Skip to main content
Log in

Independent scattering model and velocity dispersion in trabecular bone: comparison with a multiple scattering model

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Speed of sound measurements are used clinically to assess bone strength. Trabecular bone is an attenuating composite material in which negative values of velocity dispersion have been measured; this behavior remaining poorly explained physically. The aim of this work is to describe the ultrasonic propagation in trabecular bone modeled by infinite cylinders immersed in a saturating matrix and to derive the physical determinants of velocity dispersion. An original homogenization model accounting for the coupling of independent scattering and absorption phenomena allows the computation of phase velocity and of dispersion while varying bone properties. The first step of the model consists in the computation of the attenuation coefficient at all frequencies. The second step of the model corresponds to the application of the general Kramers–Krönig relationship to derive the frequency dependence of phase velocity. The model predicts negative values of velocity dispersion in agreement with experimental results obtained in phantoms mimicking trabecular bone. In trabecular bone, only negative values of velocity dispersion are predicted by the model, which span within the range of values measured experimentally. However, the comparison of the present results with results obtained in Haiat et al. (J Acoust Soc Am 124:4047–4058, 2008) assuming multiple scattering indicates that accounting for multiple scattering phenomena leads to a better prediction of velocity dispersion in trabecular bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson CC, Marutyan KR, Holland MR, Wear KA, Miller JG (2008) Interference between wave modes may contribute to the apparent negative dispersion observed in cancellous bone. J Acoust Soc Am 124: 1781–1789

    Article  Google Scholar 

  • Barkmann R, Laugier P, Moser U, Dencks S, Klausner M, Padilla F, Haiat G, Gluer CC (2008) A device for in vivo measurements of quantitative ultrasound variables at the human proximal femur. IEEE Trans Ultrason Ferroelectr Freq Control 55: 1197–1204

    Article  Google Scholar 

  • Beattie P, Chivers RC, Artson LW (1993) Ultrasonic backscattering from cylindrical inclusions in solid elastic matrices: a comparison of theory and experiment. J Acoust Soc Am 94: 3421– 3427

    Article  Google Scholar 

  • Belzer AI (1989) The effective dynamic response of random composites and polycristals: a survey of the causal approach. Wave Motion 11: 211–229

    Article  Google Scholar 

  • Belzer AI, Brauner N (1987) The dynamic response of radom composites by a causal differential method. Mech Mater 6: 337–345

    Article  Google Scholar 

  • Biot M (1941) General theory of three-dimensional consolidation. J Appl Phys 12: 155–164

    Article  Google Scholar 

  • Biot MA (1956) Theory of propagation of elastic waves in a fluid-satured porous solid. II. higher frequency range. J Acoust Soc Am 28: 179–191

    Article  MathSciNet  Google Scholar 

  • Biwa S (2001) Independent scattering and wave attenuation in viscoelastic composites. Mech Mater 33: 635–647

    Article  Google Scholar 

  • Biwa S, Idekoba S, Ohno N (2002) Wave attenuation in particulate polymer composites: independent scattering/absorption analysis and comparison to measurements. Mech Mater 34: 671–682

    Article  Google Scholar 

  • Biwa S, Watanabe Y, Ohno N (2003) Analysis of wave attenuation in unidirectional viscoelastic composites by a differential scheme. Compos Sci Technol 63: 237–247

    Article  Google Scholar 

  • Biwa S, Kobayashi F, Ohno N (2007) Influence of disordered fiber arrangement on Sh wave transmission in unidirectional composites. Mech Mater 39: 1–10

    Article  Google Scholar 

  • Bose SK, Mal AK (1974) Elastic waves in a fiber-reinforced composite. J Mech Phys Solids 22: 217–229

    Article  MATH  Google Scholar 

  • Bossy E, Padilla F, Peyrin F, Laugier P (2005) Three-dimensional simulation of ultrasound propagation through trabecular bone structures measured by synchrotron microtomography. Phys Med Biol 50: 5545–5556

    Article  Google Scholar 

  • Bossy E, Laugier P, Peyrin F, Padilla F (2007) Attenuation in trabecular bone: a comparison between numerical simulation and experimental results in human femur. J Acoust Soc Am 122: 2469–2475

    Article  Google Scholar 

  • Chakraborty A (2008) Prediction of negative dispersion by a nonlocal poroelastic theory. J Acoust Soc Am 123: 56–67

