Skip to main content

Non-electro-Technologies: Pulsed Light

  • Chapter
  • First Online:
Nonthermal Processing in Agri-Food-Bio Sciences

Part of the book series: Food Engineering Series ((FSES))

  • 496 Accesses

Abstract

Pulsed light (PL) is an emerging processing method that utilizes short duration, high intense pulses of polychromatic light to disinfect food, food contact surfaces and packaging materials, through photochemical, photothermal, and photophysical mechanisms. Moreover, PL can be used to enhance functionality and reduce allergenic power of food and food ingredients. These effects are predominately derived from the UV portion of the PL spectrum. However, although the first industrial commercial applications have been achieved, the technique possess some intrinsic limitations, which make it suitable especially for smooth surface and transparent drinks, that have impeded till now the widespread exploitation in food industry.

In this chapter, the fundamentals principle of PL technology, the mechanism of action, as well as the role played by the main process and design parameters, product properties and microbial factors and their interactions on the inactivation mechanism and efficacy of PL is critically analyzed and discussed. The most critical aspects of PL equipment and the different technological solution that could be adopted to improve the efficiency of PL treatment are also presented. The chapter then describe the applications of PL in food sector, emphasizing the main advantages and shortcomings in terms of their impact on the safety, nutritional, and health properties of food products. Moreover, the general discussion also covers the analysis of the energy consumption and sustainability aspects associate to PL technology, and conclude with the recent advancements and future perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguiló-Aguayo I, Charles F, Renard CMGC, Page D, Carlin F (2013) Pulsed light effects on surface decontamination, physical qualities and nutritional composition of tomato fruit. Postharvest Biol Technol 86:29–36

    Article  Google Scholar 

  • Aguilo-Aguayo I, Oms-Oliu G, Martın-Belloso O, Soliva-Fortuny R (2014) Impact of pulsed light treatments on quality characteristics and oxidative stability of fresh-cut avocado. LWT-Food Sci Technol 59:320–326

    Article  CAS  Google Scholar 

  • Aron-Maftei N, Ramos-Villarroel AY, Nicolau AI, Martín-Belloso O, Soliva-Fortuny R (2014) Influence of processing parameters on the pulsed-light inactivation of Penicillium expansum in apple juice. Food Control 41:27–31

    Google Scholar 

  • Artíguez ML, Martínez de Marañón I (2015) Improved process for decontamination of whey by a continuous flow-through pulsed light system. Food Control 47:599–605

    Article  Google Scholar 

  • Bakar Siddique A, Maresca P, Pataro G, Ferrari G (2017) Influence of pulsed light treatment on the aggregation of whey protein isolate. Food Res Int 99:419–425

    Article  Google Scholar 

  • Bialka KL, Demirci A (2008) Efficacy of pulsed UV-light for the decontamination of Escherichia coli O157:H7 and Salmonella spp. on Raspberries and Strawberries. J Food Sci 73:201–207

    Article  Google Scholar 

  • Bolton JR, Linden KG (2003) Standardization of methods for fluence (UV dose) determination in bench-scale UV experiments. J Environ Eng 129(3):209–215. https://doi.org/10.1061/(ASCE)0733-9372(2003)129:3(209)

    Article  CAS  Google Scholar 

  • Bolton JR, Mayor-Smith I, Linden KG (2015) Rethinking the concepts of fluence (UV dose) and fluence rate: the importance of photon-based units - a systemic review. Photochem Photobiol 91(6):1252–1262. https://doi.org/10.1111/php.12512

    Article  CAS  PubMed  Google Scholar 

  • Caminiti IM, Palgan I, Noci F, Muñoz A, Whyte P, Cronin DA, Morgan DJ, Lyng JG (2011) The effect of pulsed electric fields (PEF) in combination with high intensity light pulses (HILP) on Escherichia coli inactivation and quality attributes in apple juice. Innov Food Sci Emerg Technol 12:118–123

