Skip to main content

Trichoderma Green Mould Disease of Cultivated Mushrooms

  • Chapter
  • First Online:
Advances in Trichoderma Biology for Agricultural Applications

Abstract

This chapter presents a literature overview about the green mould disease of cultivated mushrooms caused by Trichoderma species, a problem which may result in serious economic damage due to substantial losses of crop yield in mushroom production. The first major green mould epidemic struck the production of white button mushroom (Agaricus bisporus) in Northern Ireland in 1985, but since then, the problem has occurred in a series of further countries. Outbreaks appear to be primarily caused by two subspecies of Trichoderma aggressivum. Trichoderma green mould infection has also been observed in many countries in cultivated oyster mushroom (Pleurotus ostreatus), where the main pathogens have been described as T. pleuroticola and T. pleuroti. Moreover, various further Trichoderma species have been reported to cause green mould problems in the production of shiitake (Lentinula edodes), as well as less frequently produced other mushrooms like Ganoderma species and Cyclocybe aegerita.

Components of mushroom cultivation substrata, the air, vehicles, equipment, contaminated clothing and animal vectors are among the potential sources of green mould infections. General symptoms of green mould generally appear in the mushroom cultivation substratum as large, greenish spots, but the causal agents may also colonise the surface of fruiting bodies. Green mould species compete efficiently for nutrients and space in the cultivation substratum; in addition, they produce extracellular enzymes, toxic secondary metabolites and volatile organic compounds that can lead to drastic crop losses.

Species-specific primers are now available for the effective monitoring of Agaricus-, Pleurotus- and Lentinula pathogenic Trichoderma species. Control measures include pasteurisation, the use of disinfectants, chemical treatments, biological control by natural products or the use of antagonistic bacteria and fungi, as well as the breeding and cultivation of resistant mushroom cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abosriwil SO, Clancy KJ (2002) A protocol for evaluation of the role of disinfectants in limiting pathogens and weed moulds in commercial mushroom production. Pest Manag Sci 58:282–289

    Article  CAS  PubMed  Google Scholar 

  • Abosriwil SO, Clancy KJ (2003) A mini-bag technique for evaluation of fungicide effects on Trichoderma spp. in mushroom compost. Pest Manag Sci 60:350–358

    Article  CAS  Google Scholar 

  • Abubaker KS, Sjaarda C, Castle AJ (2013) Regulation of three genes encoding cell-wall-degrading enzymes of Trichoderma aggressivum during interaction with Agaricus bisporus. Can J Microbiol 59:417–424

    Article  CAS  PubMed  Google Scholar 

  • Alice B, Kustudia M (2004) Mushroom cultivation and marketing. NCAT ATTRA Publication No. IP087

    Google Scholar 

  • Allaga H, Zhumakayev A, Büchner R, Kocsubé S, Szűcs A, Vágvölgyi C, Kredics L, Hatvani L (2021) Members of the Trichoderma harzianum species complex with mushroom pathogenic potential. Agronomy 11:2434.

    Google Scholar 

  • Al-Rubaiey WL, Al-Juboory HH (2020) Molecular identification of Trichoderma longibrachiatum causing green mold in Pleurotus eryngii culture media. Plant Arch 20:181–184

    Google Scholar 

  • Anderson MG, Beyer DM, Wuest PJ (2001) Yield comparison of hybrid Agaricus mushroom strains as a measure of resistance to Trichoderma green mold. Plant Dis 85:731–734

    Article  CAS  PubMed  Google Scholar 

  • Angelini P, Pagiotti R, Granetti B (2008) Effect of antimicrobial activity of Melaleuca alternifolia essential oil on antagonistic potential of Pleurotus spp. against Trichoderma harzianum in dual culture. World J Microbiol Biotechnol 24:197–202

    Article  CAS  Google Scholar 

  • Angelini P, Pagiotti R, Venanzoni R, Granetti B (2009) Antifungal and allelopathic effects of asafoetida against Trichoderma harzianum and Pleurotus spp. Allelopath J 23:357–368

    Google Scholar 

  • Aydoğdu M, Kurbetli I, Kitapçı A, Sülü G (2020) Aggressiveness of green mould on cultivated mushroom (Agaricus bisporus) in Turkey. J Plant Dis Protect 127:695–708

    Article  Google Scholar 

  • Baars J, Rutjens J, Mumm R (2011) Can volatiles emitted by compost during spawn run be used to detect green mould infection early? In: Proceedings of the 7th International Conference on Mushroom Biology and Mushroom Products (ICMBMP7), Arcachon, France, 4–7 October 2011, pp 469–478

    Google Scholar 

  • Ballero M, Mascia E, Rescigno A, Teulada ESD (1990) Use of Pleurotus for transformation of polyphenols in waste waters from olive presses into proteins. Micol Ital 19:39–41

    Google Scholar 

  • Bhatt N, Singh RP (2002) Casing soil bacteria as biocontrol agents against the mycoparasitic fungi of Agaricus bisporus. In: Proceedings of the 4th International Conference on Mushroom Biology and Mushroom Products, Cuernavaca, Morelos, Mexico, 20–23 February 2002, pp 1–9

    Google Scholar 

  • Błaszczyk L, Siwulski M, Sobieralski K, Frużyńska-Jóźwiak D (2013) Diversity of Trichoderma spp. causing Pleurotus green mould diseases in Central Europe. Folia Microbiol 58:325–333

    Article  CAS  Google Scholar 

  • Cai M, Idrees M, