Skip to main content

Ultrasonic Evaluation of the Bone-Implant Interface

  • Chapter
  • First Online:
Bone Quantitative Ultrasound

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1364))

Abstract

While implant surgical interventions are now routinely performed, failures still occur and may have dramatic consequences. The clinical outcome depends on the evolution of the biomechanical properties of the bone-implant interface (BII). This chapter reviews studies investigating the use of quantitative ultrasound (QUS) techniques for the characterization of the BII.

First, studies on controlled configurations evidenced the influence of healing processes and of the loading conditions on the ultrasonic response of the BII. The gap of acoustical properties at the BII increases (i) during healing and (ii) when stress at the BII increases, therefore inducing a decrease of the reflection coefficient at the BII.

Second, an acoustical model of the BII is proposed to better understand the parameters influencing the interaction between ultrasound and the BII. The reflection coefficient is shown to decrease when (i) the BII is better osseointegrated, (ii) the implant roughness decreases, (iii) the frequency of QUS decreases and (iv) the bone mass density increases.

Finally, a 10 MHz device aiming at assessing dental implant stability was validated in vitro, in silico and in vivo. A comparison between QUS and resonance frequency analysis (RFA) techniques showed a better sensitivity of QUS to changes of the parameters related to the implant stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albini Lomami, H., Damour, C., Rosi, G., Poudrel, A. S., Dubory, A., Flouzat-Lachaniette, C. H., et al. (2020). Ex vivo estimation of cementless femoral stem stability using an instrumented hammer. Clinical Biomechanics (Bristol, Avon), 76, 105006. https://doi.org/10.1016/j.clinbiomech.2020.105006

    Article  Google Scholar 

  • Aparicio, C., Lang, N. P., & Rangert, B. (2006). Validity and clinical significance of biomechanical testing of implant/bone interface. Clinical Oral Implants Research, 17(Suppl 2), 2–7. https://doi.org/10.1111/j.1600-0501.2006.01365.x

    Article  PubMed  Google Scholar 

  • Bhaskar, V., Chan, H. L., MacEachern, M., & Kripfgans, O. D. (2018). Updates on ultrasound research in implant dentistry: A systematic review of potential clinical indications. Dento Maxillo Facial Radiology, 47(6), 20180076. https://doi.org/10.1259/dmfr.20180076

    Article  PubMed  PubMed Central  Google Scholar 

  • Buser, D., Ingimarsson, S., Dula, K., Lussi, A., Hirt, H., & Belser, U. (2002). Long-term stability of osseointegrated implants in augmented bone: A 5-year prospective study in partially edentulous patients. The International Journal of Periodontics & Restorative Dentistry, 22, 109–117.

    Google Scholar 

  • Carlo, L. (2016). Study over 7000 endosseous implants inserted during 25 years in 3300 interventions. Clinical results in different anatomical and functional situations. Statistical data and over 20 years iconographic documentation. Journal of Dental and Oral Health, 2, 1–10.

    Google Scholar 

  • de Almeida, M. S., Maciel, C. D., & Pereira, J. C. (2007). Proposal for an ultrasonic tool to monitor the osseointegration of dental implants. Sensors (Basel), 7(7), 1224–1237.

    Article  Google Scholar 

  • Dubory, A., Rosi, G., Tijou, A., Lomami, H. A., Flouzat-Lachaniette, C. H., & Haïat, G. (2020). A cadaveric validation of a method based on impact analysis to monitor the femoral stem insertion. Journal of the Mechanical Behavior of Biomedical Materials, 103, 103535. https://doi.org/10.1016/j.jmbbm.2019.103535

    Article  PubMed  Google Scholar 

  • Dwyer-Joyce, R. S., Reddyhoff, T., & Zhu, J. (2011). Ultrasonic measurement for film thickness and solid contact in elastohydrodynamic lubrication. Journal of Tribology, 133(3), 031501–031511. https://doi.org/10.1115/1.4004105

    Article  Google Scholar 

  • Franchi, M., Bacchelli, B., Giavaresi, G., De Pasquale, V., Martini, D., Fini, M., et al. (2007). Influence of different implant surfaces on peri-implant osteogenesis: Histomorphometric analysis in sheep. Journal of Periodontology, 78(5), 879–888. https://doi.org/10.1902/jop.2007.060280