    Google Scholar 

  • Chalupa WF, Schroeder GM (2014) Method and apparatus for vitamin D enhancement in dried mushroom powder. U.S. Patent Application No. 13/469,168, 4 September 2014

    Google Scholar 

  • Charles F, Vidal V, Olive F, Filgueiras H, Sallanon H (2013) Pulsed light treatment as new method to maintain physical and nutritional quality of fresh-cut mangoes. Innov Food Sci Emerg Technol 18:190–195

    Article  Google Scholar 

  • Chen SY, Huang SJ, Cheng MC, Chen YK, Yang SC, Mau JL (2015a) Enhancement of vitamin D2 content in Pleurotus mushrooms using pulsed light. J Food Process Pres 39:2027–2034

    Google Scholar 

  • Chen BY, Lung HM, Yang BB, Wang CY (2015b) Pulsed light sterilization of packagingmaterials. Food Packag Shelf-life 5:1–9

    Google Scholar 

  • Chen D, Wiertzema J, Peng P, Cheng Y, Liu J, Mao Q, Ma Y, Andreson E, Chen P, Baumler D, Chen C, Vickers Z, Feirtag J, Lee L, Ruan R (2018) Effects of intense pulsed light on Cronobacter sakazakii inoculated in non-fat dry milk. J Food Eng 238:178–187

    Article  CAS  Google Scholar 

  • Chen D, Chen P, Cheng Y, Peng P, Liu J, Ma Y, Liu Y, Ruan R (2019) Deoxynivalenol decontamination in raw and germinating barley treated by plasma-activated water and intense pulsed light. Food Bioprocess Technol 12:246–254

    Article  CAS  Google Scholar 

  • Chung SY, Yang W, Krishnamurthy K (2008) Effects of pulsed UV-light on peanut allergens in extracts and liquid peanut butter. J Food Sci 73:400–404

    Article  Google Scholar 

  • Collazo C, Charles F, Aguiló-Aguayo I, Marín-Sáez J, Lafarga T, Abadias M, Viñas I (2019) Decontamination of Listeria innocua from fresh-cut broccoli using UV-C applied in water or peroxyacetic acid, and dry-pulsed light. Innov Food Sci Emerg Technol 52:438–449

    Article  CAS  Google Scholar 

  • del Castillo-Santaella T, Sanmartin E, Cabrerizo-Vilchez MA, Arboleya JC, Maldonado-Valderrama J (2014) Improved digestibility of b-lactoglobulin by pulsed light processing: a dilatational and shear study. Soft Matter 10:9702–9714

    Article  PubMed  Google Scholar 

  • Denoya GI, Pataro G, Ferrari G (2020) Effects of postharvest pulsed light treatments on the quality and antioxidant properties of persimmons during storage. Postharvest Biol Technol 160:111055. https://doi.org/10.1016/j.postharvbio.2019.111055

    Article  CAS  Google Scholar 

  • Donsì F, Marchese E, Maresca P, Pataro G, Vu KD, Salmieri S, Lacroix M, Ferrari G (2015) Green beans preservation by combination of a modified chitosan based-coating containing nanoemulsion of mandarin essential oil with high pressure or pulsed light processing. Postharvest Biol Technol 106:21–32

    Article  Google Scholar 

  • Dunn JE, Clark RW, Asmus JF, Pearlman JS, Boyer K, Painchaud F, Hofmann GA (1989) Methods for preservation of foodstuffs. Maxwell Laboratories Inc., San Diego, USA. US Patent 4871559

    Google Scholar 

  • Ekezie FC, Cheng J, Sun D (2018) Effects of nonthermal food processing technologies on food allergens: a review of recent research advances. Trends Food Sci Technol 74:12–25

    Article  Google Scholar 

  • Elmnasser N, Dalgalarrondo M, Orange N, Bakhrouf A, Haertlé T, Federighi M, Chobert JM (2008) Effect of pulsed-light treatment on milk proteins and lipids. J Agric Food Chem 56:1984–1991

    Google Scholar 

  • EU (1997) Regulation EC No 258/97 of the European Parliaments and the Council of 27 January 1997 concerning novel foods and novel food ingredients. EU: European Union

    Google Scholar 

  • Fernández M, Manzano S, De La Hoz L, Ordóñez JA, Hierro E (2009) Pulsed light inactivation of Listeria monocytogenes through different plastic films. Foodborne Pathog Dis 6:1265–1267

    Article  PubMed  Google Scholar 

  • Fernández E, Artiguez ML, de Marañón IM, Villate M, Blanco FJ, Arboleya JC (2012) Effect of pulsed-light processing on the surface and foaming properties of β-lactoglobulin. Food Hydrocoll 27:154–160

    Google Scholar 

  • Ferrario M, Alzamora SM, Guerrero S (2013) Inactivation kinetics of some microorganisms in apple, melon, orange and strawberry juices by high intensity light pulses. J Food Eng 118:302–311

    Google Scholar 

  • Ferrario M, Alzamora SM, Guerrero S (2015) Study of the inactivation of spoilage microorganisms in apple juice by pulsed light and ultrasound. Food Microbiol 46:635–642

    Article  PubMed  Google Scholar 

  • Ferrario M, Guerrero S (2016) Effect of a continuous flow-through pulsed light system combined with ultrasound on microbial survivability, color and sensory shelf-life of apple juice. Innov Food Sci Emerg Technol 34:214–224

    Article  CAS  Google Scholar 

  • Ferrario M, Guerrero S (2017) Impact of a combined processing technology involving ultrasound and pulsed light on structural and physiological changes of Saccharomyces cerevisiae KE 162 in apple juice. Food Microbiol 65:83–94

    Article  CAS  PubMed  Google Scholar 

  • Fine F, Gervais P (2004) Efficiency of pulsed UV light for microbial decontamination of food powders. J Food Prot 67:787–792

    Article  CAS  PubMed  Google Scholar 

  • Franco-Vega A, Reyes-Jurado F, González-Albarrán D, Ramírez-Corona N,·Palou E,·López Malo A (2021) Developments and advances of high intensity pulsed light and its combination with other treatments for microbial inactivation in food products. Food Eng Rev, https://doi.org/10.1007/s12393-021-09280-1

  • Ganan M, Hierro E, Hospital XF, Barroso E, Fernandez M (2013) Use of pulsed light to increase the safety of ready-to-eat cured meat products. Food Control 32:512–517

    Article  Google Scholar 

  • Garvey M, Thokala N, Rowan N (2014) A comparative study on the pulsed UV and the low-pressure UV inactivation of a range of microbial species in water. Water Environ Res 86:2317–2324

    Google Scholar 

  • Gómez-López et al (2021) Guidelines on reporting treatment conditions for emerging technologies in food processing. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2021.1895058

  • Gómez-López VM, Bolton JR (2016) An approach to standardize methods for fluence determination in bench-scale pulsed light experiments. Food Bioprocess Technol 9:1040–1048

    Article  Google Scholar 

  • Gómez-López VM, Devlieghere F, Bonduelle V, Debevere J (2005) Factors affecting the inactivation of micro-organisms by intense light pulses. J Appl Microbiol 99:460–470

    Article  PubMed  Google Scholar 

  • Gómez-López VM, Ragaert P, Debevere J, Devlieghere F (2007) Pulsed light for food decontamination: a review. Trends Food Sci Technol 18:464–473

    Article  Google Scholar 

  • Gouma M, Condón S, Mañas P, Álvarez I, Gayán E (2016) The use of UV light for food preservation: an overview. In: Pataro G, Lyng JG (eds) High intensity pulsed light in processing and preservation of foods. Nova Science Publishers, Inc, pp 1–39

