Skip to main content

Obesity and Diabetes

  • Chapter
  • First Online:
Natural Products in Obesity and Diabetes
  • 671 Accesses

Abstract

An increasing pandemic of obesity and diabetes (diabetes mellitus, DM) has become a serious health concern worldwide because these diseases contribute to the development of many chronic diseases including cardiovascular diseases, stroke, kidney diseases, ocular diseases, hypertension, non-alcoholic fatty liver disease (NAFLD), obstructive sleep apnea, osteoarthritis, and some types of cancer, among others. Obesity is a complex metabolic disease commonly accompanied by insulin resistance, increased oxidative stress, and low-grade inflammation and is characterized by accumulation of an excess fat mass in the body. Diabetes is a metabolic disorder characterized by destruction of pancreatic beta-cells or impaired insulin secretion and insulin action. The rise of obesity has been attributed to different potential factors including genetic predisposition, Western-type fast food diet, lack of physical activity, and social status. According to the report of the International Obesity Task Force, more than 600 million people are obese, and the number of obese-born children in developing countries is increasing at an alarming rate. One of three children born in this century is expected to develop obesity-related diabetes. Currently prescribed synthetic drugs for obesity and diabetes have several side effects on long-term use. A variety of natural products including antioxidant phytochemicals has emerged as promising potent herbal drugs for the treatment of obesity, diabetes, and their associated complications. Recent “omics” technologies (genomics, proteomics, transcriptomics, metabolomics, and microbiomics) have potentially improved our knowledge to identify the mechanism of action of these traditional natural medicines and the process of biosynthesis in nature and their efficient identification. Recent understanding on the diagnosis, clinical pathogenesis, epidemiology, risk factors, clinical treatments, and consequences of obesity and diabetes are summarized in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adiels M, Westerbacka J, Soro-Paavonen A et al (2007) Acute suppression of VLDL-1 secretion rate by insulin is associated with hepatic fat content and insulin resistance. Diabetologia 50:2356–2365

    CAS  PubMed  Google Scholar 

  • Adiels M, Olofsson SO, Taskinen MR et al (2008) Overproduction of very low-density lipoproteins is the hallmark of the dyslipidemia in the metabolic syndrome. Asterioscler Thromb Vasc Biol 28:1225–1236

    CAS  Google Scholar 

  • Afshin A, Forouzanfar MH, Reitsma MB et al (2017) Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med 377:13–27

    PubMed  Google Scholar 

  • Alang N, Kelly CR (2015) Weight gain after fecal microbiota transplantation. Open Forum Infect Dis 2015:2

    Google Scholar 

  • Allison DB, Gadde KM, Garvey WT et al (2012) Controlled-release phentermine/topiramate in severely obese adults: a randomized controlled trial (EQUIP). Obesity (Silver Spring) 20:330–342

    CAS  Google Scholar 

  • American Diabetes Association (2014) Diagnosis and classification of diabetes mellitus. Diabetes Care 379(Suppl 1):S81–S90

    Google Scholar 

  • American Diabetes Association (2016) Standards of medical care in diabetes-2016: summary of revisions. Diabetes Care 39(Suppl 1):S4–S5

    Google Scholar 

  • An H, He L (2016) Current understanding of metformin effect on the control of hyperglycemia in diabetes. J Endocrinol 228:R97–R106

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson MS, Bluestone JA (2005) The NOD mouse: a model of immune dysregulation. Annu Rev Immunol 23:447–485

    CAS  PubMed  Google Scholar 

  • Anhe FF, Varin TV, Barz ML et al (2015) Gut microbiota dysbiosis in obesity-linked metabolic diseases and prebiotic potential of polyphenol-rich extracts. Curr Obes Rep 4:389–400

    PubMed  Google Scholar 

  • Antonetti DA, Barber AJ, Bronson SK, et al. On behalf of the JDRF Diabetic Retinopathy Center Group (2006) Diabetic retinopathy: seeing beyond glucose-induced microvascular disease. Diabetes 55: 2401–2411

    Google Scholar 

  • Antonetti DA, Klein R, Gardner TW (2012) Diabetic retinopathy. N Engl J Med 366:1227–1239

    CAS  PubMed  Google Scholar 

  • Arnold SE, Arvanitakis Z, Macauley-Rambach SL et al (2018) Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums. Nat Rev Neurol 14:168–181

    CAS  PubMed  PubMed Central  Google Scholar 

  • Astrup A, Ryan L, Grunwald GK et al (2000) The role of dietary fat in body fatness: evidence from a preliminary meta-analysis of ad libitum low-fat dietary intervention studies. Br J Nutr 83(Suppl 1):S25–S32

    CAS  PubMed  Google Scholar 

  • Astrup A, Carraro R, Finer N et al, NN8022 Investigators (2012) Safety, tolerability and sustained weight loss over 2 years with the once-daily human GLP-1 analog, liraglutide. Int J Obes 36: 843–854

    Google Scholar 

  • Austin MA, Rodriguez BL, McKnight B et al (2000) Low-density lipoprotein particle size, triglycerides, and high-density lipoprotein cholesterol as risk factors for coronary heart disease in older Japanese-American men. Am J Cardiol 86:412–416

    CAS  PubMed  Google Scholar 

  • Balaji M, Ganjayi MS, Kumar GENH et al (2016) A review on possible therapeutic targets to contain obesity: the role of phytochemicals. Obes Res Clin Pract 10:363–380

    PubMed  Google Scholar 

  • Banting F (1929) The history of insulin. Edinburgh Med J 36:2

    Google Scholar 

  • Barres R, Yan J, Egan B et al (2012) Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab 15:405–411

    CAS  PubMed  Google Scholar 

  • Barton M, Baretella O, Meyer MR (2012) Obesity and the risk of vascular disease: importance of endothelium-dependent vasoconstriction. Br J Pharmacol 165:591–602

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bass J, Takahashi JS (2010) Circadian integration of metabolism and energetic. Science 330:1349–1354

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bembde AS (2012) A study of plasma fibrinogen level in type 2 diabetes mellitus and its relation to glycemic control. Indian J Hematol Blood Transfus 28:105–108

    PubMed  Google Scholar 

  • Bergeron C, Boulet LP, Hamid Q (2005) Obesity, allergy and immunology. J Allergy Clin Immunol 115:1102–1104

    PubMed  Google Scholar 

  • Bernstein BE, Humphrey EL, Erlich RL et al (2002) Methylation of histone H3Lys4 in coding regions of active genes. Proc Natl Acad Sci U S A 99:8695–8700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatt DL, Cavender MA (2014) Do dipeptidyl peptidase-4 inhibitors increase the risk of heart failure? JACC Heart Fail 2:583–585

    PubMed  Google Scholar 

  • Bhishagranta KL (1911) An English translation of the sushruta samhita: based on original Sanskrit text. Sutrasthanam, Calcutta, India

    Google Scholar 

  • Bluestone JA, Herold K, Eisenbarth G (2010) Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature 464:1293–1300

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bonfrate L, Wang DQH, Garruti G et al (2014) Obesity and the risk and prognosis of gallstone disease and pancreatitis. Best Pract Res Clin Gastroenterol 28:623–635

    CAS  PubMed  Google Scholar 

  • Bonnefond A, Clement N, Fawcett K et al (2012) Rare MTNR1B variants impairing melatonin receptor 1B function contribute to type 2 diabetes. Nat Genet 44:297–301

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bosi E, Molteni L, Radaelli MG et al (2006) Increased intestinal permeability precedes clinical onset of type 1 diabetes. Diabetologia 49:2824–2827

    CAS  PubMed  Google Scholar 

  • Bottini N, Vang T, Cucca F et al (2006) Role of PTPN22 in type 1 diabetes and other autoimmune diseases. Semin Immunol 18:207–213

    CAS  PubMed  Google Scholar 

  • Bourajjaj M, Armand AS, Da Costa Martins PA et al (2008) NFATc2 is a necessary mediator of calcineurin-dependent cardiac hypertrophy and heart failure. J Biol Chem 283:22295–22303

