Skip to main content

Partitioning Milk Constituents

  • Chapter
  • First Online:
Advanced Dairy Chemistry

Abstract

This chapter discusses applications of dialysis, ultrafiltration, ultracentrifugation, milk coagulation reactions and precipitation methods for investigating partitioning of milk constituents, particularly how salts and proteins partition to the casein micelle at different conditions. These methods are important practical methods for studying how much Ca, Mg, P and citrate are associated with the casein or with other protein fractions. An alternative to these experimental methods is provided by the physical chemist and mathematical modeller. This approach predicts whether components of interest will reside in the soluble phase or be associated with the casein micelle from knowledge of the composition of milk and its pH and temperature. This has recently been extended to predict how much of the different casein fractions are bound to the calcium phosphate nanoclusters. Partitioning of minerals and other components is most often studied around 20 °C and at the normal pH of milk. It has also been applied at different pH values and more recently at higher temperatures. This should help to gain a better understanding of factors affecting heat stability, by measuring appropriate parameters, for example, pH and ionic calcium, at sterilisation temperatures. Partitioning methods can be used to prepare milk samples for analytical procedures where fat and protein interfere with the results. One facet of milk stability concerns cow health and whether calcium phosphate might precipitate in the mammary gland and the modelling approach is able to make predictions about this phenomenon. From a technological standpoint, it is important to know how partitioning of components will affect heat stability, chilling and freezing operations, concentration processes, fermentation processes, concentrated products and powder production. Finally, foaming and constituents of the milk fat globule membrane are discussed as examples of processes that involve partitioning of some other components in milk.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulghani, A. H., Prakash, S., Ali, M. Y., & Deeth, H. C. (2015). Sensory evaluation and storage stability of UHT milk fortified with iron, magnesium and zinc. Dairy Science & Technology, 95, 33–46.

    Article  CAS  Google Scholar 

  • Ammix. (2021). Milk fat products. Retrieved July 16, 2021, from https://nzic.org.nz/app/uploads/2017/10/3B.pdf

  • Anema, S. G. (2009). The whey proteins in milk: Thermal denaturation, physical interactions and effects on the functional properties of milk. In A. Thompson, M. Boland, & H. Singh (Eds.), Milk proteins: From expression to food (pp. 230–281). Amsterdam: Academic Press/Elsevier.

    Google Scholar 

  • Anema, S. G., & Li, Y. (2000). Further studies on the heat-induced, pH-dependent dissociation of casein from micelles in reconstituted skim milk. LWT - Food Science and Technology, 33, 335–343.

    Article  CAS  Google Scholar 

  • Aoki, T., Yamada, N., & Kako, Y. (1990). Relation between the colloidal calcium phosphate cross-linkage and release of B-casein from bovine micelles on cooling. Agricultural and Biological Chemistry, 54, 2287–2292.

    CAS  Google Scholar 

  • Arla. (2021). Lacprodan PL-20. Retrieved July 16, 2021, from https://www.ulprospector.com/en/na/Food/Detail/5331/190815/Lacprodan-PL%2D%2D-20

  • Arranz, E., & Corredig, M. (2017). Milk phospholipid vesicles, their colloidal properties, and potential as delivery vehicles for bioactive molecules. Journal of Dairy Science, 100, 4213–4222.

    Article  CAS  PubMed  Google Scholar 

  • Aschaffenburg, R. (1950). A simple test for sterilized milk. International Journal of Dairy Technology, 4, 236–237.

    Article  Google Scholar 

  • Bastian, E. D., Colling, S. K., & Ernstom, C. A. (1991). Ultrafiltration partitioning of milk constituents into permeate and retentate. Journal of Dairy Science, 74, 2423–2434.

    Article  CAS  Google Scholar 

  • Bijl, E., de Vries, R., Van Valenberg, H., Huppertz, T., & van Hooijdonk, T. (2014). Factors influencing casein micelle size in milk of individual cows: Genetic variants and glycosylation of κ-casein. International Dairy Journal, 34, 135–141.

    Article  CAS  Google Scholar 

  • Bijl, E., Huppertz, T., Van Valenberg, H., & Holt, C. (2019a). A quantitative model of the bovine casein micelle: Ion equilibria and calcium phosphate sequestration by individual caseins in bovine milk. European Biophysics Journal, 48, 45–59.

    Article  CAS  PubMed  Google Scholar 

  • Bijl, E., Huppertz, T., Van Valenberg, H., & Holt, C. (2019b). Online resource: A quantitative model of the bovine casein micelle: Ion equilibria and calcium phosphate sequestration by individual caseins. European Biophysics Journal. https://doi.org/10.1007/s00249-021-01533-5

  • Bravo, F. I., Felipe, L.-F., & Molina, E. (2015). Skim milk protein distribution as a result of very high hydrostatic pressure. Food Research International, 72, 74–79.

    Article  CAS  Google Scholar 

  • Burton, H. (1988). Ultra high temperature processing of milk and milk products. London: Elsevier Applied Science.

    Google Scholar 

  • Chen, B. Y. (2014). Best use for milk. PhD thesis, The University of Reading, UK.

    Google Scholar 

  • Chen, B. Y., Grandison, A. S., & Lewis, M. J. (2012). Comparison of heat stability of goat’s milk subjected to UHT and in-container sterilisation. Journal of Dairy Science, 95, 1057–1063.

    Article  CAS  PubMed  Google Scholar 

  • Chen, B. Y., Lewis, M. J., & Grandison, A. S. (2014). Effect of seasonal variation on the composition and properties of raw milk destined for processing in the UK. Food Chemistry, 158, 216–223.

    Article  CAS  PubMed  Google Scholar 

  • Chen, B. Y., Grandison, A. S., & Lewis, M. J. (2017a). Best use for milk—A review. I—Effect of breed variations on the physicochemical properties of bovine milk. International Journal of Dairy Technology, 70, 3–15.

    Article  CAS  Google Scholar 

  • Chen, B. Y., Grandison, A. S., & Lewis, M. J. (2017b). Best use for milk—A review II—Effect of physiological, husbandry and seasonal factors on the physicochemical properties of bovine milk. International Journal of Dairy Technology, 70, 155–164.

    Article  CAS  Google Scholar 

  • Christie, W. W., Noble, R. C., & Davies, G. (1987). Phospholipids in milk and dairy products. Dairy Technology, 40, 10–12.

    Article  CAS  Google Scholar 

  • Cooke, D. R., & McSweeney, P. L. H. (2017). From micelle to melt: The influence of calcium on physico-chemical properties of cheese. In P. Papademas & T. Bintsis (Eds.), Global cheesemaking technology; Cheese quality and characteristics (pp. 20–44). New York: Wiley.

    Google Scholar 

  • Creamer, L. K., Berry, G. P., & Mills, O. E. (1977). A study of the dissociation of beta-casein from the bovine casein micelle at low temperature. New Zealand Journal of Dairy Science and Technology, 12, 58–66.

    CAS  Google Scholar 

  • Cronshaw, H. B. (1947). Dairy information. London: Dairy Industries Ltd.

    Google Scholar 

  • Dalgleish, D. G., Pouliot, Y., & Paquin, P. (1987a). Studies on the heat-stability of milk I. Behavior of divalent-cations and phosphate in milks heated in a stainless-steel system. The Journal of Dairy Research, 54, 29–37.

    Article  CAS  Google Scholar 

  • Dalgleish, D. G., Pouliot, Y., & Paquin, P. (1987b). Studies on the heat-stability of milk II. Association and dissociation of particles and the effect of added urea. The Journal of Dairy Research, 54, 39–49.

    Article  CAS  Google Scholar 

  • Dalgleish, D. G., Horne, D. S., & Law, A. J. R. (1989). Size-related differences in bovine casein micelles. Biochimica et Biophysica Acta, 991, 383–387.

    Article  CAS  Google Scholar 

  • Davies, D. T., & White, J. C. D. (1958). The relation between the chemical composition of milk and the stability of the caseinate complex. 1. Coagulation by ethanol. The Journal of Dairy Research, 25, 256.

    Article  Google Scholar 

  • Davies, D. T., & White, J. C. D. (1960). The use of ultrafiltration and dialysis in isolating the aqueous phase of milk and determining the partitioning of milk constituents between the aqueous and disperse phases. The Journal of Dairy Research, 27, 171–190.

    Article  CAS  Google Scholar 

  • Davis, J. G. (1955). A dictionary of dairying (2nd ed.). London: Leonard Hill.

    Google Scholar 

  • de Castro, B. R., Júnior, L., Tribst, A. A. L., Bonafe, C. F. S., & Cristianini, M. (2016). Determination of the influence of high pressure processing on calf rennet using response surface methodology: Effects on milk coagulation. LWT - Food Science and Technology, 65, 10–17.

    Article  Google Scholar 

  • de la Fuente, M. A. (1998). Changes in the mineral balance of milk submitted to technological treatments. Trends in Food Science and Technology, 9, 281–288.

    Article  Google Scholar 

  • de la Fuente, M. A., Fontecha, J., & Juarez, M. (1996). Partition of main and trace minerals in milk: Effect of ultracentrifuging, rennet coagulation and dialysis on soluble phase separation. Journal of Agricultural and Food Chemistry, 44, 1988–1992.

    Article  Google Scholar 

  • De la Fuente, M. A., Belloque, J., & Juarez, M. (2004). Mineral contents and distribution between the soluble and the micellar phases in calcium-enriched UHT milks JSFA. Journal of the Science of Food and Agriculture, 84, 1708–1714.

    Article  Google Scholar 

  • Deeth, H. C. (2018). Membrane material in milk—What is it good for, anyway? Australian Dairy Foods, 39(1), 24–27.

    Google Scholar 

  • Deeth, H. C., & Lewis, M. J. (2017). High temperature processing of milk and milk products. Hoboken, NJ: Wiley Blackwell.

    Google Scholar 

  • Desai, I., Nickerson, T., & Jennings, W. (1961). Stability of frozen milk. Journal of Dairy Science, 44, 215–221.

    Article  CAS  Google Scholar 

  • DeVries, J. W., Greene, G. W., Payne, A., Zbylut, S., Scholl, P. F., Wehling, P., Evers, J. M., & Moore, J. C. (2017). Non-protein nitrogen determination: A screening tool for nitrogenous compound adulteration of milk powder. International Dairy Journal, 68, 46–51.

    Article  CAS  Google Scholar 

  • Deysher, E. F., & Webb, B. H. (1952). Factors that affect the formation of a crystalline deposit in evaporated milk. Journal of Dairy Science, 35, 106–115.

    Article  CAS  Google Scholar 

  • El-Negoumy, A. M., & Boyd, J. C. (1965). Physical and flavor stability of frozen milk dialyzed against simulated ultrafiltrates. Journal of Dairy Science, 48, 23–28.

    Article  CAS  PubMed  Google Scholar 

  • Ezeh, V. N., & Lewis, M. J. (2011). Milk reversibility following reduction and restoration of pH. International Journal of Dairy Technology, 64, 179–187.

    Article  CAS  Google Scholar 

  • Faka, M., Lewis, M. J., Grandison, A. S., & Deeth, H. C. (2009). The effect of free Ca2+ on the heat stability of low-heat skim milk powder. International Dairy Journal, 19, 386–392.

    Article  CAS  Google Scholar 

  • Fellows, P. J. (2017). Food processing technology (4th ed.). London: Elsevier.

    Google Scholar 

  • Fonterra. (2021a). Frozen whole milk concentrate. Retrieved July 16, 2021, from https://www.nzmp.com/global/en/products/ingredients/types/specialty/nzmp-frozen-wholemilk-concentrate.html

  • Fonterra. (2021b). Milk phospholipids. Retrieved July 16, 2021, from https://www.nzmp.com/global/en/products/ingredients/types/specialty/complex-lipids/milk-phospholipids.html

  • Foroutan, A., Guo, A. C., Vazquez-Fresno, R., Lipfert, M., Zhang, L., Zheng, J., Badran, H., Budinski, Z., Mandal, R., Ametaj, B. N., & Wishart, D. S. (2019). Chemical composition of commercial cows’ milk. Journal of Agricultural and Food Chemistry, 67, 4897–4894.

    Article  CAS  PubMed  Google Scholar 

  • Fox, P. F., & Morrissey, P. A. (1977). Reviews of the progress of dairy science: The heat stability of milk. The Journal of Dairy Research, 44, 627–646.

    Article  CAS  Google Scholar 

  • Gaber, S. M., Johansen, A.-G., Schuller, R. B., Devdd, T. G., Rukke, E.-O., & Skeie, S. B. (2020a). Effect of freezing temperatures and time on mineral balance, particle size, rennet and acid coagulation of casein concentrates produced by microfiltration. International Dairy Journal, 101, 1–11.

    Article  Google Scholar 

  • Gaber, S. M., Johansen, A.-G., Devold, T. G., & Rukke, E.-O. (2020b). Minor acidification of diafiltration water using various acidifying agents affects the composition and rennet coagulation properties of the resulting microfiltration casein concentrate. Journal of Dairy Science, 103, 7929–7938.

    Article  Google Scholar 

  • Gao, R., van Halsema, F. E. D., Temminghoff, E. J. M., van Leeuwen, H. P., van Valenberg, H. J. F., Eisner, M. D., Giesbers, M., & Van Boekel, M. A. J. S. (2010a). Modelling of ion composition in simulated milk ultrafiltrate (SMUF), I: Influence of calcium phosphate precipitation. Food Chemistry, 122, 700–709.

    Article  CAS  Google Scholar 

  • Gao, R., van Halsema, F. E. D., Temminghoff, E. J. M., van Leeuwen, H. P., van Valenberg, H. J. F., Eisner, M. D., & Van Boekel, M. A. J. S. (2010b). Modelling of ion composition in simulated milk ultrafiltrate (SMUF), II: Influence of pH, ionic strength and polyphosphates. Food Chemistry, 122, 710–715.

    Article  CAS  Google Scholar 

  • Geerts, J. P., Bekhof, J. J., & Scherjon, J. W. (1983). Determination of calcium ion activities in milk with an ion selective electrode. Netherlands Milk and Dairy Journal, 37, 197–211.

    CAS  Google Scholar 

  • Glover, F. (1985). Ultrafiltration and reverse osmosis for the dairy industry. Technical Bulletin No 5. Reading: NIRD.