    Google Scholar 

  • Haughton PN, Lyng JG, Morgan DJ, Cronin DA, Fanning S, Whyte P (2011) Efficacy of high intensity pulsed light for the microbiological decontamination of chicken, associated packaging, and contact surfaces. Foodborne Pathog Dis 8:109–117

    Article  PubMed  Google Scholar 

  • Heinrich V, Zunabovic M, Bergmair, Kneifel W, Jäger H (2015) Post-packaging application of pulsed light for microbial decontamination of solid foods: a review. Innov Food Sci Emerg Technol 30:145–156

    Article  CAS  Google Scholar 

  • Hierro E, Barroso E, De la Hoz L, Ordo~nez JA, Manzano S, Fernandez M (2011) Efficacy of pulsed light for shelf-life extension and inactivation of Listeria monocytogenes on ready-to-eat cooked meat products. Innov Food Sci Emerg Technol 12:275–281

    Article  Google Scholar 

  • Hierro E, Ganan M, Barroso E, Fernandez M (2012) Pulsed light treatment for the inactivation of selected pathogens and the shelf-life extension of beef and tuna carpaccio. Int J Food Microbiol 158:42–48

    Article  PubMed  Google Scholar 

  • Hillegas SL, Demirci A (2003) Inactivation of Clostridium sporogenes in Clover Honey by Pulsed UV-Light Treatment; V. Manuscript FP 03 009; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA

    Google Scholar 

  • Hsu L, Moraru CI (2011) Quantifying and mapping the spatial distribution of fluence inside a pulsed light treatment chamber and various liquid substrates. J Food Eng 103:84–91

    Article  Google Scholar 

  • Huang Y, Chen H (2015) Inactivation of Escherichia coli O157:H7, Salmonella and human norovirus surrogate on artificially contaminated strawberries and raspberries by water‐assisted pulsed light treatment. Food Res Int 72:1–7

    Google Scholar 

  • Ignat A, Manzocco L, Maifreni M, Bartolomeoli I, Nicoli MC (2014) Surface decontamination of fresh-cut apple by pulsed light: effects on structure, colour and sensory properties. Postharvest Biol Technol 91:122–127

    Article  Google Scholar 

  • IUPAC (1996) Glossary of terms used in photochemistry. Pure Appl Chem 12:2223–2286

    Google Scholar 

  • Jean J, Morales-Rayas R, Anoman MN, Lamhoujeb S (2011) Inactivation of hepatitis A virus and norovirus surrogate in suspension and on food-contact surfaces using pulsed UV light (pulsed light inactivation of food-borne viruses). Food Microbiol 28:568–572

    Article  CAS  PubMed  Google Scholar 

  • John D, Ramaswamy HS (2018) Pulsed light technology to enhance food safety and quality: a mini-review. Curr Opin Food Sci 23:70–79

    Article  Google Scholar 

  • Kalaras MD, Beelman RB (2008) Vitamin D2 Enrichment in Fresh Mushrooms Using Pulsed UV Light. Foodscience. Available online: psu.edu/directory/rbb6/VitaminDEnrichment.pdf

    Google Scholar 

  • Kalaras MD, Beelman RB, Elias RJ (2011) Effects of postharvest pulsed UV light treatment of white button mushrooms (Agaricus bisporus) on vitamin D2 content and quality attributes. J Agric Food Chem 60:220–225

    Article  PubMed  Google Scholar 

  • Keklik NM, Demirci A, Puri VM (2009) Inactivation of listeria monocytogenes on unpackaged and vacuum-packaged chicken frankfurters using pulsed UV-light. J Food Sci 74:M431–M439

    Article  CAS  PubMed  Google Scholar 

  • Keklik NM, Demirci A, Puri VM (2010) Decontamination of unpackaged and vacuum-packaged boneless chicken breast with pulsed ultraviolet light. Poult Sci 89:570–581

