Skip to main content

Non-electro-Technologies: Gamma Rays, UV Light, Ozone, Photodynamic and Membrane Processing

  • Chapter
  • First Online:
Nonthermal Processing in Agri-Food-Bio Sciences

Abstract

Non-electro technologies (NET) refer to the non-thermal physical preservative techniques that employ low or ambient temperature to enhance the shelf-life of wide-ranging agro-produces. Processing of food products using gamma rays (wavelength, λ <100 pm), ultraviolet (UV) light (λ: 100–400 nm), ozonation and membrane processing fall under the above category. Compared to conventional thermal processing techniques, non-electro technologies result in greater retention of nutrients and other volatile contents in the treated food product. The first part of the chapter would elaborate on the gamma-ray processing of foods and its applications in the disinfection of fruits, treatment of drinking water, disinfestation of cereals and sterilization of meat and poultry products. Further, physicochemical characteristics of treated products and safety aspects of any food irradiation technology concerning gamma-ray processing will be discussed. The next part of the chapter would comprehensively review the principle of food preservation by UV light and its applications in the food processing sectors. Next part of the chapter deals with ozone, in which ozone gas is used to decontaminate the food surfaces. Ozonation has been extensively utilized for enhancing the shelf life of comprehensive range of agro produces. It is also used for the dissipation of pesticide residues from food products. Finally, the chapter discusses about membrane technology, which is widely used for concentration of fruit juices and other liquid foods to increase the shelf life of final liquid product.

This entire chapter critically analyzes the technologies, equipment principles, its characterization and applications in food and agriculture sector, emphasizing the main advantages and shortcomings in terms of their impact the safety, nutritional, and health properties of food products. Moreover, the general discussion also covers the analysis of the energy consumption and sustainability aspects associate to the different technologies, and conclude with the recent advancements and future perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbas H, Nouraddin S, Reza ZH, Iraj B, Mohammad B, Hasan Z, Hadi F (2011) Effect of gamma radiation on different stages of Indian meal moth Plodia interpunctella Hübner (Lepidoptera: Pyralidae). Afr J Biotechnol 10(20):4259–4264

    Google Scholar 

  • Agbaka JI, Ibrahim AN (2020) Irradiation: utilization, advances, safety, acceptance, future trends, and a means to enhance food security. Adv Appl Sci Res 11(3:1):12

    Google Scholar 

  • Agboola O, Maree J, Mbaya R (2014) Characterization and performance of nanofiltration membranes. Environ Chem Lett 12(2):241–255

    Article  CAS  Google Scholar 

  • Ahsan A, Imteaz M (2019) Nanofiltration membrane technology providing quality drinking water. In: Nanotechnology in water and wastewater treatment. Elsevier, pp 291–295

    Chapter  Google Scholar 

  • Akgün MP, Ünlütürk S (2017) Effects of ultraviolet light emitting diodes (LEDs) on microbial and enzyme inactivation of apple juice. Int J Food Microbiol 260:65–74

    Article  PubMed  Google Scholar 

  • Al-Antary TM, Shaderma AM, Al-Dabbas MB (2018) Effect of Ozonation treatment on spiked myclobutanil pesticide on tomato fruits. Feb Fresenius Environ Bulletin:8574

    Google Scholar 

  • Alvarez I, Niemira BA, Fan X, Sommers CH (2007) Inactivation of Salmonella enteritidis and Salmonella senftenberg in liquid whole egg using generally recognized as safe additives, ionizing radiation, and heat. J Food Prot 70(6):1402–1409

    Article  PubMed  Google Scholar 

  • Alves E, Faustino MA, Neves MG, Cunha A, Tome J, Almeida A (2014) An insight on bacterial cellular targets of photodynamic inactivation. Future Med Chem 6(2):141–164

    Article  CAS  PubMed  Google Scholar 

  • Amaresh P, Soumen G (2018) Applications of membrane separation technology in food industry. Trends Prospects Food Technol Process Preserv 4:43–55

    Google Scholar 

  • Angarano V, Akkermans S, Smet C, Chieffi A, Van Impe JF (2020) The potential of violet, blue, green and red light for the inactivation of P. fluorescens as planktonic cells, individual cells on a surface and biofilms. Food Bioprod Process 124:184–195

    Article  CAS  Google Scholar 

  • Anis SF, Hashaikeh R, Hilal N (2019) Microfiltration membrane processes: a review of research trends over the past decade. J Water Process Eng 32:100941

    Article  Google Scholar 

  • Ansari JA, Ismail M, Farid M (2019) Investigate the efficacy of UV pretreatment on thermal inactivation of Bacillus subtilis spores in different types of milk. Innovative Food Sci Emerg Technol 52:387–393

    Article  CAS  Google Scholar 

  • Antonelli A, Fabbri C, Boselli E (1998) Modifications of dried basil (Ocimum basilicum) leaf oil by gamma and microwave irradiation. Food Chem 63:485–489

    Article  CAS  Google Scholar 

  • Antos P, Piechowicz B, Gorzelany J, Matłok N, Migut D, Józefczyk R, Balawejder M (2018) Effect of ozone on fruit quality and fungicide residue degradation in apples during cold storage. Ozone Sci Eng 40(6):482–486. https://doi.org/10.1080/01919512.2018.1471389

    Article  CAS  Google Scholar 

  • Appleby J, Banks AJ (1905) Improvements in or relating to the treatment of foodstuffs, more especially cereals and their products. British Patent number 1609

    Google Scholar 

  • Bahrami S, Amiri-Yekta A, Daneshipour A, Jazayeri SH, Mozdziak PE, Sanati MH et al (2020) Designing a transgenic chicken: applying new approaches toward a promising bioreactor. Cell J 22:133–139

    PubMed  Google Scholar 

  • Baker RW (2006) Membrane technology in the chemical industry: future directions. Memb Technol Chem Ind 7:305–335

    Google Scholar 

  • Ballinger CA, Cueto R, Squadrito G, Coffin JF, Velsor LW, Pryor WA, Postlethwait EM (2005) Antioxidant-mediated augmentation of ozone-induced membrane oxidation. Free Radic Biol Med 38(4):515–526. https://doi.org/10.1016/j.freeradbiomed.2004.11.009

    Article  CAS  PubMed  Google Scholar 

  • BARC (n.d.) Radiation processing for food preservation. Available from: https://mofpi.nic.in/sites/default/files/RadiationProcessingforFoodPreservation.pdf.pdf. Accessed 04 April 2021

  • Benov L (2015) Photodynamic therapy: current status and future directions. Med Princ Pract 24(1):14–28

    Article  PubMed  Google Scholar 

  • Beuchat LR (1992) Surface disinfection of raw produce. Dairy Food Environ Sanit 12(1):6–9

    Google Scholar 

  • Bhavya ML, Hebbar HU (2019) Sono-photodynamic inactivation of Escherichia coli and Staphylococcus aureus in orange juice. Ultrason Sonochem 57:108–115