    Article  Google Scholar 

  • Chaffai S, Padilla F, Berger B, Laugier P (2000) In vitro measurement of the frequency dependent attenuation in cancellous bone between 0,2 −2 Mhz. J Acoust Soc Am 108: 1281–1289

    Article  Google Scholar 

  • Coussy O (2004) Poromechanics. New York

  • Derode A, Mamou M, Padilla F, Jenson F, Laugier P (2005) Dynamic coherent backscattering in a heterogeneous absorbing medium: application to human trabecular bone characterization. Appl Phys Lett 87: 114101

    Article  Google Scholar 

  • Droin P, Berger G, Laugier P (1998) Velocity dispersion of acoustic waves in cancellous bone. IEEE Trans Ultrason Ferroelec Freq Contr 45: 581–592

    Article  Google Scholar 

  • Dussik KT, Fritch DJ (1956) Deterimination of sound attenuation and sound velocity in the structure constituting the joints, and of the ultrasonic field distribution with the joints of living tissues and anatomical preparations, both in normal and pathological conditions

  • Dussik KT, Fritch DJ, Kyriazidou M, Sear R (1958) Measurements of articular tissues with ultrasound. Am J Phys Med 37

  • Duck FA (1990) Physical properties of tissue. University Press, Cambridge

    Google Scholar 

  • Faran JJ (1951) Sound scattering by solid cylinders and spheres. J Acoust Soc Am 23: 405–418

    Article  MathSciNet  Google Scholar 

  • Frizzel LA (1975a) Shear properties of mammalian tissues at low megaahertz frequencies. J Acoust Soc Am 60: 1409–1411

    Article  Google Scholar 

  • Frizzel LA (1975b) Ultrasonic heating of tissues. University Of Rochester, Rochester

    Google Scholar 

  • Garcia BJ, Cobbold RSC, Foster FS, Mcneill KG (1978) Ultrasonic attenuation in bone. Presented At IEEE Ultrasonic Symposium, Cherry Hill

    Google Scholar 

  • Goss SA, Johnston RL, Dunn F (1978) Comprehensive compilation of empirical ultrasonic properties of mammalian tissues. J Acoust Soc Am 64: 423–457

    Article  Google Scholar 

  • Haiat G, Lhemery A, Renaud F, Padilla F, Laugier P, Naili S (2008) Velocity dispersion in trabecular bone: influence of multiple scattering and of absorption. J Acoust Soc Am 124: 4047– 4058

    Article  Google Scholar 

  • Haiat G, Padilla F, Peyrin F, Laugier P (2007) Variation of ultrasonic parameters with trabecular bone properties: a three-dimensional model simulation. J Bone Miner Res 22: 665–674

    Article  Google Scholar 

  • Haiat G, Padilla F, Barkmann R, Kolta S, Latremouille C, Gluer C, Laugier P (2005a) In vitro speed of sound measurement at intact human femur specimens. Ultrasound Med Biol 31: 987–996

    Article  Google Scholar 

  • Haiat G, Padilla F, Barkmann R, Dencks S, Moser U, Gluer CC, Laugier P (2005b) Optimal prediction of bone mineral density with ultrasonic measurements in excised human femur. Calcif Tissue Int 77: 186–192

    Article  Google Scholar 

  • Haiat G, Padilla F, Cleveland RO, Laugier P (2006) Effects of frequency-dependent attenuation and velocity dispersion on in vitro ultrasound velocity measurements in intact human femur specimens. IEEE Trans Ultrason Ferroelec Freq Contr 53: 39–51

    Article  Google Scholar 

  • Haiat G, Sasso M, Naili S, Matsukawa M (2008a) Ultrasonic velocity dispersion in bovine cortical bone: an experimental study. J Acoust Soc Am 124: 1811–1821

    Article  Google Scholar 

  • Haiat G, Padilla F, Laugier P (2008b) Sensitivity of qus parameters to controlled variations of bone strength assessed with a cellular model. IEEE Trans Ultrason Ferroelectr Freq Control. 55: 1488– 1496

    Article  Google Scholar 

  • Haiat G, Padilla F, Svrcekova M, Chevalier Y, Pahr D, Peyrin F, Laugier P, Zysset P (2009) Relationship between ultrasonic parameters and apparent trabecular bone elastic modulus: a numerical approach. J Biomech 42: 2033–2039

    Article  Google Scholar 

  • Hakulinen MA, Day JA, Toyras J, Weinans H, Jurvelin JS (2006) Ultrasonic characterization of human trabecular bone microstructure. Phys Med Biol 51: 1633–1648