    Article  CAS  PubMed  Google Scholar 

  • Keklik NM, Krishnamurthy K, Demirci A (2012) Microbial decontamination of food by ultraviolet (UV) and pulsedUVlight. In: Demirci A, Ngadi M (eds) Microbial decontamination in the food industry. Novel methods and applications. Woodhead Publishing, pp 344–369. https://doi.org/10.1533/9780857095756.2.344

    Chapter  Google Scholar 

  • Keklik NM, Demirci A, Bock RG (2011) Surface decontamination of whole chicken carcasses using a pilotscale pulsed UV light system. T ASABE 54:993–1000

    Article  Google Scholar 

  • Koh PC, NoranizanMA HZAN, Karim R, Rosli SZ (2017) Application of edible coatings and repetitive pulsed light far shelf-life extension of fresh-cut cantaloupe (Cucumismelo L. reticulatus cv. Glamour). Postharvest Biol Technol 129:64–78

    Article  CAS  Google Scholar 

  • Koyyalamudi SR, Jeong SC, Pang G, Teal A, Biggs T (2011) Concentration of vitamin D2 in white button mushrooms (Agaricus bisporus) exposed to pulsed UV light. J Food Compos Anal 24:976–979

    Article  CAS  Google Scholar 

  • Kramer B, Wunderlich J, Muranyi P (2015) Pulsed light decontamination of endive salad and mung bean sprouts and impact on color and respiration activity. J Food Prot 78:340–348

    Article  CAS  PubMed  Google Scholar 

  • Kramer B, Wunderlich J, Muranyi P (2017) Recent findings in pulsed light disinfection. J Appl Microbiol 122:830–856

    Google Scholar 

  • Krishnamurthy K, Demirci A, Irudayaraj JM (2007) Inactivation of Staphylococcus aureus in milk using flow-through pulsed UV light treatment system. J Food Sci 72(7):M233–M239

    Google Scholar 

  • Levy C, Aubert X, Lacour B, Carlin F (2012) Relevant factors affecting microbial surface decontamination by pulsed light. Int J Food Microbiol 152:168–174

    Article  PubMed  Google Scholar 

  • Li Y, Yang W, Chung SY, Chen H, Ye M, Teixeira AA, Gregory JF, Welt BA, Shriver S (2013) Effect of pulsed ultraviolet light and high hydrostatic pressure on the antigenicity of almond protein extracts. Food Bioprocess Technol 6:431–440

    Article  Google Scholar 

  • Lopes MM, Silva EO, Canuto KM, Silva LM, Gallão MI, Urban L, Fernando Ayala-Zavala J, Miranda MRA (2016) Low fluence pulsed light enhanced phytochemical content and antioxidant potential of ‘Tommy Atkins’ mango peel and pulp. Innov Food Sci Emerg Technol 33:216–224

    Article  CAS  Google Scholar 

  • Maftei NA, Ramos-villarroel AY, Nicolau AI, Martin-Belloso O, Soliva-Fortuny R (2014) Influence of processing parameters on the pulsed - light inactivation of Penicillium expansum in apple juice. Food Control 41:27–31

    Article  Google Scholar 

  • Mahendran R, Ramanan KR, Barba FJ et al (2019) Recent advances in the application of pulsed light processing for improving food safety and increasing shelf-life. Trends Food Sci Technol 88:67–79. https://doi.org/10.1016/j.tifs.2019.03.010

    Article  CAS  Google Scholar 

  • Mandal R, Mohammadi X, Wiktor A, Singh A, Singh Anubhav P (2020) Applications of pulsed light decontamination technology in food processing: an overview. Appl Sci 10:3606. https://doi.org/10.3390/app10103606

    Article  CAS  Google Scholar 

  • Manzocco L, Panozzo A, Nicoli MC (2013) Effect of pulsed light on selected properties of egg white. Innov. Food Sci Emerg Technol 18:183

    Google Scholar 

  • Manzocco L, Ignat A, Bartolomeoli I, Maifreni M, Nicoli MC (2015) Water saving in fresh-cut salad washing by pulsed light. Innov Food Sci Emerg Technol 28:47–51