    Article  CAS  PubMed  Google Scholar 

  • Cabo Verde S (2018) Food irradiation as sanitary treatment. In: Ferreira ICFR, Antonio AL, Cabo Verde S (eds) Food irradiation technologies: concepts, applications and outcomes, food chemistry, functions and analysis, vol 4. The Royal Society of Chemistry, UK, pp 183–209

    Google Scholar 

  • Calado T, Venâncio A, Abrunhosa L (2014) Irradiation for mold and mycotoxin control: A review. Compr Rev Food Sci Food Saf 13:1049–1061

    Article  CAS  Google Scholar 

  • Can FO, Demirci A, Puri VM, Gourama H (2014) Decontamination of hard cheeses by pulsed UV light. J Food Prot 77:1723–1731

    Article  PubMed  Google Scholar 

  • Çatal H, İbanoğlu Ş (2012) Ozonation of corn and potato starch in aqueous solution: effects on the thermal, pasting and structural properties. Int J Food Sci Technol 47(9):1958–1963. https://doi.org/10.1111/j.1365-2621.2012.03056.x

    Article  CAS  Google Scholar 

  • Cebrián G, Condón S, Mañas P (2017) Physiology of the inactivation of vegetative bacteria by thermal treatments: mode of action, influence of environmental factors and inactivation kinetics. Foods 6(12):107

    Article  PubMed Central  Google Scholar 

  • Choi MR, Liu Q, Lee SY, Jin JH, Ryu S, Kang DH (2012) Inactivation of Escherichia coli O157: H7, Salmonella typhimurium and listeria monocytogenes in apple juice with gaseous ozone. Food Microbiol 32(1):191–195. https://doi.org/10.1016/j.fm.2012.03.002

    Article  CAS  PubMed  Google Scholar 

  • Conidi C, Castro-Muñoz R, Cassano A (2020) Nanofiltration in beverage industry. In: Nanotechnology in the beverage industry. Elsevier, pp 525–548

    Chapter  Google Scholar 

  • Corsi AJ, Robles FC, Corduay CG, Neal JA (2015) The effectiveness of electron beam irradiation to reduce or eliminate mould in cork stoppers. Int J Food Sci Technol 51:389–395

    Article  Google Scholar 

  • Criscuoli A, Figoli A (2019) Pressure-driven and thermally-driven membrane operations for the treatment of arsenic-contaminated waters: a comparison. J Hazard Mater 370:147–155

    Article  CAS  PubMed  Google Scholar 

  • Cunha A, Couceiro J, Bonifácio D, Martins C, Almeida A, Neves MGPMS, Faustino MAF, Saraiva JA (2017) Inactivation of pathogenic bacteria in food matrices: high pressure processing, photodynamic inactivation and pressure-assisted photodynamic inactivation. In: IOP Conference Series: Earth and Environmental Science, vol 85, No. 1. IOP Publishing, p 012016

    Google Scholar 

  • Cutler TD, Zimmerman JJ (2011) Ultraviolet irradiation and the mechanisms underlying its inactivation of infectious agents. Anim Health Res Rev 12(1):15–23

    Article  PubMed  Google Scholar 

  • Damalas CA, Eleftherohorinos IG (2011) Pesticide exposure, safety issues, and risk assessment indicators. Int J Environ Res Public Health 8(5):1402–1419. https://doi.org/10.3390/ijerph8051402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Datta N, Tomasula PM (2015) Emerging dairy processing technologies: opportunities for the dairy industry. Wiley, Chichester, UK

    Book  Google Scholar 

  • Datta N, Harimurugan P, Palombo E (2015) Ultraviolet and pulsed light technologies in dairy processing. In: Datta N, Tomasula PM (eds) Emerging dairy processing technologies: opportunities for the dairy industry. Wiley, West Sussex, UK

    Chapter  Google Scholar 

  • Davis CR, Fleet GH, Lee TH (1982) Inactivation of wine cork microflora by a commercial sulphur dioxide treatment. Am J Enol Vitic 33:124–127

    CAS  Google Scholar 

  • Davis RH (2019) Microfiltration in pharmaceutics and biotechnology. Current trends and future developments on (bio-) membranes, pp 29–67

    Book  Google Scholar 

  • de Souza LP, Faroni LRDA, Heleno FF, Cecon PR, Gonçalves TDC, da Silva GJ, Prates LHF (2018) Effects of ozone treatment on postharvest carrot quality. LWT 90:53–60. https://doi.org/10.1016/j.lwt.2017.11.057

    Article  CAS  Google Scholar 

  • Delorme MM, Guimarães JT, Coutinho NM, Balthazar CF, Rocha RS, Silva R, Margalho LP, Pimentel TC, Silva MC, Freitas MQ, Granato D, Sant’Ana AS, Duart MCKH, Cruz AG (2020) Ultraviolet radiation: an interesting technology to preserve quality and safety of milk and dairy foods. Trends Food Sci Technol 102:146–154

    Article  CAS  Google Scholar 

  • Deng LZ, Mujumdar AS, Pan Z, Vidyarthi SK, Xu J, Zielinska M, Xiao HW (2020a) Emerging chemical and physical disinfection technologies of fruits and vegetables: a comprehensive review. Crit Rev Food Sci Nutr 60(15):2481–2508

    Article  CAS  PubMed  Google Scholar 

  • Deng L-Z, Tao Y, Mujumdar AS, Pan Z, Chen C, Yang X-H, Liu Z-L, Wang H, Xiao H-W (2020b) Recent advances in non-thermal decontamination technologies for microorganisms and mycotoxins in low-moisture foods. Trends Food Sci Technol 106:104–112

    Article  CAS  Google Scholar 

  • Deng X, Tang S, Wu Q, Tian J, Riley WW, Chen Z (2016) Inactivation of Vibrio parahaemolyticus by antimicrobial photodynamic technology using methylene blue. J Sci Food Agric 96(5):1601–1608

    Article  CAS  PubMed  Google Scholar 

  • Dhineshkumar V, Ramasamy D (2017) Review on membrane technology applications in food and dairy processing. J Appl Biotechnol Bioeng 3(5-2017)

    Google Scholar 

  • Dunn JE, Clark RW, Asmus JF, Pearlman JS, Boyer K, Painchaud F, et al (1991) U.S. Patent No. 5,034. Washington, DC: U.S. Patent and Trademark Office 235

    Google Scholar 

  • Durantini EN (2006) Photodynamic inactivation of bacteria. Curr Bioact Comp 2(2):127–142

    Article  CAS  Google Scholar 

  • EFSA (2016) Safety of UV-treated milk as a novel food pursuant to Regulation (EC) No 258/97. EFSA J 14(1):4370

    Google Scholar 

  • Erdman HE (1980) Ozone toxicity during ontogeny of two species of flour beetles, Tribolium confusum and T. castaneum. Environ Entomol 9(1):16–17. https://doi.org/10.1093/ee/9.1.16