    Google Scholar 

  • Grimley, H., Grandison, A., & Lewis, M. (2009). Changes in milk composition and processing properties during the spring flush period. Dairy Science & Technology, 89, 405–416.

    Article  CAS  Google Scholar 

  • Guillaume, C., Marchesseau, S., Laguade, A., & Cuq, J. L. (2002). Effect of salt addition on the micellar composition of milk subjected to pH reversible CO2 acidification. Journal of Dairy Science, 85, 2098–2015.

    Article  CAS  PubMed  Google Scholar 

  • Hansen, S. F. (2019). Milk fat globule membrane isolation with higher quality and stability. PhD thesis, Department of Food Science Aarhus University Denmark.

    Google Scholar 

  • Hernell, O., Timby, N., Domellöf, M., & Lönnerdal, B. (2016). Clinical benefits of milk fat globule membranes for infants and children. The Journal of Pediatrics, 173, S60–S65.

    Article  CAS  PubMed  Google Scholar 

  • Hiddink, J., de Boer, R., & Romijn, D. J. (1978). Removal of milk salts during ultrafiltration of whey and buttermilk. Netherlands Milk and Dairy Journal, 32, 80–93.

    CAS  Google Scholar 

  • Ho, T. M., Le, T. H. A., Yan, A., Bhandari, B., & Bansal, N. (2019). Foaming properties and foam structure of milk during storage. Food Research International, 16, 379–386.

    Article  Google Scholar 

  • Holt, C. (2004). An equilibrium thermodynamic model of the sequestration of calcium phosphate by casein micelles and its application to the calculation of the partition of salts in milk. European Biophysics Journal, 33, 421–434.

    Article  CAS  PubMed  Google Scholar 

  • Holt, C. (2021). A quantitative calcium phosphate nanocluster model of the casein micelle: The average size, size distribution and surface properties. European Biophysics Journal, 50, 847.

    Article  CAS  PubMed  Google Scholar 

  • Holt, C., Dalgleish, D. G., & Jenness, R. (1981). Calculation of the ion equilibria in milk diffusate and comparison with experiment. Analytical Biochemistry, 113, 154–163.

    Article  CAS  PubMed  Google Scholar 

  • Holt, C., Davies, D. T., & Law, A. J. R. (1986). Effects of colloidal calcium phosphate content and free calcium ion concentration in the milk serum on the dissociation of bovine casein micelles. The Journal of Dairy Research, 53, 557–572.

    Article  CAS  Google Scholar 

  • Holzmüller, W., & Kulozik, U. (2016). Technical difficulties and future challenges in isolating membrane material from milk fat globules in industrial settings—A critical review. International Dairy Journal, 61, 51–66.

    Article  Google Scholar 

  • Hunt, C. D., & Nielsen, F. H. (2009). Nutritional aspects of minerals in bovine and human milk. In P. L. H. McSweeney & P. F. Fox (Eds.), Advanced dairy chemistry, Vol. 3. Lactose, water, salts and minor constituents (3rd ed., pp. 391–456). New York: Springer.

    Google Scholar 

  • Huppertz, T. (2010). Foaming properties of milk: A review of the influence of composition and processing. International Journal of Dairy Technology, 63(4), 477–488.

    Article  Google Scholar 

  • Huppertz, T. (2013). Chemistry of the caseins. In P. L. H. McSweeney & P. F. Fox (Eds.), Advanced dairy chemistry. Vol. 1A. Proteins: Basic aspects (pp. 135–160). New York: Springer.

    Google Scholar 

  • International Dairy Federation (IDF). (2007). Coagulation of milk; Processes and characteristics. Bulletin of the International Dairy Federation, 420.

    Google Scholar 

  • Jimenez-Junca, C., Sher, A., Gumy, J.-C., & Niranjan, K. (2015). Production of milk foams by steam injection: The effects of steam pressure and nozzle design. Journal of Food Engineering, 166, 247–254.

    Article  CAS  Google Scholar 

  • Jonkman, M. J. (2000). Behaviour of casein micelles at conditions comparable to those in ice cream. Ph.D. thesis, Wageningen University, The Netherlands.

    Google Scholar 

  • Kamath, S. (2007). Foaming of milk. PhD thesis, University of Queensland, Brisbane, Australia.

    Google Scholar 

  • Kamath, S., Webb, R. E., & Deeth, H. C. (2011). The composition of interfacial material from skim milk foams. Journal of Dairy Science, 94, 2707–2718.

    Article  CAS  PubMed  Google Scholar 

  • Kielczewska, K., Kruk, A., Czerniewicz, M., & Kopec, M. (2009). Effect of high pressure on constituents of the colloidla phase of milk. Milchwissenschaft, 64, 358–360.