    Article  PubMed  Google Scholar 

  • Fraulob, M., Le Cann, S., Voumard, B., Yasui, H., Yano, K., Vayron, R., Matsukawa M., Zysset P, and Haïat G., “Multimodal Evaluation of the Spatiotemporal Variations of Periprosthetic Bone Properties”, J Biomech Eng, 142(12) (2020a), pp. 121014

    Google Scholar 

  • Fraulob, M., Vayron, R., Le Cann, S., Lecuelle, B., Hériveaux, Y., Albini Lomami, H., et al. (2020b). Quantitative ultrasound assessment of the influence of roughness and healing time on osseointegration phenomena. Scientific Reports, 10(1), 21962. https://doi.org/10.1038/s41598-020-78806-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Georgiou, A. P., & Cunningham, J. L. (2001). Accurate diagnosis of hip prosthesis loosening using a vibrational technique. Clinical Biomechanics (Bristol, Avon), 16(4), 315–323.

    Article  CAS  Google Scholar 

  • Gill, A., & Shellock, F. G. (2012). Assessment of MRI issues at 3-Tesla for metallic surgical implants: Findings applied to 61 additional skin closure staples and vessel ligation clips. Journal of Cardiovascular Magnetic Resonance, 14, 3. https://doi.org/10.1186/1532-429x-14-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Haiat, G., & Naili, S. (2011). Independent scattering model and velocity dispersion in trabecular bone: Comparison with a multiple scattering model. Biomechanics and Modeling in Mechanobiology, 10(1), 95–108. https://doi.org/10.1007/s10237-010-0220-z

    Article  CAS  PubMed  Google Scholar 

  • Haiat, G., Padilla, F., Peyrin, F., & Laugier, P. (2008). Fast wave ultrasonic propagation in trabecular bone: Numerical study of the influence of porosity and structural anisotropy. The Journal of the Acoustical Society of America, 123, 1694–1705. https://doi.org/10.1121/1.2832611

    Article  CAS  PubMed  Google Scholar 

  • Haïat, G., Naili, S., Grimal, Q., Talmant, M., Desceliers, C., & Soize, C. (2009). Influence of a gradient of material properties on ultrasonic wave propagation in cortical bone: Application to axial transmission. The Journal of the Acoustical Society of America, 125(6), 4043–4052. https://doi.org/10.1121/1.3117445

    Article  PubMed  Google Scholar 

  • Haïat, G., Wang, H.-L., & Brunski, J. (2014). Effects of biomechanical properties of the bone–Implant Interface on dental implant stability: From in silico approaches to the patient’s mouth. Annual Review of Biomedical Engineering, 16(1), 187–213. https://doi.org/10.1146/annurev-bioeng-071813-104854

    Article  CAS  PubMed  Google Scholar 

  • Heller, A. L., & Heller, R. L. (1996). Clinical evaluations of a porous-surfaced endosseous implant system. The Journal of Oral Implantology, 22(3–4), 240–246.

    CAS  PubMed  Google Scholar 

  • Heriveaux, Y., Nguyen, V. H., & Haiat, G. (2018). Reflection of an ultrasonic wave on the bone-implant interface: A numerical study of the effect of the multiscale roughness. The Journal of the Acoustical Society of America, 144(1), 488. https://doi.org/10.1121/1.5046524

    Article  PubMed  Google Scholar 

  • Hériveaux, Y., Nguyen, V.-H., Geiger, D., & Haïat, G. (2019a). Elastography of the bone-implant interface. Scientific Reports, 9(1), 14163. https://doi.org/10.1038/s41598-019-50665-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heriveaux, Y., Nguyen, V. H., Brailovski, V., Gorny, C., & Haiat, G. (2019b). Reflection of an ultrasonic wave on the bone-implant interface: Effect of the roughness parameters. The Journal of the Acoustical Society of America, 145(6), 3370. https://doi.org/10.1121/1.5109668

    Article  CAS  PubMed  Google Scholar 

  • Hériveaux, Y., Haïat, G., & Nguyen, V.-H. (2020a). Reflection of an ultrasonic wave on the bone-implant interface: Comparison of two-dimensional and three-dimensional numerical models. The Journal of the Acoustical Society of America, 147(1), EL32–EEL6. https://doi.org/10.1121/10.0000500