    Article  CAS  Google Scholar 

  • Moreira MR, Álvarez MV, Martín-Belloso O, Soliva-Fortuny R (2016) Effects of pulsed light treatments and pectin edible coatings on the quality of fresh-cut apples: a hurdle technology approach. J Sci Food Agric 97:261–268

    Article  PubMed  Google Scholar 

  • Muñoz A, Palgan I, Noci, F, Morgan, DJ, Cronin, DA, Whyte P, Lyng, JG (2011) Combinations of high intensity light pulses and thermosonication for the inactivation of Escherichia coli in orange juice. Food Microbiol 28:1200–1204

    Google Scholar 

  • Muñoz A, Caminiti IM, Palgan I, Pataro G, Noci F, Morgan DJ, Cronin DA, Whyte P, Ferrari G, Lyng JG (2012) Effects on Escherichia coli inactivation and quality attributes in apple juice treated by combinations of pulsed light and thermosonication. Food Res Int 45:299–305

    Article  Google Scholar 

  • Nicorescu I, Nguyen B, Chevalier S, Orange N (2014) Effects of pulsed light on the organoleptic properties and shelf-life extension of pork and salmon. Food Control 44:138–145

    Article  Google Scholar 

  • Nooji JK (2011) Reduction of Wheat Allergen Potency by Pulsed Ultraviolet Light, High Hydrostatic Pressure and Nontherma Plasma (MSc thesis). University of Florida

    Google Scholar 

  • Okolie CL, Aryee ANA, Udenigwe CC (2018) Detection and deactivation of allergens in food. In: Yada RY (ed) Proteins in food processing. Woodhead Publishing Series, pp 367–387. 71

    Chapter  Google Scholar 

  • Oms-Oliu G, Martín-Belloso O, Soliva-Fortuny R (2010) Pulsed light treatments for food preservation. A review. Food Bioprocess Technol 3:13–23

    Article  Google Scholar 

  • Oms-Oliu G, Aguilo-Aguayo I, Martın-Belloso O, Soliva-Fortuny R (2010a) Effects of pulsed light treatments on quality and antioxidant properties of freshcut mushrooms (Agaricus bisporus). Postharvest Biol Technol 56:216–222

    Article  CAS  Google Scholar 

  • Ozer NP, Demirci A (2006) Inactivation of Escherichia coli O157: H7 and Listeria monocytogenes inoculated on raw salmon fillets by pulsed UV-light treatment. Int J Food Sci Tech 41:354–360

    Article  CAS  Google Scholar 

  • Palgan I, Caminiti IM, Muñoz A, Noci F, Whyte P, Mogan DJ et al (2011) Effectiveness of high intensity light pulse (HILP) treatments for the control of Escherichia coli and Listeria innocua in apple juice, orange juice and milk. Food Microbiol 28:14–20

    Article  CAS  PubMed  Google Scholar 

  • Panozzo A, Manzocco L, Lippe G, Nicoli MC (2016) Effect of pulsed light on structure and immunoreactivity of gluten. Food Chem 194:366–372

    Article  CAS  PubMed  Google Scholar 

  • Pataro G, De Maria S, Lyng JG (2016) Factors determining the efficacy of a pulsed light treatment. In: Pataro G, Lyng JG (eds) High intensity pulsed light in processing and preservation of foods. Nova Science Publishers, Inc, pp 85–108

    Google Scholar 

  • Pataro G, Donsi G, Ferrari G (2015a) Post-harvest UV-C and PL irradiation of fruits and vegetables. Chem Eng Trans 44:31–36. https://doi.org/10.3303/CET1544006

    Article  Google Scholar 

  • Pataro G, Muñoz A, Palgan I, Noci F, Ferrari G, Lyng JG (2011) Bacterial inactivation in fruit juices using a continuous flowpulsed light (PL) system. Food Res Int 44:1642–1648