    CAS  Google Scholar 

  • Kitchen, B. J. (1974). A comparison of the properties of membranes isolated from bovine skim milk and cream. Biochimica et Biophysica Acta, 356, 257–269.

    Article  CAS  PubMed  Google Scholar 

  • Kudo, S. (1980). The heat stability of milk: Formation of soluble proteins and protein-depleted micelles at elevated temperatures. New Zealand Journal of Dairy Science and Technology, 15, 255–263.

    CAS  Google Scholar 

  • LaGrange, V., Whitsett, D., & Burris, C. (2015). Global market dairy proteins. Journal of Food Science, 80(Suppl 1), A16–A22.

    Article  CAS  PubMed  Google Scholar 

  • Law, A. J. R., Leaver, J., Felipe, X., Ferragut, V., Pla, R., & Guamis, B. (1998). Comparison of the effects of high pressure and thermal treatments on casein micelles in goat’s milk. Journal of Agricultural and Food Chemistry, 46, 2523–2530.

    Article  CAS  Google Scholar 

  • Lawless, H. T., Rapacki, F., Horne, J., & Hayes, A. (2003). The taste of calcium and magnesium salts and anionic modifications. Food Quality and Preference, 14, 319–325.

    Article  Google Scholar 

  • Le Ray, C., Maubois, J.-L., Gaucehron, F., Brule, G., Pronnier, P., & Garnier, F. (1998). Heat stability of reconstituted casein micelle dispersions: Changes induced by salt additions. Le Lait, 78, 375–390.

    Article  Google Scholar 

  • Lee, M. R., Johnson, M. E., & Lucey, J. A. (2005). Impact of modifications in acid development on the insoluble calcium content and rheological properties of Cheddar cheese. Journal of Dairy Science, 88, 3798–3809.

    Article  CAS  PubMed  Google Scholar 

  • Leitner, G., Lavi, Y., Merin, U., Lemberskiy-Kuzin, L., & Katz, G. (2011). Online evaluation of milk quality according to coagulation properties for its optimal distribution for industrial application. Journal of Dairy Science, 94, 2923–2932.

    Article  CAS  PubMed  Google Scholar 

  • Lenton, S., Wang, Q., Nylander, T., Teixeira, S., & Holt, C. (2020). Structural biology of calcium phosphate nanoclusters sequestered by phosphoproteins. Crystals, 10, 755–800.

    Article  CAS  Google Scholar 

  • Levin, M. A., Burrington, K. J., & Hartel, R. W. (2016). Composition and functionality of whey protein phospholipid concentrate and delactosed permeate. Journal of Dairy Science, 99, 6937–6947.

    Article  CAS  PubMed  Google Scholar 

  • Lewis, M. J. (2011). The measurement and significance of ionic calcium in milk—A review. International Journal of Dairy Technology, 64, 1–13.

    Article  CAS  Google Scholar 

  • Li, Y., Rovers, T. A. M., Jaeger, T. C., Hougaard, A. B., Svensson, B., Simonsen, A. C., & Ipsen, R. (2021). Effect of thawing procedures on the properties of frozen and subsequently thawed casein concentrate. International Dairy Journal, 112, 1–9.

    Article  Google Scholar 

  • Lin, M.-J., Grandison, A., Chryssanthou, C., Goodwin, C., Tsioulpas, A., Koliandris, A., & Lewis, M. (2006). Calcium removal from milk by ion exchange. Milchwissenschaft, 61, 370–373.

    CAS  Google Scholar 

  • Lin, M.-J., Grandison, A. S., & Lewis, M. J. (2015). Partitioning of calcium and magnesium (total divalent cations) during membrane filtration of milk. Journal of Food Engineering, 149, 153–158.

    Article  CAS  Google Scholar 

  • Liu, S., & Puri, V. (2005). Modeling of pH and moisture content distribution during ripening of camembert cheese. Transactions of the ASAE, 48(1), 279–285.

    Article  Google Scholar 

  • Lopez, C. (2020). Intracellular origin of milk fat globules, composition and structure of the milk fat globule membrane highlighting the specific role of sphingomyelin. In P. L. H. McSweeney, P. F. Fox, & J. A. O’Mahony (Eds.), Advanced dairy chemistry. 2. Lipids (4th ed., pp. 133–167). New York: Springer.

    Google Scholar 

  • Lopez-Fandino, R. (2006). High pressure-induced changes in milk proteins and possible applications in dairy technology. International Dairy Journal, 16(10), 1119–1131.

    Article  CAS  Google Scholar 

  • Loss, C. R., & Hotchkiss, J. H. (2003). The use of dissolved carbon dioxide to extend shelf life of dairy products. In G. Smit (Ed.), Dairy processing, improving quality (pp. 391–415). Cambridge: CRC Woodhead Publishing.

    Google Scholar 

  • Lucey, J. A., Gorry, C., O’Kennedy, B., Kalab, M., Tan-Kinita, R., & Fox, P. F. (1996). Effect of acidification and neutralisation of milk on some physico-chemical properties of casein micelles. International Dairy Journal, 6, 257–272.