    Article  PubMed  Google Scholar 

  • Hériveaux, Y., Nguyen, V. H., Biwa, S., & Haïat, G. (2020b). Analytical modeling of the interaction of an ultrasonic wave with a rough bone-implant interface. Ultrasonics, 108, 106223. https://doi.org/10.1016/j.ultras.2020.106223

    Article  PubMed  Google Scholar 

  • Hériveaux, Y., Vayron, R., Fraulob, M., Albini Lomami, H., Lenormand, C., & Haïat, G. (2021). “Assessment of dental implant stability using resonance frequency analysis and quantitative ultrasound methods”. J Prosthodont Res, 65(3) (2021), pp. 421–427.

    Google Scholar 

  • Hériveaux, Y., Audoin, B., Biateau, C., Nguyen, V.-H., & Haïat, G. (n.d.). Ultrasonic propagation in a dental implant. Ultrasound in Medicine and Biology, 46(6) (2020), pp. 1464–1473.

    Google Scholar 

  • Huja, S., Katona, T., Burr, D., Garetto, L., & Roberts, W. (1999). Microdamage adjacent to endosseous implants. Bone, 25(2), 217–222. https://doi.org/10.1016/S8756-3282(99)00151-9

    Article  CAS  PubMed  Google Scholar 

  • Khan, S. N., Ramachandran, M., Senthil Kumar, S., Krishnan, V., & Sundaram, R. (2012). Osseointegration and more–A review of literature. Indian Journal of Dentistry, 3(2), 72–76. https://doi.org/10.1016/j.ijd.2012.03.012

    Article  Google Scholar 

  • Koubi, S., Elmerini, H., Koubi, G., Tassery, H., & Camps, J. (2012). Quantitative evaluation by glucose diffusion of microleakage in aged calcium silicate-based open-sandwich restorations. International Journal of Dentistry, 2012. https://doi.org/10.1155/2012/105863

  • Koubi, G., Colon, P., Franquin, J. C., Hartmann, A., Richard, G., Faure, M. O., et al. (2013). Clinical evaluation of the performance and safety of a new dentine substitute, Biodentine, in the restoration of posterior teeth - A prospective study. Clinical Oral Investigations, 17(1), 243–249. https://doi.org/10.1007/s00784-012-0701-9

    Article  PubMed  Google Scholar 

  • Le Cann, S., Törnquist, E., Silva Barreto, I., Fraulob, M., Albini Lomami, H., Verezhak, M., et al. (2020). Spatio-temporal evolution of hydroxyapatite crystal thickness at the bone-implant interface. Acta Biomaterialia, 116, 391–399. https://doi.org/10.1016/j.actbio.2020.09.021

    Article  CAS  PubMed  Google Scholar 

  • Lekesiz, H., Katsube, N., Rokhlin, S. I., & Seghi, R. R. (2013). Effective spring stiffness for a periodic array of interacting coplanar penny-shaped cracks at an interface between two dissimilar isotropic materials. International Journal of Solids and Structures, 50(18), 2817–2828. https://doi.org/10.1016/j.ijsolstr.2013.04.006

    Article  Google Scholar 

  • Li, Z., Muller, R., & Ruffoni, D. (2018). Bone remodeling and mechanobiology around implants: Insights from small animal imaging. Journal of Orthopaedic Research, 36(2), 584–593. https://doi.org/10.1002/jor.23758

    Article  PubMed  Google Scholar 

  • Luo, G., Sadegh, A. M., Alexander, H., Jaffe, W., Scott, D., & Cowin, S. C. (1999). The effect of surface roughness on the stress adaptation of trabecular architecture around a cylindrical implant. Journal of Biomechanics, 32(3), 275–284.

