Skip to main content

Imaging of Bone Metastases

  • Chapter
  • First Online:
Cancer Metastasis Through the Lymphovascular System

Abstract

Bone metastases have become more common due to the successful prolongation of the lives of many cancer patients. Imaging plays an integral role in the staging of newly diagnosed malignancies and is essential for the follow-up of these patients throughout their therapeutic course. The roles of standard imaging such as radiography, CT, conventional MRI; functional imaging such as skeletal scintigraphy and positron emission tomography (PET/CT and PET/MRI); and advanced imaging such as whole-body MRI and diffusion-weighted imaging will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Langer C, Hirsh V. Skeletal morbidity in lung cancer patients with bone metastases: demonstrating the need for early diagnosis and treatment with bisphosphonates. Lung Cancer. 2010;67(1):4–11.

    Article  Google Scholar 

  2. Hortobagyi GN, Libshitz HI, Seabold JE. Osseous metastases of breast cancer. Clinical, biochemical, radiographic, and scintigraphic evaluation of response to therapy. Cancer. 1984;53(3):577–82.

    Article  CAS  Google Scholar 

  3. Galasko CS. Skeletal metastases and mammary cancer. Ann R Coll Surg Engl. 1972;50(1):3–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Costelloe CM, Rohren EM, Madewell JE, Hamaoka T, Theriault RL, Yu TK, et al. Imaging bone metastases in breast cancer: techniques and recommendations for diagnosis. Lancet Oncol. 2009;10(6):606–14.

    Article  Google Scholar 

  5. Mirels H. Metastatic disease in long bones: a proposed scoring system for diagnosing impending pathologic fractures. Clin Orthop Relat Res. 1989;2003(Suppl. 415):S4–13.

    Google Scholar 

  6. Costelloe CM, Amini B, Madewell JE. Risks and benefits of gadolinium-based contrast-enhanced MRI. Semin Ultrasound CT MR. 2020;41(2):170–82.

    Article  Google Scholar 

  7. Hamaoka T, Madewell JE, Podoloff DA, Hortobagyi GN, Ueno NT. Bone imaging in metastatic breast cancer. J Clin Oncol. 2004;22(14):2942–53.

    Article  Google Scholar 

  8. Nakata E, Sugihara S, Kataoka M, Yamashita N, Furumatsu T, Takigawa T, et al. Early response assessment of re-ossification after palliative conventional radiotherapy for vertebral bone metastases. J Orthop Sci. 2019;24(2):332–6.

    Article  Google Scholar 

  9. Hamaoka T, Costelloe CM, Madewell JE, Liu P, Berry DA, Islam R, et al. Tumour response interpretation with new tumour response criteria vs the World Health Organisation criteria in patients with bone-only metastatic breast cancer. Br J Cancer. 2010;102(4):651–7.

    Article  CAS  Google Scholar 

  10. Hayashi N, Costelloe CM, Hamaoka T, Wei C, Niikura N, Theriault RL, et al. A prospective study of bone tumor response assessment in metastatic breast cancer. Clin Breast Cancer. 2013;13(1):24–30.

    Article  Google Scholar 

  11. Tsai YC, Lee HL, Kuo CC, Chen CY, Hsieh KL, Wu MH, et al. Prognostic and predictive factors for clinical and radiographic responses in patients with painful bone metastasis treated with magnetic resonance-guided focused ultrasound surgery. Int J Hyperth. 2019;36(1):932–7.

    Article  Google Scholar 

  12. Yu T, Choi CW, Kim KS. Treatment outcomes of stereotactic ablative radiation therapy for non-spinal bone metastases: focus on response assessment and treatment indication. Br J Radiol. 2019;92(1099):20181048.

    Article  Google Scholar 

  13. Donohoe KJ, Cohen EJ, Giammarile F, Grady E, Greenspan BS, Henkin RE, et al. Appropriate use criteria for bone scintigraphy in prostate and breast cancer: summary and excerpts. J Nucl Med. 2017;58(4):14N–7N.

    PubMed  Google Scholar 

  14. Even-Sapir E, Metser U, Mishani E, Lievshitz G, Lerman H, Leibovitch I. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP Planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med. 2006;47(2):287–97.