    Article  Google Scholar 

  • Hung B, Goldstein A (1983) Acoustic parameters of commercial plastics. IEEE Trans Sonic Ultrasonics SU-30: 249–253

    Google Scholar 

  • Jenson F, Padilla F, Laugier P (2003) Prediction of frequency-dependent ultrasonic backscatter in cancellous bone using statistical weak scattering model. Ultrasound Med Biol 29: 455–464

    Article  Google Scholar 

  • Kaye GWC, Laby TH (1973) Table of physical and chemical constants. National Physical Laboratory, London

    Google Scholar 

  • Lee KI, Roh HS, Yoon SW (2003) Acoustic wave propagation in bovine cancellous bone: application of the modified biot-attenborough model. J Acoust Soc Am 114: 2284–2293

    Article  Google Scholar 

  • Lee KI, Choi MJ (2007) Phase velocity and normalized broadband ultrasonic attenuation in polyacetal cuboid bone-mimicking phantoms. J Acoust Soc Am 121: EL263–EL269

    Article  Google Scholar 

  • Lehman JF, Johnson EW (1958) Some factors influencing the temperature distribution in thighs exposed to ultrasound. Arch Phys Med Rehab 39: 347–356

    Google Scholar 

  • Luppé F, Conoir JM, Franklin H (2002) Scattering by a fluid cylinder in a porous medium: application to trabecular bone. J Acoust Soc Am 111: 2573–2582

    Article  Google Scholar 

  • Luppé F, Conoir JM, Franklin H (2003) Multiple scattering in a trabecular bone: influence of the marrow viscosity on the effective properties. J Acoust Soc Am 113: 2889–2892

    Article  Google Scholar 

  • Marin F, Gonzalez-Macias J, Diez-Perez A, Palma S, Delgado-Rodriguez M (2006) Relationship between bone quantitative ultrasound and fractures: a meta-analysis. J Bone Miner Res 21: 1126–1135

    Article  Google Scholar 

  • Marutyan KR, Holland MR, Miller JG (2006) Anomalous negative dispersion in bone can result from the interference of fast and slow waves. J Acoust Soc Am 120: EL55–61

    Article  Google Scholar 

  • Matikas TE, Kapur P (1993) Ultrasonic reflectivity technique for the characterization of fiber-matrix interface in metal matrix composites. J Appl Phys 74: 228–236

    Article  Google Scholar 

  • Mclaughlin R (1977) A study of the differential scheme for composite materials. Int J Eng Sci 15: 237–244

    Article  MATH  Google Scholar 

  • Morse P, Ingard K (1986) Theoretical acoustics. Princetown University Press, Pricetown

    Google Scholar 

  • Nemat-Nasser S, Hori M (1999) Micromechanics: overall properties of heterogeneous materials. Elsevier, Amsterdam

    Google Scholar 

  • Nicholson PHF, Lowet G, Langton CM, Dequeker J, van der Perre G (1996) A comparison of time-domain and frequency domain approaches to ultrasonic velocity measurement in trabecular bone. Phys Med Biol 41: 2421–2435

    Article  Google Scholar 

  • Njeh CF, Hans D, Fuerst T, Gluer CC, Genant HK (1999) Quantitative ultrasound: assesment of osteoporosis and bone status. Martin Dunitz, London

    Google Scholar 

  • O’Donnell M, Jaynes ET, Miller JG (1978) General relationships between ultrasonic attenuation and dispersion. J Acoust Soc Am 63: 1935–1937

    Article  Google Scholar 

  • O’Donnell M, Jaynes ET, Miller JG (1981) Kramers–Kronig relationship between ultrasonic attenuation and phase velocity. J Acoust Soc Am 69: 696–701

    Article  Google Scholar 

  • Padilla F, Peyrin F, Laugier P (2003) Prediction of backscatter coefficient in trabecular bones using a numerical model of three-dimensional microstructure. J Acoust Soc Am 113: 1122–1129

    Article  Google Scholar 

  • Pao YH, Mow CC (1973) Diffraction of elastic waves and dynamic stress concentrations. Crane Russack, New York

    Google Scholar 

  • Paskaramoorthy R, Datta SK, Shah AH (1988) Effect of interface layers on scattering of elastic waves. J Appl Mech 55: 871–878

    Article  MATH  Google Scholar 

  • Rupprecht M, Pogoda P, Mumme M, Rueger JM, Puschel K, Amling M (2006) Bone microarchitecture of the calcaneus and its changes in aging: a histomorphometric analysis of 60 human specimens. J Orthop Res 24: 664–674