    Article  CAS  Google Scholar 

  • Erkmen O, Bozoglu TF (2016) Food preservation by irradiation. Food microbiology: principles into practice. Wiley, West Sussex, UK

    Book  Google Scholar 

  • Espo E, Eyidozehi K, Ravan S (2015) Influence of gamma and ultraviolet irradiation on pest control. Magnt Res Rep 3(2):319–326

    Google Scholar 

  • Fan X, Huang R, Chen H (2017) Application of ultraviolet C technology for surface decontamination of fresh produce. Trends Food Sci Technol 70:9–19

    Article  CAS  Google Scholar 

  • FAO/IAEA/WHO (1999) World Health Organization. High-Dose Irradiation: Wholesomeness of Food Irradiated with Doses above 10 kGy. Report of a Joint FAO/IAEA/WHO Study Group. Geneva, Switzerland: World Health Organization, WHO Technical Report Series No. 890

    Google Scholar 

  • Farkas J (2006) Irradiation for better foods. Trends Food Sci Technol 17:148–152

    Article  CAS  Google Scholar 

  • Faroni LRD, Pereira AM, Sousa AH, Silva MTC, Urrichi WI (2007) Influence of corn grain mass temperature on ozone toxicity to Sitophilus zeamais (Coleoptera: Curculionidae) and quality of oil extracted from ozonized grains. In: IOA conference and exhibition, vol 1. IOA, Valência, pp 1–6

    Google Scholar 

  • FDA (2018) Food irradiation: what you need to know. Available from: https://www.fda.gov/food/buy-store-serve-safe-food/food-irradiation-what-you-need-know. Accessed 04 April 2021

  • FDA (2021) UV lights and lamps: ultraviolet-C radiation, disinfection, and coronavirus. Available from: https://www.fda.gov/medical-devices/coronavirus-covid-19-and-medical-devices/uv-lights-and-lamps-ultraviolet-c-radiation-disinfection-and-coronavirus. Accessed 04 April 2021

  • Fernández M, Arias K, Hierro E (2016) Application of pulsed light to sliced cheese: effect on listeria inactivation, sensory quality and volatile profile. Food Bioprocess Technol 9:1335–1344

    Article  Google Scholar 

  • Fernández M, Ganan M, Guerra C, Hierro E (2014) Protein oxidation in processed cheese slices treated with pulsed light technology. Food Chem 159:388–390

    Article  PubMed  Google Scholar 

  • Ferrarini R, Versari A, Galassi S (2001) A preliminary comparison between nanofiltration and reverse osmosis membranes for grape juice treatment. J Food Eng 50(2):113–116

    Article  Google Scholar 

  • Food and Drug Administration (2015) Federal Register, CFR 179.26. http://www.ecfr.gov/cgi-bin/textidx?SID=2c4e58481ca8b6ba26e94304f940150c&node=pt21.3.179&rgn=div5. Accessed 04 April 2021

  • Forney LJ, Pierson JA, Ye Z (2004) Juice irradiation with TaylorCouette flow: UV inactivation of Escherichia Coli. J Food Prot 67:2410–2415

    Article  CAS  PubMed  Google Scholar 

  • Freitas-Silva O, Venâncio A (2010) Ozone applications to prevent and degrade mycotoxins: a review. Drug Metab Rev 42(4):612–620. https://doi.org/10.3109/03602532.2010.484461

    Article  CAS  PubMed  Google Scholar 

  • Friedberg EC, Walker GC, Siede W, Wood RD, Schultz RA et al (2006) DNA repair and mutagenesis. ASM Press, Washington, DC

    Google Scholar 

  • Fundo JF, Miller FA, Tremarin A, Garcia E, Brandão TR, Silva CL (2018) Quality assessment of cantaloupe melon juice under ozone processing. Innovative Food Sci Emerg Technol 47:461–466. https://doi.org/10.1016/j.ifset.2018.04.016

    Article  CAS  Google Scholar 

  • Gabriel AA (2012) Inactivation of Escherichia coli O157:H7 and spoilage yeasts in germicidal UV-C irradiated and heat-treated clear apple juice. Food Control 25(4):425–432

    Article  CAS  Google Scholar 

  • Galstyan A, Dobrindt U (2019) Determining and unravelling origins of reduced photoinactivation efficacy of bacteria in milk. J Photochem Photobiol B Biol 197:111554

    Article  CAS  Google Scholar 

  • Ganorkar P, Nandane A, Tapre A (2012) Reverse osmosis for fruit juice concentration–a review. Res Rev 1(1):23–36

    Google Scholar 

  • Garud RM, Kore SV, Kore VS, Kulkarni GS (2011) A short review on process and applications of reverse osmosis. Universal Journal of Environmental Research & Technology 1(3)

    Google Scholar 

  • Garud SR, Priyanka BS, Rastogi NK, Prakash M, Negi PS (2018) Efficacy of ozone and lactic acid as nonthermal hurdles for preservation of sugarcane juice. Ozone Sci Eng 40(3):198–208. https://doi.org/10.1080/01919512.2017.1415802

    Article  CAS  Google Scholar 

  • Gayán E, Condón S, Álvarez I (2014) Biological aspects in food preservation by ultraviolet light: a review. Food Bioprocess Technol 7:1–20

    Article  Google Scholar 

  • Gayán E, Mañas P, Álvarez I, Condón S (2013) Mechanism of the synergistic inactivation of Escherichia coli by UV-C light at mild temperatures. Appl Environ Microbiol 79(14):4465–4473

    Article  PubMed  PubMed Central  Google Scholar 

  • Gharib-Bibalan S, Keramat J, Hamdami N (2018) Better lime purification of raw sugar beet juice by advanced Fenton oxidation process. Ozone Sci Eng 40(1):54–63. https://doi.org/10.1080/01919512.2017.1345617

    Article  CAS  Google Scholar 

  • Ghate V, Kumar A, Zhou W, Yuk H (2016) Irradiance and temperature influence the bactericidal effect of 460-nanometer light-emitting diodes on salmonella in orange juice. J Food Prot 79(4):553–560

    Article  CAS  PubMed  Google Scholar 

  • Ghate VS, Zhou W, Yuk HG (2019) Perspectives and trends in the application of photodynamic inactivation for microbiological food safety. Compr Rev Food Sci Food Saf 18(2):402–424

    Article  PubMed  Google Scholar 

  • Giorno L, Drioli E, Strathmann H (2015) The principle of reverse osmosis (RO). In: Encyclopedia of membranes, pp 1–5

    Google Scholar 

  • Gómez-López VM, Ragaert P, Debevere J, Devlieghere F (2007) Pulsed light for food decontamination: a review. Trends Food Sci Technol 18(9):464–473