    Article  CAS  Google Scholar 

  • Pataro G, Sinik M, Capitoli MM, Donsì G, Ferrari G (2015b) The influence of post-harvest UV-C and pulsed light treatments on quality and antioxidant properties of tomato fruits during storage. Innov Food Sci Emerg Technol 30:103–111

    Article  CAS  Google Scholar 

  • Pirozzi A, Pataro G, Donsì F, Ferrari G (2020) Edible coating and pulsed light to increase the shelf life of food products. Food Eng Rev. https://doi.org/10.1007/s12393-020-09245-w

  • Ramos-Villarroel AY, Aron-Maftei N, Martín-Belloso O, Soliva-Fortuny R (2012a) Influence of spectral distribution on bacterial inactivation and quality changes of fresh-cut watermelon treated with intense light pulses. Postharvest Biol Technol 69:32–39

    Article  Google Scholar 

  • Ramos-Villarroel AY, Aron-Maftei N, Martín-Belloso O, Soliva-Fortuny R (2012b) The role of pulsed light spectral distribution in the inactivation of Escherichia coli and Listeria innocua on fresh-cut mushrooms. Food Control 24:206–213

    Article  Google Scholar 

  • Ramos-Villarroel A, Aron-Maftei N, Martín-Belloso O, Soliva-Fortuny R (2014) Bacterial inactivation and quality changes of fresh-cut avocados as affected by intense light pulses of specific spectra. Int J Food Sci Technol 49:128–136

    Article  CAS  Google Scholar 

  • Ribeiro C, Canada J, Alvarenga B (2012) Prospects of UV radiation for application in postharvest technology. Emirates J Food Agric 24:586–597

    Article  Google Scholar 

  • Ringus DL, Moraru CI (2013) Pulsed light inactivation of Listeria innocua on food packaging materials of different surface roughness and reflectivity. J Food Eng 114:331–337

    Article  Google Scholar 

  • Rodov V, Vinokur Y, Horev B (2012) Brief postharvest exposure to pulsed light stimulates coloration and anthocyanin accumulation in fig fruit (Ficus carica L.). Postharvest Biol Technol 68:43–46

    Article  CAS  Google Scholar 

  • Schaefer R, Grapperhaus M, Schaefer I, Linden K (2007) Pulsed UV lamp performance and comparison with UV mercury lamps. J Environ Eng Sci 6(3):303–310. https://doi.org/10.1139/s06-068

    Article  CAS  Google Scholar 

  • Schroeder GM (2013) Method and Apparatus for Vitamin D Enhancement in Mushrooms. U.S. Patent No. 8,545,915, 1 October 2013

    Google Scholar 

  • Shriver SK, Yang WW (2011) Thermal and nonthermal methods for food allergen control. Food Eng Rev 3:26–43

    Article  CAS  Google Scholar 

  • Siddique AB, Maresca P, Pataro G, Ferrari G (2016) Effect of pulsed light treatment on structural and functional properties of whey protein isolate. Food Res Int 87:189–196. http://hdl.handle.net/11386/4669309

    Article  CAS  PubMed  Google Scholar 

  • Takeshita K, Shibato J, Sameshima T, Fukunaga S, Isobe S, Arihara K, Itoh M (2003) Damage of yeast cells induced by pulsed light irradiation. Int J Food Microbiol 85:151–158

    Article  PubMed  Google Scholar 

  • Taştan Ö, Pataro G, Donsì F, Ferrari G, Baysal T (2017) Decontamination of fresh-cut cucumber slices by a combination of a modified chitosan coating containing carvacrol nanoemulsions and pulsed light. Int J Food Microbiol 260:75–80

    Article  PubMed  Google Scholar 

  • Turtoi M, Nicolau A (2007) Intense light pulse treatment as alternative method for mould spores destruction on paperpolyethylene packaging material. J Food Eng 83:47–53