    Article  CAS  Google Scholar 

  • Ma, Y., & Barbano, D. M. (2003). Milk pH as a function of CO2 concentration, temperature and pressure in a heat exchanger. Journal of Dairy Science, 86, 3822–3830.

    Article  CAS  PubMed  Google Scholar 

  • MacMahon, S., Begley, T. H., Diachenko, G. W., & Stromgre, S. A. (2012). A liquid chromatography-tandem mass spectrometry method for the detection of economically motivated adulteration in protein-containing foods. Journal of Chromatography. A, 1220, 101–107.

    Article  CAS  PubMed  Google Scholar 

  • Made by Cow. (2021). Naturally better. Discover the goodness of cold pressed raw milk. Retrieved July 16, 2021, from https://www.madebycow.com.au

  • May, R. J., & Smith, D. E. (1998). Effect of storage and various processing conditions on the amount of ionic calcium in milk. Milchwissenschaft, 53, 605–608.

    CAS  Google Scholar 

  • McKinnon, I. R., Yap, S. E., Augustin, M.-A., & Hemar, Y. (2009). Diffusing-wave spectroscopy investigation for heated reconstituted skim milks containing calcium chloride. Food Hydrocolloids, 23, 127–133.

    Article  Google Scholar 

  • McMahon, D. J., & Oommen, B. S. (2013). Casein micelle structure, functions, and interactions. In P. L. H. McSweeney & P. F. Fox (Eds.), Advanced dairy chemistry. Vol. 1A. Proteins: Basic aspects (pp. 185–209). New York: Springer.

    Google Scholar 

  • Mekmene, O., Le Great, Y., & Gaucheron, F. (2009). A model for predicting salt equilibria in milk and mineral-enriched milks. Food Chemistry, 116, 233–239.

    Article  CAS  Google Scholar 

  • Mottar, J., & Moermans, R. (1988). Optimization of the forewarming process with respect to deposit formation in indirect ultra high temperature plants and the quality of milk. The Journal of Dairy Research, 55, 563–568.

    Article  Google Scholar 

  • Muir, D. D. (1984). Reviews of the progress of dairy science: Frozen concentrated milk. The Journal of Dairy Research, 51, 649–664.

    Article  CAS  Google Scholar 

  • Nieuwenhuijse, J. A., Timmermans, W., & Walstra, P. (1988). Calcium and phosphate partitions during the manufacture of sterilized milk and their relations to the heat stability. Netherlands Milk and Dairy Journal, 42, 387–421.

    CAS  Google Scholar 

  • Nurliyani, Y., Suranindyah, & Pretiwi, P. (2015). Quality and emulsion stability of milk from Etawah crossed bred goat during frozen storage. Procedia Food Science, 3, 142–149.

    Article  Google Scholar 

  • Oliveira, D., & O’Mahony, J. A. (2020). Composition, fractionation, techno-functional properties and applications of milk fat globule membrane material. In P. L. H. McSweeney, P. F. Fox, & J. A. O’Mahony (Eds.), Advanced dairy chemistry. 2. Lipids (4th ed., pp. 169–195). New York: Springer.

    Google Scholar 

  • Omoarukhe, E. D., On-Nom, N., Grandison, A. S., & Lewis, M. J. (2010). Effects of different calcium salts on properties of milk related to heat stability. International Journal of Dairy Technology, 63, 504–511.

    Article  CAS  Google Scholar 

  • On-Nom, N. (2012). Partitioning of milk at high temperature. PhD thesis, University of Reading, UK.

    Google Scholar 

  • On-Nom, N., Grandison, A. S., & Lewis, M. J. (2010). Measurement of ionic calcium, pH and soluble divalent cations in milk at high temperature. Journal of Dairy Science, 93, 515–523.

    Article  CAS  PubMed  Google Scholar 

  • On-Nom, N., Grandison, A. S., & Lewis, M. J. (2012). Heat stability of milk supplemented with calcium chloride. Journal of Dairy Science, 95, 1623–1631.

    Article  CAS  PubMed  Google Scholar 

  • Pathomrungsiyounggul, P., Grandison, A. S., & Lewis, M. J. (2012). Feasibility of using dialysis for determining calcium ion concentration and pH in calcium-fortified soymilk at high temperature. Journal of Food Science, 77, E10–E16.

    Article  CAS  PubMed  Google Scholar 

  • Pazzola, M., Dettori, M. L., Piras, G., Pira, E., Monca, F., Puggioni, O., Noce, A., & Vacca, G. M. (2013). The effects of long-term freezing on renneting properties of Sarda sheep milk. Agriculturae Conspectus Scientificus, 3, 275–279.

    Google Scholar 

  • Pouliot, Y. (2008). Membrane processes in dairy technology—From a simple idea to worldwide panacea. International Dairy Journal, 18, 735–740.