    Article  Google Scholar 

  • Gonçalves AA (2009) Ozone: an emerging technology for the seafood industry. Braz Arch Biol Technol 52(6):1527–1539. https://doi.org/10.1590/S1516-89132009000600025

    Article  Google Scholar 

  • González-Rodríguez RM, Rial-Otero R, Cancho-Grande B, Gonzalez-Barreiro C, Simal-Gándara J (2011) A review on the fate of pesticides during the processes within the food-production chain. Crit Rev Food Sci Nutr 51(2):99–114. https://doi.org/10.1080/10408390903432625

    Article  PubMed  Google Scholar 

  • Gorzelany J, Migut D, Matłok N, Antos P, Kuźniar P, Balawejder M (2017) Impact of pre-ozonation on mechanical properties of selected genotypes of cucumber fruits during the souring process. Ozone Sci Eng 39(3):188–195. https://doi.org/10.1080/01919512.2016.1273756

    Article  CAS  Google Scholar 

  • Grégoire O, Cleland MR, Mittendorfer J, Dababneh S, Ehlermann DAE, Fan X, Käppeler F, Logar J, Meissner J, Mullier B, Stichelbaut F, Thayer DW (2003) Radiological safety of food irradiation with high energy Xrays: theoretical expectations and experimental evidence. Radiat Phys Chem 67(2):169–183

    Article  Google Scholar 

  • Gryczka U, Migdał W, Bułka S (2018) The effectiveness of the microbiological radiation decontamination process of agricultural products with the use of low energy electron beam. Radiat Phys Chem 143:59–62

    Article  CAS  Google Scholar 

  • Guneser O, Karagul Yuceer Y (2012) Effect of ultraviolet light on water- and fat-soluble vitamins in cow and goat milk. J Dairy Sci 95(11):6230–6241

    Article  CAS  PubMed  Google Scholar 

  • Guzel-Seydim ZB, Greene AK, Seydim AC (2004) Use of ozone in the food industry. LWT Food Sci Technol 37(4):453–460. https://doi.org/10.1016/j.lwt.2003.10.014

    Article  CAS  Google Scholar 

  • Ha JW, Back KH, Kim YH, Kang DH (2016) Efficacy of UV-C irradiation for inactivation of food-borne pathogens on sliced cheese packaged with different types and thicknesses of plastic films. Food Microbiol 57:172–177

    Article  CAS  PubMed  Google Scholar 

  • Hadi J, Wu S, Brightwell G (2020) Antimicrobial blue light versus pathogenic bacteria: mechanism, application in the food industry, hurdle technologies and potential resistance. Foods 9(12):1895

    Article  CAS  PubMed Central  Google Scholar 

  • Hallman GJ (2011) Phytosanitary applications of irradiation. Compr Rev Food Sci Food Saf 10:143–151

    Article  Google Scholar 

  • Hallman GJ, Loaharanu P (2016) Phytosanitary irradiation – development and application. Radiat Phys Chem 129:39–45

    Article  CAS  Google Scholar 

  • Heleno FF, De Queiroz MEL, Neves AA, Freitas RS, Faroni LRA, De Oliveira AF (2014) Effects of ozone fumigation treatment on the removal of residual difenoconazole from strawberries and on their quality. J Environ Sci Health B 49(2):94–101. https://doi.org/10.1080/03601234.2014.846736

    Article  CAS  PubMed  Google Scholar 

  • Heraeus Amba Australia Pty Ltd (2012) Applications for UV light in the food industry. Available from: https://www.foodprocessing.com.au/content/processing/article/applications-for-uv-light-in-the-food-industry-1291409884. Accessed 04 April 2021

  • Hetz SK, Bradley TJ (2005) Insects breathe discontinuously to avoid oxygen toxicity. Nature 433(7025):516–519. https://doi.org/10.1038/nature03106

    Article  CAS  PubMed  Google Scholar 

  • Horvath M, Bilitzky L, Huttner J (1985) Fields of utilization of ozone. Ozone:257–316

    Google Scholar 

  • Hwang ES, Cash JN, Zabik MJ (2001) Postharvest treatments for the reduction of mancozeb in fresh apples. J Agri Food Chem 49(6):3127–3132

    Article  CAS  Google Scholar 

  • IAEA (2012) International atomic energy agency. Food irradiation treatment facilities database. http://nucleus.iaea.org/fitf/. Accessed 04 April 2021

  • IFST (2006) Institute of Food Science and Technology. The use of irradiation for foodquality and safety. Available from: http://www.ifst.org/document.aspx?id=12. Accessed 04 April 2021

  • Ihsanullah I, Rashid A (2017) Current activities in food irradiation as a sanitary and phytosanitary treatment in the Asian and the Pacific Region and a comparison with advanced countries. Food Control 72:345–359

    Article  Google Scholar 

  • Jalili M, Jinap S, Noranizan MA (2012) Aflatoxins and ochratoxin a reduction in black and white pepper by gamma radiation. Radiat Phys Chem 81:1786–1788

    Article  CAS  Google Scholar 

  • Jaramillo-Sánchez GM, Garcia Loredo AB, Gómez PL, Alzamora SM (2018) Ozone processing of peach juice: impact on physicochemical parameters, color, and viscosity. Ozone Sci Eng 40(4):305–312. https://doi.org/10.1080/01919512.2017.1417111

    Article  CAS  Google Scholar 

  • Jeong S, Marks BP, Ryser ET, Harte JB (2012) The effect of X-ray irradiation on Salmonella inactivation and sensory quality of almonds and walnuts as a function of water activity. Int J Food Microbiol 153(3):365–371

    Article  CAS  PubMed  Google Scholar 

  • Jermann C, Koutchma T, Margas E, Leadley C, Ros-Polski V (2015) Mapping trends in novel and emerging food processing technologies around the world. Innovative Food Sci Emerg Technol 31:14–27

    Article  Google Scholar 

  • Jiang L, Tu Y, Li X, Li H (2018) Application of reverse osmosis in purifying drinking water. In: E3S web of conferences, vol 38. EDP Sciences, p 01037

    Google Scholar 

  • Kalyani B, Manjula K (2014) Food irradiation – technology and application. Int J Curr Microbiol App Sci 3(4):549–555

    Google Scholar 

  • Karaca H (2019) The effects of ozone-enriched storage atmosphere on pesticide residues and physicochemical properties of table grapes. Ozone Sci Eng 41(5):404–414. https://doi.org/10.1080/01919512.2018.1555449

    Article  CAS  Google Scholar 

  • Karadurmuş E, Taşkın N, Göz E, Yüceer M (2019) Prediction of bromate removal in drinking water using artificial neural networks. Ozone Sci Eng 41(2):118–127. https://doi.org/10.1080/01919512.2018.1510763

    Article  CAS  Google Scholar 

  • Kashef N, Huang YY, Hamblin MR (2017) Advances in antimicrobial photodynamic inactivation at the nanoscale. Nano 6(5):853–879

    CAS  Google Scholar 

  • Kaya Z, Unluturk S (2016) Processing of clear and turbid grape juice by a continuous flow UV system. Innovative Food Sci Emerg Technol 33:282–288

    Article  CAS  Google Scholar 

  • Keklik NM, Elik A, Salgin U, Demirci A, Koçer G (2019) Inactivation of Staphylococcus aureus and Escherichia coli O157: H7 on fresh kashar cheese with pulsed ultraviolet light. Food Sci Technol Int 25:680–691

    Article  CAS  PubMed  Google Scholar 

  • Kells SA, Mason LJ, Maier DE, Woloshuk CP (2001) Efficacy and fumigation characteristics of ozone in stored maize. J Stored Prod Res 37(4):371–382. https://doi.org/10.1016/S0022-474X(00)00040-0

    Article  CAS  PubMed  Google Scholar 

  • Khadre MA, Yousef AE, Kim JG (2001) Microbiological aspects of ozone applications in food: a review. J Food Sci 66(9):1242–1252. https://doi.org/10.1111/j.1365-2621.2001.tb15196.x

    Article  CAS  Google Scholar 

  • Khaled AO, Fahad B, Abdullah A (2017) Ozone as a safety post-harvest treatment for chlorpyrifos removal from vegetables and its effects on vegetable quality. Int J Food Nutr Sci 4(1):38–48

    Google Scholar 

  • Khan QU, Mohammadzai I, Shah Z, Ullah I, Khattak TN, Noreen H, Hassan W (2018) Effect of gamma irradiation on nutrients and shelf life of peach stored at ambient temperature. Open Conf Proc J 09(1):8–15

    Article  CAS  Google Scholar 

  • Kim DK, Kim SJ, Kang DH (2017) Bactericidal effect of 266 to 279 nm wavelength UVC-LEDs for inactivation of Gram positive and Gram negative foodborne pathogenic bacteria and yeasts. Food Res Int 97:280–287

    Article  PubMed  Google Scholar 

  • Kim HY, Ahn JJ, Shahbaz HM, Park KH, Kwon JH (2014) Physical, chemical and microbiological based identification of electron beam and γ-irradiated frozen crushed garlic. J Agric Food Chem 62:7920–7926

    Article  CAS  PubMed  Google Scholar 

  • Kim JG, Yousef AE, Dave S (1999) Application of ozone for enhancing the microbiological safety and quality of foods: a review. J Food Prot 62(9):1071–1087. https://doi.org/10.4315/0362-028X-62.9.1071

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Moreira RG, Castell-Perez ME (2010) Optimizing irradiation treatment of shell eggs using simulation. J Food Sci 76(1):E173–E177

    Article  PubMed  Google Scholar 

  • Kim S, Kim D, Kang D (2015) Using UVC light-emitting diodes at wavelengths of 266 to 279 nanometers to inactivate foodborne pathogens and pasteurize sliced cheese. Appl Environ Microbiol 82(1):11–17

    Article  PubMed  PubMed Central  Google Scholar 

  • Komanapalli IR, Lau BHS (1996) Ozone-induced damage of Escherichia coli K-12. Appl Microbiol Biotechnol 46(5):610–614. https://doi.org/10.1007/s002530050869

    Article  CAS  PubMed  Google Scholar 

  • Koutchma T (2008) UV light for processing foods. Ozone Sci Eng 30:1–6

    Article  Google Scholar 

  • Koutchma T (2009) Advances in ultraviolet light technology for non-thermal processing of liquid foods. Food Bioprocess Technol 2(2):138–155

    Article  CAS  Google Scholar 

  • Koutchma T (2016) UV and light Technologies for disinfection of food contact and food surfaces. Ref Mod Food Sci. https://doi.org/10.1016/b978-0-08-100596-5.21201-8

  • Koutchma T (2019) Ultraviolet light in food technology principles and applications. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  • Koutchma T, Forney LJ, Moraru CL (2009) Ultraviolet light in food technology. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  • Koutchma T, Keller S, Chirtel S, Parisi B (2004) Ultraviolet disinfection of juice products in laminar and turbulent flow reactors. Innovative Food Sci Emerg Technol 5:179–189

    Article  Google Scholar 

  • Krishnamurthy K, Demirci A, Irudayaraj JM (2007) Inactivation of Staphylococcus aureus in milk using flow-through pulsed UV-light treatment system. J Food Sci 72:M233–M239

    Article  CAS  PubMed  Google Scholar 

  • Kulozik U (2019) Ultra-and microfiltration in dairy technology. In: Current trends and future developments on (bio-) membranes. Elsevier, pp 1–28

    Google Scholar 

  • Lacivita V, Conte A, Manzocco L, Plazzotta S, Zambrini VA, Del Nobile MA, Nicoli MC (2016) Surface UV-C light treatments to prolong the shelf-life of Fiordilatte cheese. Innovative Food Sci Emerg Technol 36:150–155

    Article  CAS  Google Scholar 

  • Lee BU (2011) Life comes from the air: a short review on bioaerosol control. Aerosol Air Qual Res 11:921–927

    Article  Google Scholar 

  • Lian X, Tetsutani K, Katayama M, Nakano M, Mawatari K, Harada N, Hamamoto A, Yamato M, Akutagawa M, Kinouchi Y, Nakaya Y, Takahashi A (2010) A new colored beverage disinfection system using UV-A light-emitting diodes. Biocontrol Sci 15(1):33–37

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Liu Y, Chen F (2018) Effect of gamma irradiation on the physicochemical properties and nutrient contents of peanut. LWT 96:535–542

    Article  CAS  Google Scholar 

  • Lu B, Ren Y, Du YZ, Fu Y, Gu J (2009) Effect of ozone on respiration of adult Sitophilus oryzae (L.), Tribolium castaneum (Herbst) and Rhyzopertha dominica (F.). J Insect Physiol 55(10):885–889. https://doi.org/10.1016/j.jinsphys.2009.05.014

    Article  CAS  PubMed  Google Scholar 

  • Luksiene Z, Brovko L (2013) Antibacterial photosensitization-based treatment for food safety. Food Eng Rev 5(4):185–199

    Article  CAS  Google Scholar 

  • Lung HM, Cheng YC, Chang YH, Huang HW, Yang BB, Wang CY (2015) Microbial decontamination of food by electron beam irradiation. Trends Food Sci Technol 44:66–78. https://doi.org/10.1016/j.tifs.2015.03.005

    Article  CAS  Google Scholar 

  • Mahapatra AK, Muthukumarappan K, Julson JL (2005) Applications of ozone, bacteriocins and irradiation in food processing: a review. Crit Rev Food Sci Nutr 45(6):447–461. https://doi.org/10.1080/10408390591034454