    Article  CAS  Google Scholar 

  • Urban L, Chabane Sari D, Orsal B, Lopes M, Miranda R, Aarrouf J (2018) UV-C light and pulsed light as alternatives to chemical and biological elicitors for stimulating plant natural defenses against fungal diseases. Sci Hortic (Amsterdam) 235:452–459

    Article  CAS  Google Scholar 

  • Uslu G, Demirci, A, Regan, JM (2014) Efficacy of pulsed UV-light treatment on wastewater effluent disinfection and suspended solid reduction. J Environ Eng-ASCE 141:04014090

    Google Scholar 

  • Wang T, MacGregor SJ, Anderson JG, Woolsey GA (2005) Pulsed ultra-violet inactivation spectrum of Escherichia coli. Water Res 39:2921–2925

    Article  CAS  PubMed  Google Scholar 

  • Wekhof A (2000) Disinfection with flash lamps. PDA J PharmSci Technol 54:264–276

    CAS  Google Scholar 

  • Wekhof A, Trompeter F-J, Franken O (2001) Pulsed UV disintegration (PUVD): a new sterilisationmechanism for packaging and broad medical-hospital applications. In: Proceedings of the the first international conference on ultraviolet technologies, June14–16, 2001, Washington D.C, pp 1–15

    Google Scholar 

  • Woodling SE, Moraru CI (2005) Influence of surface topography on the effectiveness of pulsed light treatment for the inactivation of listeria innocua on stainless-steel surfaces. J Food Sci 70:m345–m351. https://doi.org/10.1111/j.1365-2621.2005.tb11478.x

    Article  CAS  Google Scholar 

  • Woodling SE, Moraru CI (2007) Effect of spectral range in surface inactivation of Listeria innocua using broad-spectrum pulsed light. J Food Prot 70:909–916

    Article  PubMed  Google Scholar 

  • Xenon food safety and enhancement with pulsed UV light. Available online: https://xenoncorp.com/food-safety/other-foodapplications/. Accessed 16 Apr 2020

  • Xu, W, Chen H, Huang Y, Wu C (2013) Decontamination of Escherichia coli O157: H7 on green onions using pulsed light (PL) and PL–surfactant–sanitizer combinations. Int J Food Microbiol 166:102–108

    Google Scholar 

  • Xu F, Wang B, Hong C, Telebielaigen S, Nsor-Atindana J, Duan Y, Zhong F (2019) Optimization of spiral continuous flowthrough pulse light sterilization for Escherichia coli in red grape juice by response surface methodology. Food Control 105:8–12

    Article  CAS  Google Scholar 

  • Yang WW, Chung SY, Ajayi O, Krishnamurthy K, Konan K, Goodrich-Schneider R (2010) Use of pulsed ultraviolet light to reduce the allergenic potency of soybean extracts. Int J Food Eng 6:3

    Article  Google Scholar 

  • Yang WW, Mwakatage NR, Goodrich-Schneider R, Krishnamurthy K, Rababah TM (2012) Mitigation of major peanut allergens by pulsed ultraviolet light. Food Bioprocess Technol 5:2728–2738

    Article  CAS  Google Scholar 

  • Yi JY, Lee NH, Chung MS (2016) Inactivation of bacteria and murine norovirus in untreated groundwater using a pilot-scale continuous-flow intense pulsed light (IPL) system. LWT-Food Sci Technol 66:108–113

    Article  CAS  Google Scholar 

  • Zhao XY, Yang WD, Chung SY, Sims CA, Otwell SW, Rababah TM (2014) Reduction of IgE immunoreactivity of whole peanut (Arachis hypogaea L.) after pulsed light illumination. Food Bioprocess Technol 7:2637–2645

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianpiero Pataro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pataro, G., Ferrari, G. (2022). Non-electro-Technologies: Pulsed Light. In: ­Režek ­Jambrak, A. (eds) Nonthermal Processing in Agri-Food-Bio Sciences. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-030-92415-7_7

Download citation

Publish with us

Policies and ethics