    CAS  PubMed  Google Scholar 

  • Budai KA, Mirzahosseini A, Bela N et al (2015) The pharmacotherapy of obesity. Acta Pharm Hung 85:3–17

    PubMed  Google Scholar 

  • Burki T (2012) FDA rejects novel diabetes drug over safety fears. Lancet 379:507

    PubMed  Google Scholar 

  • Butler AE, Janson J, Bonner-Weir S et al (2003) Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52:102–110

    CAS  PubMed  Google Scholar 

  • Calle EE, Rodriguez C, Walker-Thurmond K et al (2003) Overweight, obesity and mortality from cancer in a prospectively studied cohort of US adults. N Engl J Med 348:1625–1638

    PubMed  Google Scholar 

  • Cameron NA, Eaton SE, Cotter MA et al (2001) Vascular factors and metabolic interactions in the pathogenesis of diabetic neuropathy. Diabetologia 44:1973–1988

    CAS  PubMed  Google Scholar 

  • Cani PD, Possemiers S, de Wiele TV et al (2009) Changes in the gut microbiota control inflammation in obese mice through a mechanism involving GPL-2 driven improvement of gut permeability. Gut 58:1091–1103

    CAS  PubMed  Google Scholar 

  • Carroll KK (1998) Obesity as a risk factor for certain types of cancer. Lipids 33:1055–1059

    CAS  PubMed  Google Scholar 

  • CDCM (Centers for Disease Control and Prevention), US National Diabetes Statistics Report (2020). Available at: http://www.cdc.gov/diabetes/pdt/data

  • CDCM (Centers for Disease Control and Prevention), US National Health and Human Services (2017) Report on adult overweight and obesity. Available at: http://www.cdc.gov/obesity/adult/defining

  • Ceriello A, Lush CW, Darsow T et al (2008) Pramlintide reduced markers of oxidative stress in the postprandial period in patients with type 2 diabetes. Diabetes Metab Res Rev 24:103–108

    CAS  PubMed  Google Scholar 

  • Chan M Lecture at the 47th meeting of the National Academy of Medicine-2016 (2016) Obesity and diabetes: the slow-motion disaster. WHO-director-General’s office, 17 October, 2016

    Google Scholar 

  • Chang PV, Hao L, Offermanns S et al (2014) The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci U S A 111:2247–2252

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen HS, Wu TE, Jap TS et al (2008) Beneficial effects of insulin on glycemic control and beta-cell function in newly diagnosed type 2 diabetes with severe hyperglycemia after short-term intensive insulin therapy. Diabetes Care 31:1927–1932

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chooi YC, Ding C, Magkos F (2019) The epidemiology of obesity. Metab Clin Exp 92:6–10

    CAS  PubMed  Google Scholar 

  • Clark RJ, McDonough PM, Swanson E et al (2003) Diabetes and the accompanying hyperglycemia impairs cardiomyocyte calcium cycling through increased nuclear O-Gle NAcylation. J Biol Chem 278:44230–44237

    CAS  PubMed  Google Scholar 

  • Clement K, Vaisse C, Manning BS et al (1995) Genetic variation in the beta 3-adrenergic receptor and an increased capacity to gain weight in patients with morbid obesity. N Engl J Med 333:352–354

    CAS  PubMed  Google Scholar 

  • Clermont A, Chilcote TJ, Kita T et al (2011) Plasma kallikrein mediates retinal vascular dysfunction and induces retinal thickening in diabetic rats. Diabetes 60:1590–1598

    CAS  PubMed  PubMed Central  Google Scholar 

  • Collado MC, Isolauri E, Laitenen K et al (2010) Effect of mother’s weight on infant’s microbiota acquisition, composition and activity during early infancy: a perspective follow-up study initiated in early pregnancy. Am J Clin Nutr 92:1023–1030

    CAS  PubMed  Google Scholar 

  • Colli ML, Moore F, Gurzov EN et al (2010) MDA5 and PTPN2, two candidate genes for type 1 diabetes, modify pancreatic β-cell responses to the viral by-product double-stranded RNA. Hum Mol Genet 19:135–146

    CAS  PubMed  Google Scholar 

  • Cowley MA, Smart JL, Rubinstein M et al (2001) Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 411:480–484

    CAS  PubMed  Google Scholar 

  • Cox LM, Blaser MJ (2013) Pathways in microbe-induced obesity. Cell Metab 17:883–894

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cummings JH, Macfarlane GT (1991) The control and consequences of bacterial fermentation in the human colon. J Appl Bacteriol 70:443–449

    CAS  PubMed  Google Scholar 

  • Dag ZO, Dilbaz B (2015) Impact of obesity on infertility in women. J Turk Ger Gynecol Assoc 16:111–117

    PubMed  PubMed Central  Google Scholar 

  • Dahlquist GG, Blom LG, Persson LA et al (1990) Dietary factors and the risk of developing insulin dependent diabetes in childhood. BMJ 300:1302–1306

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dalamaga M, Diakopoulos KN, Mantzoros CS (2012) The role of adiponectin in cancer: a review of current evidence. Endocr Rev 33:547–594

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dandona P, Aljada A, Bandyopadhyay A (2004) Inflammation: the link between insulin resistance, obesity and diabetes. Trends Immunol 25:4–7

    CAS  PubMed  Google Scholar 

  • Daneshpajooh M, Bacos K, Bysani M et al (2017) HDAC7 is overexpressed in human diabetic islets and impairs insulin secretion in rat islets and clonal beta cells. Diabetologia 60:116–125

    CAS  PubMed  Google Scholar 

  • Dayeh T, Volkov P, Salo S et al (2014) Genome-wide DNA methylation analysis of human pancreatic islets from type 2 diabetic and non-diabetic donors identifies candidate genes that influence insulin secretion. PLoS Genet 10:e1004160

    PubMed  PubMed Central  Google Scholar 

  • De Fronzo RA (2011) Bromocriptine: a sympatholytic, D2-dopamine agonist for the treatment of type 2 diabetes. Diabetes Care 34:789–794

    Google Scholar 

  • De Fronzo RA, Lilly Lecture (1988) The triumvirate: β-cell, muscle, liver: a collusion responsible for NIDDM. Diabetes 37:667–687

    Google Scholar 

  • De Fronzo RA, Banting Lecture (2009) From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes 58:773–795

    Google Scholar 

  • De Vadder F, Kovatcheva-Datehary P, Goncalves D et al (2014) Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156:84–96

    PubMed  Google Scholar 

  • Delong T, Baker RL, Reisdorph N et al (2011) Islet amyloid polypeptide is a target antigen for diabetogenic CD4+ T cells. Diabetes 60:2325–2330

    CAS  PubMed  PubMed Central  Google Scholar 

  • Delong T, Wiles TA, Baker RL et al (2016) Pathogenic CD4T cells in type 1 diabetes recognize epitopes formed by peptide fusion. Science 351:711–714

    CAS  PubMed  PubMed Central  Google Scholar 

  • Demerath EW, Guan W, Grove ML et al (2015) Epigenome-wide association study (EWAS) of BMI, BMI change and waist circumference in African American adults identifies multiple replicated loci. Hum Mol Genet 24:4464–4479

    CAS  PubMed  PubMed Central  Google Scholar 

  • Den Besten G, van Eunen K, Groen AK et al (2013) The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 54:2325–2340

    Google Scholar 

  • Dhana K, Braun KVE, Nano J et al (2018) An epigenome-wide study of obesity-related traits. Am J Epidemiol 187:1662–1669

    PubMed  PubMed Central  Google Scholar 

  • Di Gregorio GB, Yao-Borengasser A, Rasouli N et al (2005) Expression of CD68 and macrophage chemoattractant protein-1 genes in human adipose and muscle tissues: association with cytokine expression, insulin resistance, and reduction by pioglitazone. Diabetes 54:2305–2313

    PubMed  Google Scholar 

  • Dick KJ, Nelson CP, Tsaprouni L et al (2014) DNA methylation and body mass index: a genome-wide analysis. Lancet 383:1990–1998