    Article  CAS  PubMed  Google Scholar 

  • Mahto R, Das M (2013) Effect of gamma irradiation on the physico-chemical and visual properties of mango (Mangifera indica L.), cv. ‘Dushehri’ and ‘Fazli’ stored at 20°C. Postharvest Biol Technol 86:447–455

    Article  CAS  Google Scholar 

  • Mahto R, Das M (2014) Effect of gamma irradiation on the physico-mechanical and chemical properties of potato (Solanum tuberosum L.), cv. ‘Kufri Sindhuri’, in non-refrigerated storage conditions. Postharvest Biol Technol 92:37–45

    Article  CAS  Google Scholar 

  • Marella C, Muthukumarappan K, Metzger LE (2013) Application of membrane separation technology for developing novel dairy food ingredients. J Food J Process Technol 4(9):1–5

    Google Scholar 

  • Markov K, Mihaljević B, Domijan A, Pleadin J, Delaš F, Frece J (2015) Inactivation of aflatoxigenic fungi and the reduction of aflatoxin B1 in vitro and in situ using gamma irradiation. Food Control 54:79–85

    Article  CAS  Google Scholar 

  • Masotti F, Cattaneo S, Stuknytė M, Noni ID (2019) Airborne contamination in the food industry: an update on monitoring and disinfection techniques of air. Trends Food Sci Technol 90:147–156

    Article  CAS  Google Scholar 

  • Matak KE, Churey JJ, Worobo RW, Sumner SS, Hovingh E, Hackney CR, Pierson MD (2005) Efficacy of UV light for the reduction of listeria monocytogenes in goat's milk. J Food Prot 68:2212–2216

    Article  CAS  PubMed  Google Scholar 

  • Matak KE, Sumner SS, Duncan SE, Hovingh E, Worobo RW, Hackney CR, Pierson MD (2007) Effects of ultraviolet irradiation on chemical and sensory properties of goat milk. J Dairy Sci 90:3178–3186

    Article  CAS  PubMed  Google Scholar 

  • McDonough MX, Mason LJ, Woloshuk CP (2011) Susceptibility of stored product insects to high concentrations of ozone at different exposure intervals. J Stored Prod Res 47(4):306–310. https://doi.org/10.1016/j.jspr.2011.04.003

    Article  CAS  Google Scholar 

  • McKenna B (1978) Membrane processing of foods: a review of the concepts involved. Irish J Food Sci Technol:45–58

    Google Scholar 

  • Metzger C, Barnes JD, Singleton I, Andrews P (2007) Effect of low level ozone-enrichment on the quality and condition of citrus fruit under semi-commercial conditions. In: IOA conference and exhibition, pp 29–31

    Google Scholar 

  • Migut D, Gorzelany J, Antos P, Balawejder M (2019) Postharvest ozone treatment of cucumber as a method for prolonging the suitability of the fruit for processing. Ozone Sci Eng 41(3):261–264. https://doi.org/10.1080/01919512.2018.1525277

    Article  CAS  Google Scholar 

  • Miller FA, Fundo JF, Silva CL, Brandão TR (2018) Physicochemical and bioactive compounds of ‘Cantaloupe’melon: effect of ozone processing on pulp and seeds. Ozone Sci Eng 40(3):209–215. https://doi.org/10.1080/01919512.2017.1414582

    Article  CAS  Google Scholar 

  • Miller FA, Silva CL, Brandão TR (2013) A review on ozone-based treatments for fruit and vegetables preservation. Food Eng Rev 5(2):77–106. https://doi.org/10.1007/s12393-013-9064-5

    Article  CAS  Google Scholar 

  • Miller RB (2015) Electronic irradiation of foods. An introduction to the technology. In: Food engineering series. Springer, New York

    Google Scholar 

  • Mohammad AW, Teow YH, Ho KC, Rosnan NA (2019) Recent developments in nanofiltration for food applications. In: Nanomaterials for food applications. Elsevier, pp 101–120

    Chapter  Google Scholar 

  • Mongpraneet S, Abe T, Tsurusaki T (2002) Accelerated drying of welsh onion by far-infrared radiation under vacuum conditions. J Food Eng 55:147–156

    Article  Google Scholar 

  • Morehouse KM, Komolprasert V (2004) Irradiation of food and packaging: an overview. Available from: http://www.fda.gov/Food/FoodIngredientsPackaging/IrradiatedFoodPackaging/ucm081050.htm. Accessed 04 April 2021

  • Moreira RG, Castell-Perez E (2021) Fundamentals of food irradiation. In: Knoerzer K, Muthukumarappan K (eds) Innovative food processing technologies. Elsevier, pp 1–18

    Google Scholar 

  • Morey A, McKee SR, Dickson JS, Singh M (2010) Efficacy of ultraviolet light exposure against survival of Listeria monocytogenes on conveyor belts. Foodborne Pathog Dis 7(6):737–740

    Article  PubMed  Google Scholar 

  • Moskvin LN (2016) A classification of separation methods. Sep Purif Rev 45(1):1–27

    Article  Google Scholar 

  • Nakonechny F, Nisnevitch M (2019) Aspects of photodynamic inactivation of bacteria. In: Microorganisms. IntechOpen

    Google Scholar 

  • Nath K, Dave HK, Patel TM (2018) Revisiting the recent applications of nanofiltration in food processing industries: Progress and prognosis. Trends Food Sci Technol 73:12–24

    Article  CAS  Google Scholar 

  • Niemira BA, Fan X (2006) Low-dose irradiation of fresh-cut produce: safety, sensory, and shelf life. In: Sommers HS, Fan X (eds) Food irradiation research and technology. Blackwell Publishing, USA, pp 169–184

    Chapter  Google Scholar 

  • Nissar N, Hameed OV, Nazir F (2018) Application of membrane technology in food processing industries: a review. Int J Adv Res Sci Eng 7(4):2016–2114

    Google Scholar 

  • Ong KC, Cash JN, Zabik MJ, Siddiq M, Jones AL (1996) Chlorine and ozone washes for pesticide removal from apples and processed apple sauce. Food Chem 55(2):153–160. https://doi.org/10.1016/0308-8146(95)00097-6

    Article  CAS  Google Scholar 

  • Onsekizoglu P (2012) Membrane distillation: principle, advances, limitations and future prospects in food industry. Distill Adv Model Appl 11:233–265

    Google Scholar 

  • Orlowska M, Koutchma T, Grapperhaus M, Gallagher J, Schaefer R, Defelice C (2013) Continuous and pulsed ultraviolet light for nonthermal treatment of liquid foods. Part 1: effects on quality of fructose solution, apple juice, and milk. Food Bioprocess Technol 6:1580–1592

    Article  CAS  Google Scholar 

  • Osman KA (2015) Production of date palm fruits free of acaricides residues by ozone technology as post-harvest treatment. J Food Sci Technol 52(6):3322–3335. https://doi.org/10.1007/s13197-014-1398-3