    Article  CAS  Google Scholar 

  • Pouliot, Y., Boulet, M., & Paquin, P. (1989). Experiments on heat induced salt balance changes in cows milk. The Journal of Dairy Research, 56, 513–519.

    Article  CAS  PubMed  Google Scholar 

  • Pouliot, Y., Boulet, M., & Paquin, P. (1989a). An experimental technique for the study of milk salt balance. Journal of Dairy Science, 72, 36–40.

    Article  CAS  Google Scholar 

  • Pouliot, Y., Boulet, M., & Paquin, P. (1989b). Observations on the heat induced salt balance changes in milk. I. Effect of heating time between 4 and 90 °C. The Journal of Dairy Research, 56, 185–192.

    Article  CAS  Google Scholar 

  • Pouliot, Y., Boulet, M., & Paquin, P. (1989c). Observations on the heat induced salt balance changes in milk. II. Reversibility on cooling. The Journal of Dairy Research, 56, 193–199.

    Article  CAS  Google Scholar 

  • Poulsen, N. A., Gregersen, V. R., Guilherme, M. M., Madsen, L. B., Bruitenhuis, B., Hansen, M. S., Bendixen, C., & Laren, L. B. (2017). Novel genetic variation associated to CSN3 strongly affects rennet-induced milk coagulation. International Dairy Journal, 77, 122–130.

    Article  Google Scholar 

  • Prakash, S., Kravchuk, O., & Deeth, H. C. (2015). Influence of pre-heat temperature, pre-heat holding time and high temperature on the fouling of reconstituted skim milk during UHT processing. Journal of Food Engineering, 153, 45–52.

    Article  CAS  Google Scholar 

  • Premaratne, R. J., & Cousin, M. A. (1991). Changes in chemical composition during ultrafiltration of skim milk. Journal of Dairy Science, 74, 788–795.

    Article  CAS  Google Scholar 

  • Price, J. (2013). A history of the development & application of whey protein concentrates (WPC). Society of Dairy Technology, UK.

    Google Scholar 

  • Puhan, Z., & Gallmann, P. (1980). Ultrafiltration in the manufacture of kumys and quark. Cultured Dairy Products Journal, 15, 12–16.

    CAS  Google Scholar 

  • Ranjith, H. M. P., Lewis, M., & Maw, D. (1999). Production of calcium reduced milks using ion exchange resins. The Journal of Dairy Research, 66, 139–144.

    Article  CAS  PubMed  Google Scholar 

  • Ravash, N., Peighambardoust, S. H., Soltanzadeh, M., Pateiro, M., & Lorenzo, J. M. (2020). Impact of high-pressure treatment on casein micelles, whey proteins, fat globules and enzymes activity in dairy products: A review. Critical Reviews in Food Science and Nutrition, 62(11), 2888–2908. https://doi.org/10.1080/10408398.2020.1860899

    Article  CAS  PubMed  Google Scholar 

  • Rhim, J. W., Jones, V. A., & Swartzel, K. R. (1988). Kinetic studies in the colour changes of skim milk. Lebensmittel-Wissenschaft und -Technologie, 21, 334–338.

    Google Scholar 

  • Rose, D. (1962). Factors affecting the heat stability of milk. Journal of Dairy Science, 45, 1305–1311.

    Article  CAS  Google Scholar 

  • Rose, D. (1963). Heat stability of bovine milk: A review. Dairy Science Abstracts, 25, 45–52.

    Google Scholar 

  • Rose, D., & Tessier, H. (1959). Composition of ultrafiltrates from milk heated at 80 to 230 °F in relation to heat stability. Journal of Dairy Science, 42, 969–980.

    Article  CAS  Google Scholar 

  • Samaranayake, C. P., & Sastry, S. K. (2010). In situ measurement of pH under high pressure. Physical Chemistry B, 114(42), 13326–13332.

    Article  CAS  Google Scholar 

  • Sanders, G. P. (1933). The precipitation of milk proteins by means of trichloroacetic acid. Journal of the Association of Official Agricultural Chemists, 16, 140–146.

    CAS  Google Scholar 

  • Sievanen, K., Huppertz, T., Kelly, A. L., & Fox, P. F. (2008). Influence of added calcium chloride on the heat stability of unconcentrated and concentrated bovine milk. International Journal of Dairy Technology, 61, 151–155.

    Article  CAS  Google Scholar 

  • Singh, H. (2004). Heat stability of milk. International Journal of Dairy Technology, 57, 111–119.

    Article  CAS  Google Scholar 

  • Singh, H., & Latham, J. M. (1993). Heat stability of milk: Aggregation and dissociation of protein at ultra-high temperatures. International Dairy Journal, 3, 225–237.