    CAS  PubMed  Google Scholar 

  • Donelly JE, Blair SN, Jackicic JM (2009) American College of Sports Medicine, ACSM position stand; appropriate physical activity intervention strategies for weight loss and prevention of weight gain in adults. Med Sci Sports Exerc 41:459–471

    Google Scholar 

  • Dowling RJO, Niraula S, Stambolic V et al (2012) Metformin in cancer: translational challenges. J Mol Endocrinol 48:R31–R43

    CAS  PubMed  Google Scholar 

  • Dunning BE, Gerich JE (2007) The role of alpha-cell dysregulation in fasting and postprandial hyperglycemia in type 2 diabetes and therapeutic implications. Endocr Rev 28:253–283

    CAS  PubMed  Google Scholar 

  • Durazzo M, Ferro A, Gruden G (2019) Gastrointestinal microbiota and type 1 diabetes mellitus: the state of art. J Clin Med 8:1843

    CAS  PubMed Central  Google Scholar 

  • Eisenberg S (1999) High-density lipoprotein metabolism. In: Betteridge DJ, Illinfworth DR, Shepherd J (eds) Lipoproteins in health and disease, !St edn. Arnold, London, pp 71–85

    Google Scholar 

  • Eizirik DL, Sammeth M, Bouckenooghe T et al (2012) The human pancreatic islet transcriptome: expression of candidate genes for type 1 diabetes and the impact of pro-inflammatory cytokines. PLoS Genet 8:e1002552

    CAS  PubMed  PubMed Central  Google Scholar 

  • El Quaamari A, Baroukh N, Martens GA et al (2008) miR-375 targets 3′-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic beta-cells. Diabetes 57:2708–2717

    Google Scholar 

  • El-Khatib FH, Balliro C, Hillard MA et al (2017) Home use of a bihormonal bionic pancreas versus insulin pump therapy in adults with type 1 diabetes: a multicentre randomised crossover trial. Lancet 389:369–380

    CAS  PubMed  Google Scholar 

  • Engeli S, Schling P, Gorzelniak K et al (2003) The adipose tissue rennin-angiotensin-aldosterone system: role in the metabolic syndrome ? Int J Biochem Cell Biol 35:807–825

    CAS  PubMed  Google Scholar 

  • Eriksson J, Nakazato M, Miyazato M et al (1992) Islet amyloid polypeptide plasma concentrations in individuals at increased risk of developing type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 35:291–293

    CAS  PubMed  Google Scholar 

  • Everard A, Belzer C, Geurts L et al (2013) Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A 110:9066–9071

    CAS  PubMed  PubMed Central  Google Scholar 

  • Farooqi IS, O’Rahilly S (2014) 20 years of leptin: human disorders of leptin action. J Endocrinol 223:163–170

    Google Scholar 

  • Fei N, Zhao L (2013) An opportunistic pathogen isolated from the gut of an obese human causes obesity in germ-free mice. ISME J 7:880–884

    CAS  PubMed  Google Scholar 

  • Fernandes J, Su W, Rahat-Rozenbloom S et al (2014) Adiposity, gut microbiota and faecal short-chain fatty acids are linked in adult humans. Nutr Diabetes 4:e121

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrannini E, Barrett EJ, Bevilacqua S et al (1983) Effects of fatty acids on glucose production and utilization in man. J Clin Invest 72:1737–1747

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fock KM, Khoo J (2013) Diet and exercise in management of obesity and overweight. J Gastroenterol Hepatol 28(Suppl 4):59–63

    CAS  PubMed  Google Scholar 

  • Fonseca VA, Rosenstock J, Wang AC et al (2008) Colesevelam HCl improves glycemic control and reduces LDL cholesterol in patients with inadequately controlled type 2 diabetes on sulfonylurea-based therapy. Diabetes Care 31:1479–1484

    CAS  PubMed  PubMed Central  Google Scholar 

  • Forouhi NG, Wareham NJ (2019) Epidemiology of diabetes. Medicine 47:22–27

    Google Scholar 

  • Gadde KM, Allison DB, Ryan DH et al (2011) Effects of low dose, controlled release, phentermine plus topiramate combination on weight and associated comorbidities in overweight and obese adults (CONQUER): a randomised, placebo-controlled, phase 3 trial. Lancet 377:1341–1352

    CAS  PubMed  Google Scholar 

  • Gallwitz B (2011) Glucagon-like peptide-1 analogues for type 2 diabetes mellitus: current and emerging agents. Drugs 71:1675–1688

    CAS  PubMed  Google Scholar 

  • Gao J, Tian J, Lv Y et al (2009a) Leptin induces functional activation of cyclooxygenase-2 through JAK 2/STAT 3, MAPK/ERK, and PI3K/AKT pathways in human endometrial cancer cells. Cancer Sci 100:389–395

    CAS  PubMed  Google Scholar 

  • Gao Z, Yin J, Zhang J et al (2009b) Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58:1509–1517

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garber AJ, Abrahamson MJ, Barzilay JI et al (2016) Consensus statement by the American Association of Clinical Endocrinologists and American College of endocrinology on the comprehensive type 2 diabetes management algorithm-2016: executive summary. Endocr Pract 22:84–113

    PubMed  Google Scholar 

  • Gardner DSL, Tai ES (2012) Clinical features and treatment of maturity-onset diabetes of the young (MODY). Diab Metab Syndr Obes 5:101–108

    Google Scholar 

  • Garvey WT, Ryan DH, Look M et al (2012) Two-year sustained weight loss and metabolic benefits with controlled-release phentermine/topiramate in obese and overweight adults (SEQUEL): a randomized, placebo-controlled, phase 3 extension study. Am J Clin Nutr 95:297–308

    CAS  PubMed  Google Scholar 

  • Gaziano JM, Cincotta AH, Vinik A et al (2012) Effect of bromocriptine-QR (a quick-release formulation of bromocriptine mesylate) on major adverse cardiovascular events in type 2 diabetic subjects. J Am Heart Assoc 1:e002279

    PubMed  PubMed Central  Google Scholar 

  • Gesta S, Tseng YH, Kahn CR (2007) Developmental origin of fat: tracking obesity to its source. Cell 131:242–256

    CAS  PubMed  Google Scholar 

  • Giza S, Goulas A, Gbandi E et al (2013) The role of PTPN22.C1858T gene polymorphism in diabetes mellitus type 1: first evaluation in Greek children and adolescents. Biomed Res Int 2013:721604

    PubMed  PubMed Central  Google Scholar 

  • Glessner JT, Bradfield JP, Wang K et al (2010) A genome-wide study reveals copy number variants exclusively to childhood obesity cases. Am J Hum Genet 87:661–666

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goossen K, Graber S (2012) Longer-term safety of dipeptidyl peptidase-4 inhibitors in patients with type 2 diabetes mellitus: systematic review and meta-analysis. Diabetes Obes Metab 14:1061–1072

    CAS  PubMed  Google Scholar 

  • Gottmann P, Ouni M, Saussenthaler S et al (2018) A computational biology approach of a genome-wide screen connected miRNAs to obesity and type 2 diabetes. Mol Metab 11:145–159

    CAS  PubMed  PubMed Central  Google Scholar 

  • Greenway FL, Fujioka K, Plodkowski RA et al (2010) Effect of naltrexone plus bupropion on weight loss in overweight and obese adults (COR-1): a multicentre, randomized, double-blind, placebo-controlled, phase 3 trial. Lancet 376:595–605

    CAS  PubMed  Google Scholar 

  • Guardado-Mendoza R, Davalli AM, Chavez AO et al (2009) Pancreatic islet amyloidosis, β-cell apoptosis, and α-cell proliferation are determinants of islet remodelling in type 2 diabetic baboons. Proc Natl Acad Sci 106:13992–13997

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hall E, Dayeh T, Kirkpatrick CL et al (2013) DNA methylation of the glucagon-like peptide 1 receptor (GLP1R) in human pancreatic islets. BMC Med Genet 14:76