    Article  CAS  PubMed  Google Scholar 

  • Pal P (2020) Membrane-based technologies for environmental pollution control. Butterworth-Heinemann

    Google Scholar 

  • Palou L, Smilanick JL, Crisosto CH, Mansour M (2001) Effect of gaseous ozone exposure on the development of green and blue molds on cold stored citrus fruit. Plant Dis 85(6):632–638. https://doi.org/10.1094/PDIS.2001.85.6.632

    Article  CAS  PubMed  Google Scholar 

  • Pan Y, Sun D-W, Han Z (2017) Applications of electromagnetic fields for nonthermal inactivation of microorganisms in foods: an overview. Trends Food Sci Technol 64:13–22

    Article  CAS  Google Scholar 

  • Pandiselvam R, Kothakota A, Thirupathi V, Anandakumar S, Krishnakumar P (2017) Numerical simulation and validation of ozone concentration profile in green gram (Vigna radiate) bulks. Ozone Sci Eng 39(1):54–60. https://doi.org/10.1080/01919512.2016.1244641

    Article  CAS  Google Scholar 

  • Pandiselvam R, Subhashini S, Banuu Priya EP, Kothakota A, Ramesh SV, Shahir S (2019) Ozone based food preservation: a promising green technology for enhanced food safety. Ozone Sci Eng 41(1):17–34. https://doi.org/10.1080/01919512.2018.1490636

    Article  CAS  Google Scholar 

  • Pankaj SK, Shi H, Keener KM (2018) A review of novel physical and chemical decontamination technologies for aflatoxin in food. Trends Food Sci Technol 71:73–83

    Article  CAS  Google Scholar 

  • Perry JJ, Yousef AE (2011) Decontamination of raw foods using ozone-based sanitization techniques. Annu Rev Food Sci Technol 2:281–298. https://doi.org/10.1146/annurev-food-022510-133637

    Article  CAS  PubMed  Google Scholar 

  • Peyravi M, Jahanshahi M, Banafti S (2020) Application of membrane technology in beverage production and safety. In: Safety issues in bverage production. Academic, pp 271–308

    Chapter  Google Scholar 

  • Pillai SD, Shayanfar S (2017) Electron beam technology and other irradiation technology applications in the food industry. Top Curr Chem 375:6

    Article  Google Scholar 

  • Pimentel MAG, Faroni LRDA, Tótola MR, Guedes RNC (2007) Phosphine resistance, respiration rate and fitness consequences in stored-product insects. Pest Manag Sci 63(9):876–881. https://doi.org/10.1002/ps.1416

    Article  CAS  PubMed  Google Scholar 

  • Ravindran R, Jaiswal AK (2019) Wholesomeness and safety aspects of irradiated foods. Food Chem 285:363–368

    Article  CAS  PubMed  Google Scholar 

  • Reed NG (2010) The history of ultraviolet germicidal irradiation for air disinfection. Public Health Rep (Washington, DC: 1974) 125(1):15–27

    Article  Google Scholar 

  • Ribeiro J, Cavaglieri L, Vital H, Cristofolini A, Merkis C, Astoreca A, Orlando J, Carú M, Dalcero A, Rosa CAR (2011) Effect of gamma radiation on Aspergillus flavus and Aspergillus ochraceus ultrastructure and mycotoxin production. Radiat Phys Chem 80(5):658–663

    Article  CAS  Google Scholar 

  • Rodriguez-Gonzalez O, Buckow R, Koutchma T, Balasubramaniam VM (2015) Energy requirements for alternative food processing technologies-principles, assumptions, and evaluation of efficiency. Compr Rev Food Sci Food Saf 14(5):536–554

    Article  Google Scholar 

  • Rozado AF, Faroni LR, Urruchi WM, Guedes RN, Paes JL (2008) Ozone application against Sitophilus zeamais and Tribolium castaneum on stored maize. Rev Bras Eng Agríc Ambient 12(3):282–285. https://doi.org/10.1590/S1415-43662008000300009

    Article  Google Scholar 

  • Saleh TA, Gupta VK (2016) An overview of membrane science and technology. In: Nanomaterial and polymer membranes, pp 1–23

    Google Scholar 

  • Selma MV, Ibáñez AM, Cantwell M, Suslow T (2008) Reduction by gaseous ozone of Salmonella and microbial flora associated with fresh-cut cantaloupe. Food Microbiol 25(4):558–565. https://doi.org/10.1016/j.fm.2008.02.006

    Article  CAS  PubMed  Google Scholar 

  • Shunmugam G, Jayas DS, White NDG, Muir WE (2005) Diffusion of carbon dioxide through grain bulks. J Stored Prod Res 41(2):131–144. https://doi.org/10.1016/j.jspr.2003.09.005

    Article  Google Scholar 

  • Silva AF, Borges A, Giaouris E, Graton Mikcha JM, Simões M (2018a) Photodynamic inactivation as an emergent strategy against foodborne pathogenic bacteria in planktonic and sessile states. Crit Rev Microbiol 44(6):667–684

    Article  CAS  PubMed  Google Scholar 

  • Silva J, Pereira MN, Scussel VM (2018b) Ozone gas antifungal effect on extruded dog food contaminated with Aspergillus flavus. Ozone Sci Eng 40(6):487–493. https://doi.org/10.1080/01919512.2018.1481361

    Article  CAS  Google Scholar 

  • Singh R, Purkait MK (2019) Microfiltration membranes. In: Membrane separation principles and applications. Elsevier, pp 111–146

    Chapter  Google Scholar 

  • Sinha RP, Häder DP (2002) UV-induced DNA damage and repair: a review. Photochem Photobiol Sci 1:225–236

    Article  CAS  PubMed  Google Scholar 

  • Sintuya P, Narkprasom K, Jaturonglumlert S, Whangchai N, Peng-Ont D, Varith J (2018) Effect of gaseous ozone fumigation on organophosphate pesticide degradation of dried chilies. Ozone Sci Eng 40(6):473–481. https://doi.org/10.1080/01919512.2018.1466690

    Article  CAS  Google Scholar 

  • Song WJ, Sung HJ, Kim SY, Kim KP, Ryu S, Kang DH (2014) Inactivation of Escherichia coli O157:H7 and Salmonella typhimurium in black pepper and red pepper by gamma irradiation. Int J Food Microbiol 172:125–129

    Article  CAS  PubMed  Google Scholar 

  • Srimagal A, Ramesh T, Sahu J (2016) Effect of light emitting diode treatment on inactivation of Escherichia coli in milk. LWT Food Sci Technol 71:378–385

    Article  CAS  Google Scholar 

  • Stanga M (2010) Sanitation: cleaning and disinfection in the food industry. Wiley-VCHVerlag, Weinheim

    Book  Google Scholar 

  • Steenstrup LD, Floros JD (2004) Inactivation of E. coli 0157: H7 in apple cider by ozone at various temperatures and concentrations. J Food Process Preserv 28(2):103–116. https://doi.org/10.1111/j.1745-4549.2004.tb00814.x