    Article  CAS  Google Scholar 

  • Mathieu, V., Fukui, K., Matsukawa, M., Kawabe, M., Vayron, R., Soffer, E., et al. (2011a). Micro-Brillouin scattering measurements in mature and newly formed bone tissue surrounding an implant. Journal of Biomechanical Engineering, 133(2), 021006. https://doi.org/10.1115/1.4003131

    Article  PubMed  Google Scholar 

  • Mathieu, V., Anagnostou, F., Soffer, E., & Haïat, G. (2011b). Ultrasonic evaluation of dental implant biomechanical stability: An in vitro study. Ultrasound in Medicine & Biology, 37(2), 262–270. https://doi.org/10.1016/j.ultrasmedbio.2010.10.008

    Article  Google Scholar 

  • Mathieu, V., Anagnostou, F., Soffer, E., & Haiat, G. (2011c). Numerical simulation of ultrasonic wave propagation for the evaluation of dental implant biomechanical stability. The Journal of the Acoustical Society of America, 129(6), 4062–4072. https://doi.org/10.1121/1.3586788

    Article  PubMed  Google Scholar 

  • Mathieu, V., Vayron, R., Soffer, E., Anagnostou, F., & Haiat, G. (2012). Influence of healing time on the ultrasonic response of the bone-implant interface. Ultrasound in Medicine & Biology, 38(4), 611–618. https://doi.org/10.1016/j.ultrasmedbio.2011.12.014

    Article  Google Scholar 

  • Mathieu, V., Vayron, R., Richard, G., Lambert, G., Naili, S., Meningaud, J. P., et al. (2014). Biomechanical determinants of the stability of dental implants: Influence of the bone-implant interface properties. Journal of Biomechanics, 47(1), 3–13. https://doi.org/10.1016/j.jbiomech.2013.09.021

    Article  PubMed  Google Scholar 

  • Meredith, N., Alleyne, D., & Cawley, P. (1996). Quantitative determination of the stability of the implant-tissue interface using resonance frequency analysis. Clinical Oral Implants Research, 7(3), 261–267.

    Article  CAS  Google Scholar 

  • Meredith, N., Friberg, B., Sennerby, L., & Aparicio, C. (1998). Relationship between contact time measurements and PTV values when using the Periotest to measure implant stability. The International Journal of Prosthodontics, 11(3), 269–275.

    CAS  PubMed  Google Scholar 

  • Michel, A., Bosc, R., Meningaud, J. P., Hernigou, P., & Haiat, G. (2016a). Assessing the acetabular cup implant primary stability by impact analyses: A cadaveric study. PLoS One, 11(11), e0166778. https://doi.org/10.1371/journal.pone.0166778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michel, A., Bosc, R., Sailhan, F., Vayron, R., & Haiat, G. (2016b). Ex vivo estimation of cementless acetabular cup stability using an impact hammer. Medical Engineering & Physics, 38(2), 80–86. https://doi.org/10.1016/j.medengphy.2015.10.006

    Article  Google Scholar 

  • Moerman, A., Zadpoor, A. A., Oostlander, A., Schoeman, M., Rahnamay Moshtagh, P., Pouran, B., et al. (2016). Structural and mechanical characterisation of the peri-prosthetic tissue surrounding loosened hip prostheses. An explorative study. Journal of the Mechanical Behavior of Biomedical Materials, 62, 456–467. https://doi.org/10.1016/j.jmbbm.2016.04.009

    Article  PubMed  Google Scholar 

  • Nkenke, E., Hahn, M., Weinzierl, K., Radespiel-Troger, M., Neukam, F. W., & Engelke, K. (2003). Implant stability and histomorphometry: A correlation study in human cadavers using stepped cylinder implants. Clinical Oral Implants Research, 14(5), 601–609.

    Article  Google Scholar 

  • Pastrav, L. C., Jaecques, S. V., Jonkers, I., Perre, G. V., & Mulier, M. (2009). In vivo evaluation of a vibration analysis technique for the per-operative monitoring of the fixation of hip prostheses. Journal of Orthopaedic Surgery and Research, 4, 10. https://doi.org/10.1186/1749-799x-4-10

    Article  PubMed  PubMed Central  Google Scholar 

  • Pattijn, V., Jaecques, S. V. N., De Smet, E., Muraru, L., Van Lierde, C., Van der Perre, G., et al. (2007). Resonance frequency analysis of implants in the Guinea pig model: Influence of boundary conditions and orientation of the transducer. Medical Engineering & Physics, 29(2), 182–190. https://doi.org/10.1016/j.medengphy.2006.02.010

    Article  CAS  Google Scholar 

  • Pilliar, R. M., Lee, J. M., & Maniatopoulos, C. (1986). Observations on the effect of movement on bone ingrowth into porous-surfaced implants. Clinical Orthopaedics and Related Research, 208, 108–113.