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hall E, Volkov P, Dayeh T et al (2014) Effects of palmitate on genome-wide mRNA expression and DNA methylation patterns in human pancreatic islets. BMC Med 12:103

    PubMed  PubMed Central  Google Scholar 

  • Hall E, Nitert MD, Volkov P et al (2018) The effects of high glucose exposure on global gene expression and DNA methylation in human pancreatic islets. Mol Cell Endocrinol 472:57–67

    CAS  PubMed  Google Scholar 

  • Han JC, Liu QR, Jones M et al (2008) Brain-derived neurotrophic factor and obesity in the WAGR syndrome. N Engl J Med 359:918–927

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hanlon EC, Van Cauter E (2011) Quantification of sleep behaviour and its impact on the cross-talk between the brain and peripheral metabolism. Proc Natl Acad Sci U S A 108(Suppl 3):15609–15616

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harrold JA, Williams G (2006) Melanocortin-4 receptors, beta-MSH and leptin: key elements in the satiety pathway. Peptides 27:365–371

    CAS  PubMed  Google Scholar 

  • Heijmans BT, Tobi EW, Stein AD et al (2008) Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A 105:17046–17049

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hirosumi J, Tuncman G, Chang L et al (2002) A central role for JNK in obesity and insulin resistance. Nature 420:333–336

    CAS  PubMed  Google Scholar 

  • Hollander P, King AB, Del Prato S et al (2015) Insulin degludec improves long-term glycaemic control similarly to insulin glargine but with fewer hypoglycaemic episodes in patients with advanced type 2 diabetes on basal-bolus insulin therapy. Diabetes Obes Metab 17:202–206

    CAS  PubMed  Google Scholar 

  • Holst JJ, Vilsboll T, Deacon CF (2009) The incretin system and its role in type 2 diabetes mellitus. Mol Cell Endocrinol 297:127–136

    CAS  PubMed  Google Scholar 

  • Hooper LV, Littman DR, Macpherson AJ (2012) Interactions between the microbiota and the immune system. Science 336:1268–1273

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hotamisligil GS (1999) The role of TNF alpha and TNF receptors in obesity and insulin resistance. J Intern Med 245:621–625

    CAS  PubMed  Google Scholar 

  • In’t Veld P (2011) Insulitis in human type 1 diabetes. Islets 3:131–138

    PubMed  PubMed Central  Google Scholar 

  • Insel R, Knip M (2018) Prospects for primary prevention of type 1 diabetes by restoring a disappearing microbe. Pediatr Diabetes 19:1400–1406

    PubMed  Google Scholar 

  • Inshaw JRJ, Cutler AJ, Crouch DJM et al (2020) Genetic variants predisposing most strongly to type 1 diabetes diagnosed under age 7 years lie near candidate genes that function in the immune system and in pancreatic β-cells. Diabetes Care 43:169–177

    CAS  PubMed  Google Scholar 

  • International Diabetes Federation (2017) IDF diabetes atlas, 8th edn. Brussels, Netherland

    Google Scholar 

  • International Diabetes Federation (2019) IDF diabetes atlas, 9th edn. Brussels, Netherland

    Google Scholar 

  • Inzucchi SE, Bergenstal RM, Buse JB et al (2015) Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the American Diabetes Association and the European Association for the Study of diabetes. Diabetes Care 38:140–149

    PubMed  Google Scholar 

  • Jeyabalan A (2013) Epidemiology of preeclampsia: impact of obesity. Nutr Rev 71:S18–S25. https://doi.org/10.1111/nure.12055

    Article  PubMed  Google Scholar 

  • Johnson KH, O’Brien TD, Betsholtz C et al (1989) Islet amyloid, islet-amyloid polypeptide, and diabetes mellitus. N Engl J Med 321:513–518

    CAS  PubMed  Google Scholar 

  • Johnston PS, Lebovitz HE, Conniff RF et al (1998) Advantages of α-glucosidase inhibition as monotherapy in elderly type 2 diabetic patients. J Clin Endocrinol Metab 183:1515–1522

    Google Scholar 

  • Joslin EP, Dublin LI, Marks HH (1934) Studies in diabetes mellitus, II: its incidence and factors underlying its variations. Am J Med Sci 187:433–457

    Google Scholar 

  • Kahn SE, Carr DB, Faulenbach MV et al (2008) An examination of beta-cell function measures and their potential use for estimating beta-cell mass. Diabetes Obes Metab 10(Suppl 4):63–76

    PubMed  Google Scholar 

  • Kahn S, Cooper ME, Prato SD (2014) Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet 383:1068–1083

    CAS  PubMed  Google Scholar 

  • Kaku K (2010) Pathophysiology of type 2 diabetes and its treatment policy. JAAJ 53:41–46

    Google Scholar 

  • Kanwar YS, Sun L, Xie P et al (2011) A glimpse of various pathogenic mechanisms of diabetic nephropathy. Annu Rev Pathol 6:395–423

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karlsson CLJ, Onnerfalt J, Xu J et al (2012) The microbiota of the gut in preschool children with normal and excessive body weight. Obesity 20:2257–2261

    PubMed  Google Scholar 

  • Karlsson FH, Tremaroli V, Nookaew I et al (2013) Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498:99–103

    CAS  PubMed  Google Scholar 

  • Kato M, Zhang J, Wang M et al (2007) MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proc Natl Acad Sci U S A 104:3432–3437

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keating ST, El-Osta A (2015) Epigenetics and metabolism. Circ Res 116:715–736

    CAS  PubMed  Google Scholar 

  • Kelley D, Mitrakou A, Marsh H et al (1988) Skeletal muscle glycolysis, oxidation, and storage of an oral glucose load. J Clin Invest 81:1563–1571

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kelley DE, Bray GA, Pi-Sunyer FX et al (2002) Clinical efficacy of orlistat therapy in overweight and obese patients with insulin –treated type 2 diabetes: a 1-year randomized controlled trial. Diabetes Care 25:1033–1041

    CAS  PubMed  Google Scholar 

  • Kelly MA, Rayner ML, Mijovic CH et al (2003) Molecular aspects of type 1 diabetes. Mol Pathol 56:1–10

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YA, Kim ES, Hwang HK et al (2014) Prevalence and risk factors for the peripheral neuropathy in patients with peripheral arterial occlusive disease. Vasc Specialist Int 30:125–132

    PubMed  PubMed Central  Google Scholar 

  • Kimura I, Ozawa K, Inoue D et al (2013) The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun 4:1829

    PubMed  Google Scholar 

  • King NA, Caudwell PP, Hopkins M et al (2009) Dual process action of exercise on appetite control: increase in orexigenic drive but improvement in meal-induced satiety. Am J Clin Nutr 90:921–927

    CAS  PubMed  Google Scholar 

  • Klose RJ, Bird AP (2006) Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 31:89–97

    CAS  PubMed  Google Scholar 

  • Kooner JS, Saleheen D, Sim X et al (2011) Genome-wide association study in people of south Asian ancestry identifies six novel susceptibility loci for type 2 diabetes. Nat Genet 43:984–989

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kornfeld JW, Baitzel C, Konner AC et al (2013) Obesity-induced overexpression of miR 802 impairs glucose metabolism through silencing of Hnf1b. Nature 494:111–115

    CAS  PubMed  Google Scholar 

  • Kotronen A, Juurinen L, Tiikainen M et al (2008) Increased liver fat, impaired insulin clearance, and hepatic and adipose tissue insulin resistance in type 2 diabetes. Gastroenterology 135:122–130

    CAS  PubMed  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    CAS  PubMed  Google Scholar 

  • Krause MS, McClenaghan NH, Flatt PR et al (2011) L-arginine is essential for pancreatic β-cell functional integrity, metabolism and defence from inflammatory challenge. J Endocrinol 211:87–97

    CAS  PubMed  Google Scholar 

  • Krentz AJ, Bailey CJ (2005) Oral antidiabetic agents: current role in type 2 diabetes mellitus. Drugs 65:385–411