    Article  CAS  Google Scholar 

  • Strathmann H (2001) Membrane separation processes: current relevance and future opportunities. AICHE J 47(5):1077–1087

    Article  CAS  Google Scholar 

  • Su Y (2018) Current state-of-the-art membrane based filtration and separation technologies, vol 1, pp 1–13

    Google Scholar 

  • Tarek AR, Rasco BA, Sablani SS (2015) Ultraviolet-C light inactivation kinetics of E. coli on bologna beef packaged in plastic films. Food Bioprocess Technol 8(6):1267–1280

    Article  CAS  Google Scholar 

  • Thomas P (1988) Radiation preservation of food of plants origin. Part 6. Mushrooms, tomatoes, minor fruits and vegetables, dried fruits and nuts. Crit Rev Food Sci Nutr 24:313–358

    Article  Google Scholar 

  • Tim M (2015) Strategies to optimize photosensitizers for photodynamic inactivation of bacteria. J Photochem Photobiol B Biol 150:2–10

    Article  CAS  Google Scholar 

  • Tiwari BK, Muthukumarappan K, O’Donnell CP, Cullen PJ (2008) Kinetics of freshly squeezed orange juice quality changes during ozone processing. J Agric Food Chem 56(15):6416–6422. https://doi.org/10.1021/jf800515e

    Article  CAS  PubMed  Google Scholar 

  • Tiwari BK, O’Donnell CP, Brunton NP, Cullen PJ (2009a) Degradation kinetics of tomato juice quality parameters by ozonation. Int J Food Sci Technol 44(6):1199–1205. https://doi.org/10.1111/j.1365-2621.2009.01946.x

    Article  CAS  Google Scholar 

  • Tiwari BK, O'donnell CP, Muthukumarappan K, Cullen PJ (2009b) Anthocyanin and colour degradation in ozone treated blackberry juice. Innovative Food Sci Emerg Technol 10(1):70–75. https://doi.org/10.1016/j.ifset.2008.08.002

    Article  CAS  Google Scholar 

  • Tripathi J, Variyar PS, Singhal RS, Sharma A (2015) Radiation processing for sprout inhibition of stored potatoes and mitigation of acrylamide in fries and chips. In: Preedy VR (ed) Processing and impact on active components in food. Academic Press, Elsevier, London, UK, pp 89–96

    Chapter  Google Scholar 

  • Udipi SA, Ghurge PS (2010) Applications of food irradiation. In: Udipi SA, Ghugre PS (eds) Food irradiation. Agrotech Publishing Academy, Udaipur, pp 40–71

    Google Scholar 

  • Uragami T (2017) Comparison of pressure-driven membrane separation processes. Sci Technol Sep Membr 13:379–383

    Google Scholar 

  • Urošević T, Povrenović D, Vukosavljević P, Urošević I, Stevanović S (2017) Recent developments in microfiltration and ultrafiltration of fruit juices. Food Bioprod Process 106:147–161

    Article  Google Scholar 

  • Van der Bruggen B (2018) Microfiltration, ultrafiltration, nanofiltration, reverse osmosis, and forward osmosis. In: Fundamental modelling of membrane systems. Elsevier, pp 25–70

    Chapter  Google Scholar 

  • Velasco RM, Uribe FJ, Pérez-Chavela E (2008) Stratospheric ozone dynamics according to the Chapman mechanism. J Math Chem 44(2):529–539. https://doi.org/10.1007/s10910-007-9326-7

    Article  CAS  Google Scholar 

  • Verma J, Gautam S (2015) Food irradiation and its role in shelf life extension of horticulture produce: a comprehensive evaluation of studies carried out in India and abroad. In: Proceedings of the DAE-BRNS Life Sciences Symposium on Advances in Microbiology of Food, Agriculture, Health and Environment

    Google Scholar 

  • Wang S, Wang J, Wang T, Li C, Wu Z (2019) Effects of ozone treatment on pesticide residues in food: a review. Int J Food Sci Technol 54(2):301–312. https://doi.org/10.1111/ijfs.13938

    Article  CAS  Google Scholar 

  • Wang S-Q, Huang G-Q, Li Y-P, Xiao J-X, Zhang Y, Jiang W-L (2015) Degradation of aflatoxin B1 by low-temperature radio frequency plasma and degradation product elucidation. Eur Food Res Technol 241:103–113

    Article  CAS  Google Scholar 

  • Wenten IG (2016) Reverse osmosis applications: prospect and challenges. Desalination 391:112–125

    Article  CAS  Google Scholar 

  • Whangchai K, Uthaibutra J, Phiyanalinmat S, Pengphol S, Nomura N (2011) Effect of ozone treatment on the reduction of chlorpyrifos residues in fresh lychee fruits. Ozone Sci Eng 33(3):232–235. https://doi.org/10.1080/01919512.2011.554313

    Article  CAS  Google Scholar 

  • White SD, Murphy PT, Bern CJ, van Leeuwen JH (2010) Controlling deterioration of high-moisture maize with ozone treatment. J Stored Prod Res 46(1):7–12. https://doi.org/10.1016/j.jspr.2009.07.002

    Article  CAS  Google Scholar 

  • World Health Organization (1994) Safety and nutritional adequacy of irradiated food. Available from: https://apps.who.int/iris/bitstream/handle/10665/39463/9241561629-eng.pdf?sequence=4&isAllowed=y. Accessed 04 April 2021

  • Worobo RW (1999) Assistant professor of food microbiology. Cornell University. Personal Communication

    Google Scholar 

  • Xuan W, He Y, Huang L, Huang YY, Bhayana B, Xi L, Gelfand JA, Hamblin MR (2018) Antimicrobial photodynamic inactivation mediated by tetracyclines in vitro and in vivo: photochemical mechanisms and potentiation by potassium iodide. Sci Rep 8(1):1–14

    Article  Google Scholar 

  • Yucel Sengun I, Kendirci P (2018) Potential of ozonated water at different temperatures to improve safety and shelf-life of fresh cut lettuce. Ozone Sci Eng 40(3):216–227. https://doi.org/10.1080/01919512.2017.1416284

    Article  CAS  Google Scholar 

  • Zohair A (2001) Behaviour of some organophosphorus and organochlorine pesticides in potatoes during soaking in different solutions. Food Chem Toxicol 39(7):751–755. https://doi.org/10.1016/S0278-6915(01)00016-3

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Padma Ishwarya, S., Ahmad, M.H., Nandu Lal, A.M., Silpa, V., Venkatesh, T. (2022). Non-electro-Technologies: Gamma Rays, UV Light, Ozone, Photodynamic and Membrane Processing. In: ­Režek ­Jambrak, A. (eds) Nonthermal Processing in Agri-Food-Bio Sciences. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-030-92415-7_8

Download citation

Publish with us

Policies and ethics