    Article  Google Scholar 

  • Raghavendra, S., Wood, M. C., & Taylor, T. D. (2005). Early wound healing around endosseous implants: A review of the literature. The International Journal of Oral & Maxillofacial Implants, 20(3), 425–431.

    Google Scholar 

  • Rittel, D., Dorogoy, A., Haïat, G., & Shemtov-Yona, K. (2019). Resonant frequency analysis of dental implants. Medical Engineering & Physics, 66, 65–74. https://doi.org/10.1016/j.medengphy.2019.02.008

    Article  CAS  Google Scholar 

  • Rivière, J., Renaud, G., Haupert, S., Talmant, M., Laugier, P., & Johnson, P. A. (2010). Nonlinear acoustic resonances to probe a threaded interface. Journal of Applied Physics, 107(12), 124901. https://doi.org/10.1063/1.3443578

    Article  CAS  Google Scholar 

  • Rivière, J., Haupert, S., Laugier, P., & Johnson, P. A. (2012). Nonlinear ultrasound: Potential of the cross-correlation method for osseointegration monitoring. The Journal of the Acoustical Society of America, 132(3), EL202–ELEL7. https://doi.org/10.1121/1.4742138

    Article  PubMed  Google Scholar 

  • Sansalone, V., Bousson, V., Naili, S., Bergot, C., Peyrin, F., Laredo, J. D., et al. (2012). Anatomical distribution of the degree of mineralization of bone tissue in human femoral neck: Impact on biomechanical properties. Bone, 50(4), 876–884. https://doi.org/10.1016/j.bone.2011.12.020

    Article  CAS  Google Scholar 

  • Scala, I., Rosi, G., Nguyen, V., Naili, S., Vayron, R., Haiat, G., et al. (2018). Ultrasonic characterization and multiscale analysis for the evaluation of dental implant stability: A sensitivity study. Biomedical Signal Processing and Control, 42(37–44).

    Google Scholar 

  • Scarano, A., Degidi, M., Iezzi, G., Petrone, G., & Piattelli, A. (2006). Correlation between implant stability quotient and bone-implant contact: A retrospective histological and histomorphometrical study of seven titanium implants retrieved from humans. Clinical Implant Dentistry and Related Research, 8(4), 218–222. https://doi.org/10.1111/j.1708-8208.2006.00022.x

    Article  PubMed  Google Scholar 

  • Schulte, W., d’Hoedt, B., Lukas, D., Muhlbradt, L., Scholz, F., Bretschi, J., et al. (1983). [Periotest--A new measurement process for periodontal function]. Zahnarztliche Mitteilungen, 73(11), 1229–30, 33–6, 39–40.

    Google Scholar 

  • Shalabi, M., Wolke, J., Cuijpers, V., & Jansen, J. (2007). Evaluation of bone response to titanium-coated polymethyl methacrylate resin (PMMA) implants by X-ray tomography. Journal of Materials Science. Materials in Medicine, 18(10), 2033–2039. https://doi.org/10.1007/s10856-007-3160-0

    Article  CAS  PubMed  Google Scholar 

  • Sotto-Maior, B. S., Rocha, E. P., de Almeida, E. O., Freitas-Junior, A. C., Anchieta, R. B., & Del Bel Cury, A. A. (2010). Influence of high insertion torque on implant placement: An anisotropic bone stress analysis. Brazilian Dental Journal, 21(6), 508–514.

    Article  Google Scholar 

  • Strnad, G., & Chirila, N. (2015). Corrosion rate of sand blasted and acid etched Ti6Al4V for dental implants. Procedia Technology, 19(Supplement C), 909–915. https://doi.org/10.1016/j.protcy.2015.02.130

    Article  Google Scholar 

  • Tattersall, H. G. (1973). The ultrasonic pulse-echo technique as applied to adhesion testing. Journal of Physics D: Applied Physics, 6(7), 819–832. https://doi.org/10.1088/0022-3727/6/7/305

    Article  CAS  Google Scholar 

  • Valderrama, P., Oates, T. W., Jones, A. A., Simpson, J., Schoolfield, J. D., & Cochran, D. L. (2007). Evaluation of two different resonance frequency devices to detect implant stability: A clinical trial. Journal of Periodontology, 78(2), 262–272. https://doi.org/10.1902/jop.2007.060143

    Article  PubMed  Google Scholar 

  • Van Scotter, D. E., & Wilson, C. J. (1991). The Periotest method for determining implant success. The Journal of Oral Implantology, 17(4), 410–413.