    CAS  PubMed  Google Scholar 

  • Krogvold L, Edwin B, Buanes T et al (2015) Detection of a low-grade enteroviral infection in the islets of Langerhans of living patients newly diagnosed with type 1 diabetes. Diabetes 64:1682–1687

    CAS  PubMed  Google Scholar 

  • Krude H, Biebermann H, Luck W et al (1998) Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat Genet 19:155–157

    CAS  PubMed  Google Scholar 

  • Kuhen P, Handke D, Waterland RA et al (2016) Interindividual variation in DNA methylation at a putative POMC metastable epiallele is associated with obesity. Cell Metab 24:502–509

    Google Scholar 

  • Lahdenpera S, Syvanne M, Kahri J et al (1996) Regulation of low-density lipoprotein particle size distribution in NIDDM and coronary disease: importance of serum triglycerides. Diabetologia 39:453–461

    CAS  PubMed  Google Scholar 

  • Lalau JD, Arnouts P, Sharif A et al (2015) Metformin and other antidiabetic agents in renal failure patients. Kidney Int 87:308–322

    CAS  PubMed  Google Scholar 

  • Landrier JF, Derghal A, Mounien L (2019) MicroRNAs in obesity and related metabolic disorders. Cell 8:859

    CAS  Google Scholar 

  • Le Chatelier E, Nielsen T, Qin J et al (2013) Richness of human gut microbiome correlates with metabolic markers. Nature 500:541–546

    PubMed  Google Scholar 

  • Lee R, Wong TY, Sabanayagam C (2015) Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye Vis (Lond) 2:17

    Google Scholar 

  • Leung A, Parks BW, Du J et al (2014) Open chromatin profiling in mice livers reveals unique chromatin variations induced by high fat diet. J Biol Chem 289:23557–23567

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis JD, Ferrara A, Peng T et al (2011) Risk of bladder cancer among diabetic patients treated with pioglitazone; interim report of a longitudinal cohort study. Diabetes Care 34:916–922

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin HV, Frassetto A, Kowalik EJ Jr, Nawrocki AR et al (2012) Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS One 7:e35240

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ling C, Del Guerra S, Lupi R et al (2008) Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and effect on insulin secretion. Diabetologia 51:615–622

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu P, Sun M, Sader S (2006) Matrix metalloproteinases in cardiovascular disease. Can J Cardiol 22(Suppl B):25B–30B

    PubMed  PubMed Central  Google Scholar 

  • Locke AE, Kahali B, Berndt SI et al (2015) Genetic study of body mass index yield new insights for obesity biology. Nature 518:197–206

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu J, Liu J, Li L et al (2020) Cytokines in type 1 diabetes: mechanisms of action and immunotherapeutic targets. Clin Transl Immunol 9:e1122

    Google Scholar 

  • Lyssenko V, Lupi R, Marchetti P et al (2007) Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes. J Clin Invest 117:2155–2163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Macfarlane S, Macfarlane GT (2003) Regulation of short-chain fatty acid production. Proc Nutr Soc 62:67–72

    CAS  PubMed  Google Scholar 

  • Mahajan A, Go M, Zhang W et al (2014) Genome-wide trans-ancestry meta-analysis provides insight in to the genetic architecture of type 2 diabetes susceptibility. Nat Genet 46:234–244

    CAS  PubMed  Google Scholar 

  • Marina AL, Utzschneider KM, Wright LA et al (2012) Colesevelam improves oral but not intravenous glucose tolerance by a mechanism independent of insulin sensitivity and β-cell function. Diabetes Care 35:1119–1125

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marin-Penalver JJ, Martin-Timon I, Sevillano-Collantes C et al (2016) Update on the treatment of type 2 diabetes mellitus. World J Diabetes 7:354–395

    PubMed  PubMed Central  Google Scholar 

  • Marso SP, Daniels GH, Brown-Frandsen K et al, LEADER Steering Committee on behalf of the LEADER Trial Investigators (2016) Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 375: 311–322

    Google Scholar 

  • Matikainen N, Soderlund S, Bjomson E et al (2019) Liraglutide treatment improves postprandial lipid metabolism and cardiometabolic risk factors in humans with adequately controlled type 2 diabetes: a single-Centre randomized controlled study. Diabetes Obes Metab 21:84–94

    CAS  PubMed  Google Scholar 

  • McKeigue PM, Shah B, Marmot MG (1991) Relation of central obesity and insulin resistance with high diabetes prevalence and cardiovascular risk in south Asians. Lancet 337:382–386

    CAS  PubMed  Google Scholar 

  • Meerson A, Traurig M, Ossowski V et al (2013) Human adipose microRNA-221 is upregulated in obesity and affects fat metabolism downstream of leptin and TNF-α. Diabetologia 56:1971–1979

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meigs JB, Cupples LA, Wilson PW (2000) Parental transmission of type 2 diabetes: the Framingham offspring study. Diabetes 49:2201–2207

    CAS  PubMed  Google Scholar 

  • Melmed S, Polonsky K, Larsen P et al (2015) Williams textbook of endocrinology, 13th edn. Elsevier, Philadelphia

    Google Scholar 

  • Mendelson MM, Marioni RE, Joehanes R et al (2017) Association of body mass index with DNA methylation and gene expression in blood cells and relation to cardiometabolic disease: a mendelian randomization approach. PLoS Med 14:e1002215

    PubMed  PubMed Central  Google Scholar 

  • Miller WC, Koceja DM, Hamilton EJ (1997) A meta-analysis of the past 25 years of weight loss research using diet, exercise or diet plus exercise intervention. Int J Obes Relat Metab Disord 21:941–947

    CAS  PubMed  Google Scholar 

  • Mitrakou A, Kelley D, Veneman T et al (1990) Contribution of abnormal muscle and liver metabolism to postprandial hyperglycemia in NIDDM. Diabetes 39:1381–1390

    CAS  PubMed  Google Scholar 

  • Mizuno TM, Kelley KA, Pasinetti GM et al (2003) Transgenic neuronal expression of proopiomelanocortin attenuates hyperphagic response to fasting and reverses metabolic impairments in leptin-deficient obese mice. Diabetes 52:2675–2683

    CAS  PubMed  Google Scholar 

  • Morton GJ, Cummings DE, Baskin DG et al (2006) Central nervous system control of food intake and body weight. Nature 443:289–295

    CAS  PubMed  Google Scholar 

  • Murri M, Leiva I, Gomez-Zumaquero JM et al (2013) Gut microbiota in children with type 1 diabetes differs from that in healthy children: a case-control study. BMC Med 11:46

    PubMed  PubMed Central  Google Scholar 

  • Nakanishi K, Inoko H (2006) Combination of HLA-A24, -DQA1*03, and -DR9 contributes to acute onset and early complete beta-cell destruction in type 1 diabetes. Diabetes 55:1862–1868

    CAS  PubMed  Google Scholar 

  • National Institutes of Health (1998) Clinical guidelines on the identification, evaluation and treatment of overweight and obesity in adults-the evidence report. Obes Res 6(Suppl 2):51S–209S

    Google Scholar 

  • Nauck MA, Friedrich N (2013) Do GLP-1 based therapies increase cancer risk ? Diabetes Care 36(Suppl 2):S245–S252

    CAS  PubMed  PubMed Central  Google Scholar 

  • Naylor R, Johnson AK, Gaudio DD (2018) Maturity-onset diabetes of the young overview. In: Adam MP et al (eds) Gene reviews (internet). University of Washington, Seattle, pp 1993–2020

    Google Scholar 

  • Nejentsev S, Walker N, Riches D et al (2009) Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science 324:387–389

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nesto RW, Bell D, Bonow RO et al (2003) Thiazolidinedione use, fluid retention, and congestive heart failure: a consensus statement from the American Heart Association and American Diabetes Association. Circulation 108:2941–2948

    PubMed  Google Scholar 

  • Newgard CB, An J, Bain JR et al (2009) A branched-chain amino-acid related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab 9:311–326