    Article  CAS  Google Scholar 

  • Su, H.-P., Huang, M.-J., & Wang, H.-T. (2009). Characterisation of ginger proteases and the potential as a rennin replacement. Journal of the Science of Food and Agriculture, 89, 1178–1185.

    Article  CAS  Google Scholar 

  • Sweetsur, A. W. M., & Muir, D. D. (1985). Effect of fat incorporation on properties of sterile concentrates prepared by ultrafiltration of skimmed milk. Journal of the Society of Dairy Technology, 38, 88–93.

    Article  CAS  Google Scholar 

  • Syrios, A., Faka, M., Grandison, A. S., & Lewis, M. J. (2011). Comparison of reverse osmosis, nanofiltration and ultrafiltration as concentration processes prior to spray drying of skim milk. International Journal of Dairy Technology, 64, 467–472.

    Article  CAS  Google Scholar 

  • Tamime, A. Y., & Robinson, R. K. (1999). Yoghurt science and technology (2nd ed.). Cambridge: Woodhead Publishing/CRC.

    Google Scholar 

  • Tenori, L., Santucci, C., Meoni, G., Morrocchi, V., Matteucci, G., & Luchinat, C. (2018). NMR metabolomic fingerprinting distinguishes milk from different farms. Food Research International, 113, 131–139.

    Article  CAS  PubMed  Google Scholar 

  • Tessier, H., & Rose, D. (1958). Calcium ion concentration in milk. Journal of Dairy Science, 41, 351–359.

    Article  Google Scholar 

  • TetraPak. (2015). Dairy processing handbook. Lund: TetraPak.

    Google Scholar 

  • Tsikritzi, R. (2011). Mineral partitioning of milk under various conditions in relation to heat stability. PhD thesis, University of Reading, UK.

    Google Scholar 

  • Tsioulpas, A., Lewis, M. J., & Grandison, A. S. (2007). Effect of minerals on casein micelle stability of cow’s milk. The Journal of Dairy Research, 74, 167–173.

    Article  CAS  PubMed  Google Scholar 

  • Udabage, P., McKinnon, I., & Augustin, M.-A. (2000). Mineral and casein equilibria in milk: Effects of added salts and calcium chelating agents. The Journal of Dairy Research, 67, 361–370.

    Article  CAS  PubMed  Google Scholar 

  • Walstra, P., & Jenness, R. (1984). Dairy chemistry and physics. New York: Wiley.

    Google Scholar 

  • Walstra, P., Walters, J. T. M., & Geurts, T. J. (2005). Dairy science and technology. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Wang, Q., Holt, C., Nylander, T., & Ma, Y. (2020). Salt partition, ion equilibria and the structure composition and solubility of micellar calcium phosphate in bovine milk, with added calcium salts. Journal of Dairy Science, 103, 9893–9905.

    Article  CAS  PubMed  Google Scholar 

  • Webb, B. H., & Bell, R. W. (1942). The effect of high-temperature short-time forewarming of milk upon the heat stability of its evaporated product. Journal of Dairy Science, 25, 301–311.

    Article  Google Scholar 

  • Webb, B. H., & Hall, S. A. (1935). Some physical effects of freezing upon milk and cream. Journal of Dairy Science, 18, 275–286.

    Article  CAS  Google Scholar 

  • White, J. C. D., & Davies, D. T. (1958a). The relation between the chemical composition of milk and the stability of the caseinate complex. 1. General introduction, description of samples, methods and chemical composition of samples. The Journal of Dairy Research, 25, 236–255.

    Article  CAS  Google Scholar 

  • White, J. C. D., & Davies, D. T. (1958b). The relation between the chemical composition of milk and the stability of the caseinate complex, IV. Coagulation by heat. The Journal of Dairy Research, 25, 281–296.

    Article  CAS  Google Scholar 

  • White, J. C. D., & Davies, D. T. (1958c). The relation between the chemical composition of milk and the stability of the caseinate complex. 3 Coagulation by rennet. The Journal of Dairy Research, 25, 267–280.

    Article  CAS  Google Scholar 

  • Wilde, P., Mackie, A., Husband, F., Gunning, P., & Morris, V. (2004). Proteins and emulsifiers at liquid interfaces. Advances in Colloid and Interface Science, 108, 63–71.

    Article  PubMed  Google Scholar 

  • Winwood, J. (1983). Quarg production methods—Past, present and future. Journal of the Society of Dairy Technology, 36, 107–109.

    Article  Google Scholar 

  • Xiong, X., Ho, M. T., Bhandari, B., & Bansal, N. (2020). Foaming properties of milk protein dispersions at different protein content and casein to whey protein ratios. International Dairy Journal, 109, 47–58.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Lewis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lewis, M.J. (2022). Partitioning Milk Constituents. In: McSweeney, P.L.H., O'Mahony, J.A., Kelly, A.L. (eds) Advanced Dairy Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-92585-7_9

Download citation

Publish with us

Policies and ethics