    PubMed  Google Scholar 

  15. Cook GJ, Houston S, Rubens R, Maisey MN, Fogelman I. Detection of bone metastases in breast cancer by 18FDG PET: differing metabolic activity in osteoblastic and osteolytic lesions. J Clin Oncol. 1998;16(10):3375–9.

    Article  CAS  Google Scholar 

  16. Costelloe CM, Chuang HH, Madewell JE. FDG PET for the detection of bone metastases: sensitivity, specificity and comparison with other imaging modalities. PET Clin. 2010;5(3):281–95.

    Article  Google Scholar 

  17. Coleman RE, Mashiter G, Whitaker KB, Moss DW, Rubens RD, Fogelman I. Bone scan flare predicts successful systemic therapy for bone metastases. J Nucl Med. 1988;29(8):1354–9.

    CAS  PubMed  Google Scholar 

  18. Matin P. The appearance of bone scans following fractures, including immediate and long-term studies. J Nucl Med. 1979;20(12):1227–31.

    CAS  PubMed  Google Scholar 

  19. Yang HL, Liu T, Wang XM, Xu Y, Deng SM. Diagnosis of bone metastases: a meta-analysis comparing (1)(8)FDG PET, CT, MRI and bone scintigraphy. Eur Radiol. 2011;21(12):2604–17.

    Article  Google Scholar 

  20. Catalano OA, Nicolai E, Rosen BR, Luongo A, Catalano M, Iannace C, et al. Comparison of CE-FDG-PET/CT with CE-FDG-PET/MR in the evaluation of osseous metastases in breast cancer patients. Br J Cancer. 2015;112(9):1452–60.

    Article  CAS  Google Scholar 

  21. Botsikas D, Bagetakos I, Picarra M, Da Cunha Afonso Barisits AC, Boudabbous S, Montet X, et al. What is the diagnostic performance of 18-FDG-PET/MR compared to PET/CT for the N-and M- staging of breast cancer? Eur Radiol. 2019;29(4):1787–98.

    Article  Google Scholar 

  22. Beiderwellen K, Huebner M, Heusch P, Grueneisen J, Ruhlmann V, Nensa F, et al. Whole-body [(1)(8)F]FDG PET/MRI vs. PET/CT in the assessment of bone lesions in oncological patients: initial results. Eur Radiol. 2014;24(8):2023–30.

    Article  Google Scholar 

  23. Guberina N, Hetkamp P, Ruebben H, Fendler W, Grueneisen J, Suntharalingam S, et al. Whole-body integrated [(68)Ga]PSMA-11-PET/MR imaging in patients with recurrent prostate cancer: comparison with whole-body PET/CT as the standard of reference. Mol Imaging Biol. 2020;22(3):788–96.

    Article  CAS  Google Scholar 

  24. Eiber M, Takei T, Souvatzoglou M, Mayerhoefer ME, Furst S, Gaertner FC, et al. Performance of whole-body integrated 18F-FDG PET/MR in comparison to PET/CT for evaluation of malignant bone lesions. J Nucl Med. 2014;55(2):191–7.

    Article  Google Scholar 

  25. Ishii S, Shimao D, Hara T, Miyajima M, Kikuchi K, Takawa M, et al. Comparison of integrated whole-body PET/MR and PET/CT: Is PET/MR alternative to PET/CT in routine clinical oncology? Ann Nucl Med. 2016;30(3):225–33.

    Article  CAS  Google Scholar 

  26. Pandit-Taskar N, Batraki M, Divgi CR. Radiopharmaceutical therapy for palliation of bone pain from osseous metastases. J Nucl Med. 2004;45(8):1358–65.

    CAS  PubMed  Google Scholar 

  27. Parker C, Nilsson S, Heinrich D, Helle SI, O'Sullivan JM, Fossa SD, et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med. 2013;369(3):213–23.

    Article  CAS  Google Scholar 

  28. Smith M, Parker C, Saad F, Miller K, Tombal B, Ng QS, et al. Addition of radium-223 to abiraterone acetate and prednisone or prednisolone in patients with castration-resistant prostate cancer and bone metastases (ERA 223): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019;20(3):408–19.