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nisly SA, Kolanczyk DM, Walton AM (2013) Canagliflozin, a new sodium glucose cotransporter 2 inhibitor in the treatment of diabetes. Am J Health Syst Pharm 70:311–319

    CAS  PubMed  Google Scholar 

  • Nissen SE, Wolski KE, Prcela L et al (2016) Effect of naltrexone-bupropion on major adverse cardiovascular events in overweight and obese patients with cardiovascular risk factors: a randomized clinical trial. JAMA 315:990–1004

    CAS  PubMed  Google Scholar 

  • Noble JA, Valdes AM (2011) Genetics of HLA region in the prediction of type 1 diabetes. Curr Diab Rep 11:533–542

    CAS  PubMed  PubMed Central  Google Scholar 

  • Noh H, King GL (2007) The role of protein kinase C activation in diabetic nephropathy. Kidney Int 72:S49–S53

    Google Scholar 

  • Norris JM, Barriga K, Klingensmith G et al (2003) Timing of initial cereal exposure in infancy and risk of islet autoimmunity. JAMA 290:1713–1720

    CAS  PubMed  Google Scholar 

  • O’Neil PM, Smith SR, Weissman NJ et al (2012) Randomized placebo-controlled clinical trial of lorcaserin for weight loss in type 2 diabetes mellitus: the BLOOM-DM study. Obesity (Silver Spring) 20:1426–1436

    Google Scholar 

  • Obici S, Feng Z, Karkanias G et al (2002) Decreasing hypothalamic insulin receptors causes hyperphagia and insulin resistance in rats. Nat Neurosci 5:566–572

    CAS  PubMed  Google Scholar 

  • Ogurtsova K, Fernandes JD, Huang Y et al (2017) IDF diabetes atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract 128:40–50

    CAS  PubMed  Google Scholar 

  • Oh DK, Ciaraldi T, Henry RR (2007) Adiponectin in health and disease. Diabetes Obes Metab 9:282–289

    CAS  PubMed  Google Scholar 

  • Ott PA, Dittrich MT, Herzog BA et al (2004) T cells recognize multiple GAD65 and proinsulin epitopes in human type 1 diabetes, suggesting determinant spreading. J Clin Immunol 24:327–339

    CAS  PubMed  Google Scholar 

  • Owens DR, Matfin G, Monnier L (2014) Basal insulin analogues in the management of diabetes mellitus: what progress have we made ? Diabetes Metab Res Rev 30:104–119

    CAS  PubMed  Google Scholar 

  • Paschou SA, Papadopoulou-Marketou N, Chrousos GP et al (2018) On type 1 diabetes mellitus pathogenesis. Endocr Connect 7:R38–R46

    CAS  PubMed  Google Scholar 

  • Pearce LR, Joe R, Doche ME et al (2014) Functional characterization of obesity-associated variants involving the alpha and beta isoforms of human SH2B1. Endocrinology 155:3219–3226

    PubMed  PubMed Central  Google Scholar 

  • Peixoto-Barbosa R, Reis AF, Giuffrida FMA (2020) Update on clinical screening of maturity-onset diabetes of the young (MODY). Diabetol Metab Syndr 12:50

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perera RJ, Ray A (2007) MicroRNAs in the search for understanding human diseases. BioDrugs 21:97–104

    CAS  PubMed  Google Scholar 

  • Pescador N, Perez-Barba M, Ibarra JM et al (2012) Serum circulating microRNA profiling for identification of potential type 2 diabetes and obesity biomarkers. PLoS One 8:e77251

    Google Scholar 

  • Plagemann A, Harder T, Brunn M et al (2009) Hypothalamic proopiomelanocortin promoter methylation becomes altered by early overfeeding: an epigenetic model of obesity and the metabolic syndrome. J Physiol 587:4963–4976

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poy MN, Eliasson L, Krutzfeldt J et al (2004) A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432:226–230

    CAS  PubMed  Google Scholar 

  • Qin J, Li Y, Cai Z et al (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490:55–60

    CAS  PubMed  Google Scholar 

  • Raccah D (2008) Options for the intensification of insulin therapy when basal insulin is not enough in type 2 diabetes mellitus. Diabetes Obes Metab 10(Suppl 2):76–82

    CAS  PubMed  Google Scholar 

  • Rajala MW, Scherer PE (2005) Minireview: the adipocyte – at the cross roads of energy homeostasis, inflammation, and atherosclerosis. Endocrinology 144:3765–3773

    Google Scholar 

  • Rajan S, Panzade G, Srivastava A et al (2018) miR-876-3p regulates glucose homeostasis and insulin sensitivity by targeting adiponectin. J Endocrinol 239:1–17

    CAS  PubMed  Google Scholar 

  • Rask-Madsen C, King GL (2013) Vascular complications of diabetes: mechanisms of injury and protective factors. Cell Metab 17:20–23

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ratner RE, Gough SC, Mathieu C et al (2013) Hypoglycaemia risk with insulin degludec compared with insulin glargine in type 2 and type 1 diabetes: a pre-planned meta-analysis of phase 3 trials. Diabetes Obes Metab 15:175–184

    CAS  PubMed  Google Scholar 

  • Reaven GM (1988) Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 37:1595–1607

    CAS  PubMed  Google Scholar 

  • Reilly JJ, Armstrong J, Dorosty AR et al (2005) Early life risk factors for obesity in childhood: cohort study. BMJ 330:1357

    PubMed  PubMed Central  Google Scholar 

  • Richardson DK, Kashyap S, Bajaj M et al (2005) Lipid infusion induces an inflammatory/fibrotic response and decreases expression of nuclear encoded mitochondrial genes in human skeletal muscle. J Biol Chem 280:10290–10297

    CAS  PubMed  Google Scholar 

  • Richardson SJ, Leete P, Bone AJ et al (2013) Expression of the enteroviral capsid protein VP1 in the islet cells of patients with type 1 diabetes is associated with induction of protein kinase R and downregulation of Mcl-1. Diabetologia 56:185–193

    CAS  PubMed  Google Scholar 

  • Ridaura VK, Faith JJ, Rey FE et al (2013) Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341:1241214

    PubMed  Google Scholar 

  • Rieg T, Mastuda T, Gerasimova M et al (2014) Increase in SGLT1-mediated transport explains renal glucose reabsorption during genetic and pharmacological SGLT2 inhibition in euglycemia. Am J Physiol Renal Physiol 306:F188–F193

    CAS  PubMed  Google Scholar 

  • Riser Taylor S, Harris KB (2013) The clinical efficacy and safety of sodium glucose cotransporter-2 inhibitors in adults with type 2 diabetes mellitus. Pharmacotherapy 33:984–999

    CAS  PubMed  Google Scholar 

  • Rodriguez-Calvo T, Ekwall O, Amirian N et al (2014) Increased immune cell infiltration of the exocrine pancreas: a possible contribution to the pathogenesis of type 1 diabetes. Diabetes 63:3880–3890

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roep BO, Solvason N, Gottlieb PA et al (2013) Plasma-encoded proinsulin-specific CD8+ T cells in type 1 diabetes. Sci Transl Med 5:191ra82

    PubMed  PubMed Central  Google Scholar 

  • Ronn T, Volkov P, Davegardh C et al (2013) A six months exercise intervention influences the genome-wide DNA methylation pattern in human adipose tissue. PLoS Genet 9:e1003572

    PubMed  PubMed Central  Google Scholar 

  • Rosik J, Szostak B, Machaj F et al (2020) The role of genetics and epigenetics in the pathogenesis of gestational diabetes mellitus. Ann Human Genet 84:114–124

    CAS  Google Scholar 

  • Saeed S, Bonnefond A, Manzoor J et al (2015) Genetic variants in LEP, LEPR, and MC-4R explain 30% of severe obesity in children from a consanguineous population. Obesity (Silver Spring) 23:1687–1695

