankin AV, Bignell GR, Bolli N, Borg A, Børresen-Dale A-L, Boyault S, Burkhardt B, Butler AP, Caldas C, Davies HR, Desmedt C, Eils R, Eyfjörd JE, Foekens JA, Greaves M, Hosoda F, Hutter B, Ilicic T, Imbeaud S, Imielinsk M, Jäger N, Jones DTW, Jones D, Knappskog S, Kool M, Lakhani SR, López-Otín C, Martin S, Munshi NC, Nakamura H, Northcott PA, Pajic M, Papaemmanuil E, Paradiso A, Pearson JV, Puente XS, Raine K, Ramakrishna M, Richardson AL, Richter J, Rosenstiel P, Schlesner M, Schumacher TN, Span PN, Teague JW, Totoki Y, Tutt ANJ, Valdés-Mas R, van Buuren MM, van’t Veer L, Vincent-Salomon A, Waddell N, Yates LR, Australian Pancreatic Cancer Genome I, Consortium IBC, Consortium IM-S, PedBrain I, Zucman-Rossi J, Futreal PA, McDermott U, Lichter P, Meyerson M, Grimmond SM, Siebert R, Campo E, Shibata T, Pfister SM, Campbell PJ, Stratton MR (2013) Signatures of mutational processes in human cancer. Nature 500(7463):415–421. https://doi.org/10.1038/nature12477

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, Skora AD, Luber BS, Azad NS, Laheru D, Biedrzycki B, Donehower RC, Zaheer A, Fisher GA, Crocenzi TS, Lee JJ, Duffy SM, Goldberg RM, de la Chapelle A, Koshiji M, Bhaijee F, Huebner T, Hruban RH, Wood LD, Cuka N, Pardoll DM, Papadopoulos N, Kinzler KW, Zhou S, Cornish TC, Taube JM, Anders RA, Eshleman JR, Vogelstein B, Diaz LAJ (2015) PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 372(26):2509–2520. https://doi.org/10.1056/NEJMoa1500596

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Hamid O, Gajewski TF, Frankel AE et al (2017) Epacadostat plus pembrolizumab in patients with advanced melanoma: phase 1 and 2 efficacy and safety results from ECHO-202/ KEYNOTE-037. In: Proceedings from the 2017 ESMO congress; September 8–12, Madrid, Spain. (Abstract 1214O)

  55. Gibney GT, Weiner LM, Atkins MB (2016) Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol 17(12):e542–e551. https://doi.org/10.1016/S1470-2045(16)30406-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Sachs JR, Mayawala K, Gadamsetty S, Kang SP, de Alwis DP (2016) Optimal dosing for targeted therapies in oncology: drug development cases leading by example. Clin Cancer Res 22(6):1318–1324. https://doi.org/10.1158/1078-0432.ccr-15-1295

    Article  PubMed  CAS  Google Scholar 

  57. Zaretsky JM, Garcia-Diaz A, Shin DS, Escuin-Ordinas H, Hugo W, Hu-Lieskovan S, Torrejon DY, Abril-Rodriguez G, Sandoval S, Barthly L, Saco J, Homet Moreno B, Mezzadra R, Chmielowski B, Ruchalski K, Shintaku IP, Sanchez PJ, Puig-Saus C, Cherry G, Seja E, Kong X, Pang J, Berent-Maoz B, Comin-Anduix B, Graeber TG, Tumeh PC, Schumacher TNM, Lo RS, Ribas A (2016) Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med 375(9):819–829. https://doi.org/10.1056/NEJMoa1604958

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman DR, Albright A, Cheng JD, Kang SP, Shankaran V, Piha-Paul SA, Yearley J, Seiwert TY, Ribas A, McClanahan TK (2017) IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Investig 127(8):2930–2940. https://doi.org/10.1172/JCI91190

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Jonathan Martinez provided the original illustration for this manuscript.

Funding

No relevant funding.

Author information

Authors and Affiliations

Authors

Contributions

BLS was primary author of the manuscript. IG-L aided with additional content and editing.

Corresponding author

Correspondence to Benjamin L. Solomon.

Ethics declarations

Conflict of interest

The authors declare they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solomon, B.L., Garrido-Laguna, I. TIGIT: a novel immunotherapy target moving from bench to bedside. Cancer Immunol Immunother 67, 1659–1667 (2018). https://doi.org/10.1007/s00262-018-2246-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-018-2246-5

Keywords

Navigation