    Article  CAS  Google Scholar 

  29. Valenzuela RF, Madewell JE, Kundra V. Advanced imaging in musculoskeletal oncology: moving away from RECIST and embracing advanced bone and soft tissue tumor imaging (ABASTI)-Part I: Novel functional imaging techniques. Semin Ultrasound CT MRI. 2020:1–14.

    Google Scholar 

  30. Lecouvet FE, Talbot JN, Messiou C, Bourguet P, Liu Y, de Souza NM, et al. Monitoring the response of bone metastases to treatment with magnetic resonance imaging and nuclear medicine techniques: a review and position statement by the European Organisation for Research and Treatment of Cancer imaging group. Eur J Cancer. 2014;50(15):2519–31.

    Article  CAS  Google Scholar 

  31. Reischauer C, Koh DM, Froehlich JM, Patzwahl R, Binkert CA, Gutzeit A. Pilot study on the detection of antiandrogen resistance using serial diffusion-weighted imaging of bone metastases in prostate cancer. J Magn Reson Imaging. 2016;43(6):1407–16.

    Article  Google Scholar 

  32. Messiou C, Collins DJ, Giles S, de Bono JS, Bianchini D, de Souza NM. Assessing response in bone metastases in prostate cancer with diffusion weighted MRI. Eur Radiol. 2011;21(10):2169–77.

    Article  CAS  Google Scholar 

  33. Bharwani N, Miquel ME, Powles T, Dilks P, Shawyer A, Sahdev A, et al. Diffusion-weighted and multiphase contrast-enhanced MRI as surrogate markers of response to neoadjuvant sunitinib in metastatic renal cell carcinoma. Br J Cancer. 2014;110(3):616–24.

    Article  CAS  Google Scholar 

  34. Musio D, De Francesco I, Galdieri A, Marsecano C, Piciocchi A, Napoli A, et al. Diffusion-weighted magnetic resonance imaging in painful bone metastases: using quantitative apparent diffusion coefficient as an indicator of effectiveness of single fraction versus multiple fraction radiotherapy. Eur J Radiol. 2018;98:1–6.

    Article  Google Scholar 

  35. Reginelli A, Silvestro G, Fontanella G, Sangiovanni A, Conte M, Nuzzo I, et al. Validation of DWI in assessment of radiotreated bone metastases in elderly patients. Int J Surg. 2016;33(Suppl 1):S148–53.

    Article  Google Scholar 

  36. Padhani AR, Makris A, Gall P, Collins DJ, Tunariu N, de Bono JS. Therapy monitoring of skeletal metastases with whole-body diffusion MRI. J Magn Reson Imaging. 2014;39(5):1049–78.

    Article  Google Scholar 

  37. Blackledge MD, Collins DJ, Tunariu N, Orton MR, Padhani AR, Leach MO, et al. Assessment of treatment response by total tumor volume and global apparent diffusion coefficient using diffusion-weighted MRI in patients with metastatic bone disease: a feasibility study. PLoS One. 2014;9(4):e91779.

    Article  Google Scholar 

  38. Stecco A, Trisoglio A, Soligo E, Berardo S, Sukhovei L, Carriero A. Whole-body MRI with diffusion-weighted imaging in bone metastases: a narrative review. Diagnostics (Basel). 2018;8(3)

    Google Scholar 

  39. Mosavi F, Johansson S, Sandberg DT, Turesson I, Sorensen J, Ahlstrom H. Whole-body diffusion-weighted MRI compared with (18)F-NaF PET/CT for detection of bone metastases in patients with high-risk prostate carcinoma. AJR Am J Roentgenol. 2012;199(5):1114–20.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colleen M. Costelloe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Costelloe, C.M., Valenzuela, R.F., Chuang, H.H., Madewell, J.E. (2022). Imaging of Bone Metastases. In: Leong, S.P., Nathanson, S.D., Zager, J.S. (eds) Cancer Metastasis Through the Lymphovascular System. Springer, Cham. https://doi.org/10.1007/978-3-030-93084-4_28

Download citation

Publish with us

Policies and ethics