    Article  Google Scholar 

  • Sasso M, Haiat G, Yamato Y, Naili S, Matsukawa M (2007) Frequency dependence of ultrasonic attenuation in bovine cortical bone: an in vitro study. Ultrasound Med Biol 33: 1933–1942

    Article  Google Scholar 

  • Sasso M, Haiat G, Yamato Y, Naili S, Matsukawa M (2008) Dependence of ultrasonic attenuation on bone mass and microstructure in bovine cortical bone. J Biomech 41: 347–355

    Article  Google Scholar 

  • Sinclair AN, Addison RC (1993) Acoustic Diffraction Spectrum of a Sic Fiber In A Solid Elastic Medium. J Acoust Soc Am 94: 1126–1135

    Article  Google Scholar 

  • Strelitzki R, Evans JA (1996) On the measurement of the velocity of ultrasound in the Os calcis using short pulses. Eur J Ultrasound 4: 205–213

    Article  Google Scholar 

  • Strelitzki R, Evans JA, Clarke AJ (1997) The influence of porosity and pore size on the ultrasonic properties of bone investigated using a phantom material. Osteoporos Int 7: 370–375

    Article  Google Scholar 

  • van der Bergh JPW, Lenthe GH, Hermus ARMM, Corstens FHM, Smals AGH, Huiskes R (2000) Speed of sound reflects Young’s modulus as assessed by microstructural finite element analysis. Bone 26: 519–524

    Article  Google Scholar 

  • Waters KR, Mobley J, Miller JG (2005) Causality-imposed (Kramers–Kronig) relationships between attenuation and dispersion. IEEE Trans Ultrason Ferroelectr Freq Control 52: 822–833

    Article  Google Scholar 

  • Wear K (2000a) Measurements of phase velocity and group velocity in human calcaneus. Ultrasound Med Biol 26: 641–646

    Article  Google Scholar 

  • Wear K (2000b) Anisotropy of ultrasonic backscatter and attenuation from human calcaneus: implications for relative roles of absorption and scattering in determining attenuation. J Acoust Soc Am 107: 3474–3479

    Article  Google Scholar 

  • Wear KA (2000) The effects of frequency-dependant attenuation and dispersion on sound speed measurements : applications in human trabecular bone. IEEE Trans Ultrason Ferroelect Freq Contr 47: 265–273

    Article  Google Scholar 

  • Wear KA (2001a) A stratified model to predict dispersion in trabecular bone. IEEE Trans Ultrason Ferroelect Freq Contr 48: 1079–1083

    Article  Google Scholar 

  • Wear KA (2001b) A numerical method to predict the effects of frequency-dependent attenuation and dispersion on speed of sound estimates in cancellous bone. J Acoust Soc Am 109: 1213–1218

    Article  Google Scholar 

  • Wear KA (2004) Measurement of dependence of backscatter coefficient from cylinders on frequency and diameter using focused transducers–with applications in trabecular bone. J Acoust Soc AM 115: 66–72

    Article  Google Scholar 

  • Wear KA (2005) The dependencies of phase velocity and dispersion on trabecular thickness and spacing in trabecular bone-mimicking phantoms. J Acoust Soc Am 118: 1186–1192

    Article  Google Scholar 

  • Wear KA (2007a) Group velocity, phase velocity, and dispersion in human calcaneus in vivo. J Acoust Soc Am 121: 2431–2437

    Article  Google Scholar 

  • Wear KA (2007b) The dependence of time-domain speed-of-sound measurements on center frequency, bandwidth, and transit-time marker in human calcaneus in vitro. J Acoust Soc Am 122: 636–644

    Article  Google Scholar 

  • White RM (1958) Elastic wave scattering at a cylindrical discontinuity in a solid. J Acoust Soc Am 30: 771–785

    Article  Google Scholar 

  • Yang RB, Mal AK (1994) Multiple-scattering of elastic waves in a fiber-reinforced composite. J Mech Phys Solids 42: 1945–1968

    Article  MATH  Google Scholar 

  • Ying CF, Truell R (1956) Scattering of a plane longitudinal wave by a spherical obstacle in an anisotropic elastic solid. J Appl Phys 27: 1086–1097

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Haïat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haïat, G., Naili, S. Independent scattering model and velocity dispersion in trabecular bone: comparison with a multiple scattering model. Biomech Model Mechanobiol 10, 95–108 (2011). https://doi.org/10.1007/s10237-010-0220-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-010-0220-z

Keywords

Navigation