    CAS  Google Scholar 

  • Sahebkar A, Simental-Mendia LE, Reiner Z et al (2017) Effect of orlistat on plasma lipids and body weight: a systematic review and meta-analysis of 33 randomized controlled trials. Pharmacol Res 122:53–65

    CAS  PubMed  Google Scholar 

  • Sakane N, Yoshida T, Umekawa T et al (1997) Beta 3-adrenergic receptor polymorphism: a genetic marker for visceral fat obesity and insulin resistance syndrome. Diabetologia 40:200–204

    CAS  PubMed  Google Scholar 

  • Sanches AC, Correr CJ, Venson R et al (2011) Revisiting the efficacy of long-acting insulin analogues on adults with type 1 diabetes using mixed-treatment comparisons. Diabetes Res Clin Pract 94:333–339

    CAS  PubMed  Google Scholar 

  • Santin I, Eizirik DL (2013) Candidate genes for type 1 diabetes modulate pancreatic islet inflammation and β-cell apoptosis. Diabetes Obes Metab 15(Suppl 3):71–81

    CAS  PubMed  Google Scholar 

  • Sayols-Baixeras S, Subirana I, Fernandez-Sanles A et al (2017) DNA methylation and obesity traits: an epigenome-wide association study. The REGICOR study. Epigenetics 12:909–916

    PubMed  PubMed Central  Google Scholar 

  • Scerif M, Goldstone AP, Korbonits M (2011) Ghrelin in obesity and endocrine diseases. Mol Cell Endocr 340:15–25

    CAS  Google Scholar 

  • Schaffler A, Ehling A, Neumann E et al (2003) Adipokines in synovial fluid. JAMA 290:1709–1710

    PubMed  Google Scholar 

  • Scherag A, Dina C, Hinney A et al (2010) Two new loci for body-weight regulation identified in a joint analysis of genome-wide association studies for early- onset extreme obesity in French and German study groups. PLoS Genet 6:e1000916

    PubMed  PubMed Central  Google Scholar 

  • Schernthaner G, Currie CJ, Schernthaner GH (2013) Do we still need pioglitazone for the treatment of type 2 diabetes ? A risk-benefit critique in 2013. Diabetes Care 36(Suppl 2):S155–S161

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schroeder BO, Birchenough GMH, Stahlman M et al (2018) Bifidobacteria or fiber protects against diet-induced microbiota-mediated colonic mucus deterioration. Cell Host Microbe 23:27–40

    CAS  PubMed  Google Scholar 

  • Scranton R, Cincotta A (2010) Bromocriptine-unique formulation of a dopamine agonist for the treatment of type 2 diabetes. Expert Opin Pharmacother 11:269–279

    CAS  PubMed  Google Scholar 

  • Shah MS, Brownlee M (2016) Molecular and cellular mechanisms of cardiovascular disorders in diabetes. Circ Res 118:1808–1829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shah SH, Crosslin DR, Haynes CS et al (2012) Branched-chain amino acid levels are associated with improvement in insulin resistance with weight loss. Diabetologia 55:321–330

    CAS  PubMed  Google Scholar 

  • Sharp GC, Salas LA, Monnereau C et al (2017) Maternal BMI at the start of pregnancy and offspring epigenome-wide DNA methylation: findings from the pregnancy and childhood epigenetics (PACE) consortium. Hum Mol Genet 26:4067–4085

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shields BM, Hicks S, Shepherd MH et al (2010) Maturity-onset diabetes of the young (MODY): how many cases are we missing? Diabetologia 53:2504–2508

    CAS  PubMed  Google Scholar 

  • Shimabukuro M, Koyama K, Chen X et al (1997) Direct antidiabetic effect of leptin through triglyceride depletion of tissues. Proc Natl Acad Sci U S A 94:4637–4641

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shin NR, Lee JL, Lee HY et al (2014) An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 63:727–735

    CAS  PubMed  Google Scholar 

  • Siljander H, Honkanen J, Knip M (2019) Microbiome and type 1 diabetes. EBioMedicine 46:512–521

    PubMed  PubMed Central  Google Scholar 

  • Singh A, Sarkar SR, Gaber LW et al (2007) Acute oxalate nephropathy associated with orlistat, a gastrointestinal lipase inhibitor. Am J Kidney Dis 49:153–157

    CAS  PubMed  Google Scholar 

  • Skowera A, Ladell K, McLaren JE et al (2015) β-Cell-specific CD8 T cell phenotype in type 1 diabetes reflects chronic autoantigen exposure. Diabetes 64:916–925

    CAS  PubMed  Google Scholar 

  • Smith PA, Sakura H, Coles B et al (1997) Electrogenic arginine transport mediates stimulus-secretion coupling in mouse pancreatic beta-cells. J Physiol 499:625–635

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smushkin G, Sathananthan M, Piccinini F et al (2013) The effect of a bile acid sequestrant on glucose metabolism in subjects with type 2 diabetes. Diabetes 62:1094–1101

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soares AF, Nissen JB, Garcia-Serrano AM et al (2019) Glycogen metabolism is impaired in the brain of male type 2 diabetes Goto-Kakizaki rats. J Neurosci Res 97:1004–1017

    CAS  PubMed  Google Scholar 

  • Sombra LRS, Anastasopoulou C (2020) Pharmacologic therapy for obesity. Stat Pearls Publishing LLC [Internet] Last update: September 15, 2020 (http://creativecomments.org/licenses/by/4.0)

  • Song R (2016) Mechanism of metformin: a tale of two sites. Diabetes Care 39:187–189

    CAS  PubMed  Google Scholar 

  • Sonnenburg JL, Backhed F (2016) Diet-microbiota interactions as moderators of human metabolism. Nature 536:56–64

    Google Scholar 

  • Sorensen M, Andersen ZJ, Nordsborg RB et al (2013) Long-term exposure to road traffic noise and incident diabetes: a cohort study. Environ Health Perspect 121:217–222

    PubMed  Google Scholar 

  • Sprouse ML, Bates NA, Felix KM et al (2019) Impact of gut microbiota on gut-distal autoimmunity: a focus on T cells. Immunology 156:305–318

    CAS  PubMed  PubMed Central  Google Scholar 

  • Standl E, Khunti K, Hansen TB et al (2019) The global epidemics of diabetes in the 21st century: current situation and perspectives. Eur J Prev Cardiol 26(Suppl 2):7–14

    PubMed  Google Scholar 

  • Sudhakar CK, Mishra V, Hemani V et al (2020) Reverse pharmacology of phytoconstituents of food and plant in the management of diabetes: current status and perspectives. Trends Food Sci Technol 110:594–610. https://doi.org/10.1016/j.tifs.2020.10.024

    Article  CAS  Google Scholar 

  • Sumithran P, Proietto J (2014) Benefit-risk assessment of orlistat in the treatment of obesity. Drug Saf 37:597–608

    CAS  PubMed  Google Scholar 

  • Sunquist K, Eriksson U, Mezuk B et al (2015) Neighborhood walkability, deprivation and incidence of type 2 diabetes: a population-based study on 512,061 Swedish adults. Health Place 31:24–30

    Google Scholar 

  • Takahashi A, Nagashima K, Hamasaki A et al (2007) Sulfonylurea and glinide reduce insulin content, functional expression of K(ATP) channels, and accelerate apoptotic beta-cell death in the chronic phase. Diabetes Res Clin Pract 77:343–350

    CAS  PubMed  Google Scholar 

  • Tammela T, Zarkada G, Wallgard E et al (2008) Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 454:656–660

    CAS  PubMed  Google Scholar 

  • Teichert T, Vossoughi M, Vierkotter A et al (2013) Association between traffic-related air pollution, subclinical inflammation and impaired glucose metabolism: results from the SALIA study. PLoS One 8:e83042

    PubMed  PubMed Central  Google Scholar 

  • Tennent GA, Brennan SO, Stangou AJ et al (2007) Human plasma fibrinogen is synthesized in the liver. Blood 109:1971–1974

    CAS  PubMed  Google Scholar 

  • Tesfaye S, Selvarajah D (2012) Advances in the epidemiology, pathogenesis and management of diabetic peripheral neuropathy. Diabetes Metab Res Rev 28(Suppl 1):8–14