    PubMed  Google Scholar 

  • Vayron, R., Barthel, E., Mathieu, V., Soffer, E., Anagnostou, F., & Haiat, G. (2012). Nanoindentation measurements of biomechanical properties in mature and newly formed bone tissue surrounding an implant. Journal of Biomechanical Engineering, 134(2), 021007. https://doi.org/10.1115/1.4005981

    Article  PubMed  Google Scholar 

  • Vayron, R., Karasinski, P., Mathieu, V., Michel, A., Loriot, D., Richard, G., et al. (2013). Variation of the ultrasonic response of a dental implant embedded in tricalcium silicate-based cement under cyclic loading. Journal of Biomechanics, 46(6), 1162–1168. https://doi.org/10.1016/j.jbiomech.2013.01.003

    Article  Google Scholar 

  • Vayron, R., Soffer, E., Anagnostou, F., & Haïat, G. (2014a). Ultrasonic evaluation of dental implant osseointegration. Journal of Biomechanics, 47(14), 3562–3568. https://doi.org/10.1016/j.jbiomech.2014.07.011

    Article  Google Scholar 

  • Vayron, R., Mathieu, V., Michel, A., & Haïat, G. (2014b). Assessment of in vitro dental implant primary stability using an ultrasonic method. Ultrasound in Medicine & Biology, 40(12), 2885–2894. https://doi.org/10.1016/j.ultrasmedbio.2014.03.035

    Article  Google Scholar 

  • Vayron, R., Nguyen, V.-H., Bosc, R., Naili, S., & Haïat, G. (2015). Finite element simulation of ultrasonic wave propagation in a dental implant for biomechanical stability assessment. Biomechanics and Modeling in Mechanobiology, 14(5), 1021–1032. https://doi.org/10.1007/s10237-015-0651-7

    Article  PubMed  Google Scholar 

  • Vayron, R., Nguyen, V.-H., Bosc, R., Naili, S., & Haïat, G. (2016). Assessment of the biomechanical stability of a dental implant with quantitative ultrasound: A three-dimensional finite element study. The Journal of the Acoustical Society of America, 139(2), 773–780. https://doi.org/10.1121/1.4941452

    Article  CAS  PubMed  Google Scholar 

  • Vayron, R., Nguyen, V. H., Lecuelle, B., & Haïat, G. “Evaluation of dental implant stability in bone phantoms: Comparison between a quantitative ultrasound technique and resonance frequency analysis”. Clinical Implant Dentistry and Related Research, 20(4) (2018), pp. 470–478.

    Google Scholar 

  • Vayron, R., Nguyen, V.-H., Lecuelle, B., Albini Lomami, H., Meningaud, J.-P., Bosc, R., et al. (2018b). Comparison of resonance frequency analysis and of quantitative ultrasound to assess dental implant osseointegration. Sensors (Basel, Switzerland), 18(5), 1397. https://doi.org/10.3390/s18051397

    Article  CAS  Google Scholar 

  • Zysset, P. K., Edward Guo, X., Edward Hoffler, C., Moore, K. E., & Goldstein, S. A. (1999). Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. Journal of Biomechanics, 32(10), 1005–1012. https://doi.org/10.1016/S0021-9290(99)00111-6

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement no 682001, project ERC Consolidator Grant 2015 BoneImplant).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Haïat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hériveaux, Y., Nguyen, VH., Haïat, G. (2022). Ultrasonic Evaluation of the Bone-Implant Interface. In: Laugier, P., Grimal, Q. (eds) Bone Quantitative Ultrasound. Advances in Experimental Medicine and Biology, vol 1364. Springer, Cham. https://doi.org/10.1007/978-3-030-91979-5_17

Download citation

Publish with us

Policies and ethics