    PubMed  Google Scholar 

  • Tesfaye S, Vileikyte L, Raymon G et al (2011) Painful diabetic peripheral neuropathy: consensus recommendations on diagnosis, assessment and management. Diabetes Metab Res Rev 27:629–638

    CAS  PubMed  Google Scholar 

  • Williams AL, Jacobs SB, Moreno-Macias H, The SIGMA type 2 Diabetes Consortiums et al (2014) Sequence variants in SLC16A11 are a common risk factor for type 2 diabetes in Mexico. Nature 506:97–101

    Google Scholar 

  • Tobi EW, Lumey LH, Talens RP et al (2009) DNA methylation differences after exposure to prenatal famine are common and timing-and sex-specific. Hum Mol Genet 18:4046–4053

    CAS  PubMed  PubMed Central  Google Scholar 

  • Traube FR, Carell T (2017) The chemistries and the consequences of DNA and RNA methylation and demethylation. RNA Biol 14:1099–1107

    PubMed  PubMed Central  Google Scholar 

  • Turnbaugh PJ, Backhed F, Fulton L et al (2008) Diet-induced obesity is linked to marked but reversible alternations in the mouse distal gut microbiome. Cell Host Microbe 3:213–223

    CAS  PubMed  PubMed Central  Google Scholar 

  • Umanath K, Lewis JB (2018) Update on diabetic nephropathy: core curriculum-2018. Am J Kidney Res 71:884–895

    Google Scholar 

  • Unger RH (1995) Lipotoxicity in the pathogenesis of obesity-dependent NIDDM: genetic and clinical implications. Diabetes 44:863–870

    CAS  PubMed  Google Scholar 

  • Unoki H, Takahashi A, Kawaguchi T et al (2008) SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in east Asian and European populations. Nat Genet 40:1098–1102

    CAS  PubMed  Google Scholar 

  • Vaarala O, Knip M, Paronen J et al (1999) Cow’s milk formula feeding induces primary immunization to insulin in infants at genetic risk for type 1 diabetes. Diabetes 48:1389–1394

    CAS  PubMed  Google Scholar 

  • Vague P, Coste TC, Jannot MF et al (2004) C-peptide, Na+,, K+-ATPase, and diabetes. Exp Diabesity Res 5:37–50

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vatanen T, Franzosa EA, Schwager R et al (2018) The human gut microbiome in early-onset type 1 diabetes from the TEDDY study. Nature 562:589–594

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ventriglia G, Nigi L, Sebastiani G et al (2015) MicroRNAs: novel players in the dialogue between pancreatic islets and immune system in autoimmune diabetes. Biomed Res Int 2015:749734

    PubMed  PubMed Central  Google Scholar 

  • Virtanen SM, Nevalainen J, Kronberg-Kippila C et al (2012) Food consumption and advanced β-cell autoimmunity in young children with HLA-conferred susceptibility to type 1 diabetes: a nested case-control design. Am J Clin Nutr 95:471–478

    CAS  PubMed  Google Scholar 

  • Viskari H, Knip M, Tauriainen S et al (2012) Maternal enterovirus infection as a risk factor for type 1 diabetes in the exposed offspring. Diabetes Care 35:1328–1332

    PubMed  PubMed Central  Google Scholar 

  • Volkov P, Bacos K, Ofori JK et al (2017) Whole-genome bisulfite sequencing of human pancreatic islets reveals novel differentially methylated regions in type 2 diabetes pathogenesis. Diabetes 66:1074–1085

    CAS  PubMed  Google Scholar 

  • Vrieze A, Van Wood E, Holleman F et al (2012) Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143:913–916

    CAS  PubMed  Google Scholar 

  • Wang F, Hull RL, Vidal J et al (2001) Islet amyloid develops diffusely throughout the pancreas before becoming severe and replacing endocrine cells. Diabetes 50:2514–2520

    CAS  PubMed  Google Scholar 

  • Wang X, Pan Y, Zhu H et al (2018) An epigenome-wide study of obesity in African American youth and young adults: novel findings, replication in neutrophils, and relationship with gene expression. Clin Epigenetics 10:3

    PubMed  PubMed Central  Google Scholar 

  • Watkins PJ (2003) Retinopathy. BMJ 326:924–926

    PubMed  PubMed Central  Google Scholar 

  • Weisberg SP, Mc Cann D, Desai M et al (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112:1796–1808

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wen X, Yang Y (2017) Emerging roles of GLIS3 in neonatal diabetes, type 1 and type 2 diabetes. J Mol Endocrinol 58:873–885

    Google Scholar 

  • Wenzlau JM, Juhl K, Yu L et al (2007) The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes. Proc Natl Acad Sci U S A 104:17040–17045

    CAS  PubMed  PubMed Central  Google Scholar 

  • World Health Organization (2017) Fact sheets on cardiovascular diseases, 2017. Available at: http://www.who.int/news-room/fact-sheet/detal/cardiovasculardiseases

  • World Health Organization (2018) Fact sheets on obesity and overweight. Updated in February 2018

    Google Scholar 

  • World Health Organization (2020) Fact sheets on obesity and diabetes. Available at: http://www.who.int/news-room/fact-sheets

  • Wren AM, Seal LJ, Cohen MA et al (2001) Ghrelin enhances appetite and increases food intake in humans. J Clin Endocrinol Metab 86:5992

    CAS  PubMed  Google Scholar 

  • Wu T, Liu YH, Fu YC et al (2014) Direct evidence of sirtuin downregulation in the liver of non-alcoholic fatty liver disease patients. Ann Clin Lab Sci 44:410–418

    CAS  PubMed  Google Scholar 

  • Yagihashi S, Mizukami H, Sugimoto K (2011) Mechanism of diabetic neuropathy: where are we now and where to go ? J Diabetes Investig 2:18–32

    CAS  PubMed  Google Scholar 

  • Yagyu H, Chen G, Yokoyama M et al (2003) Lipoprotein lipase (LpL) on the surface of cardiomyocytes increases lipid uptake and produces a cardiomyopathy. J Clin Invest 111:419–426

    PubMed  PubMed Central  Google Scholar 

  • Yang BT, Dayeh TA, Kirkpatrick CL et al (2011) Insulin promoter DNA methylation correlates negatively with insulin gene expression and positively with HbA1c levels in human pancreatic islets. Diabetologia 54:360–367

    CAS  PubMed  Google Scholar 

  • Yang BT, Dayeh TA, Volkov PA et al (2012) Increased DNA methylation and decreased expression of PDX-1 in pancreatic islets from patients of type 2 diabetes. Mol Endocrinol 26:1203–1212

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yasuda K, Miyake K, Horikawa Y et al (2008) Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat Genet 40:1092–1097

    CAS  PubMed  Google Scholar 

  • Yeo GSH, Connie Hung CC, Rochford J et al (2004) A de novo mutation affecting human TrKB associated with severe obesity and developmental delay. Nat Neurosci 7:1187–1189

    CAS  PubMed  Google Scholar 

  • Younk LM, Mikeladze M, Davis SM (2011) Pramlintide and the treatment of diabetes: a review of the data since its introduction. Expert Opin Pharmacother 12:1439–1451

    CAS  PubMed  Google Scholar 

  • Yulyaningsih E, Zhang L, Herzog H et al (2011) NPY receptors as potential targets for anti-obesity drug development. Br J Pharmacol 163:1170–1202

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ziegler AG, Rewers M, Simell O et al (2013) Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA 309:2473–2479

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zigman JM, Jones JE, Lee CE et al (2006) Expression of ghrelin receptor mRNA in the rat and the mouse brain. J Comp Neurol 494:528–548

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dinda, B., Saha, S. (2022). Obesity and Diabetes. In: Dinda, B. (eds) Natural Products in Obesity and Diabetes. Springer, Cham. https://doi.org/10.1007/978-3-030-92196-5_1

Download citation

Publish with us

Policies and ethics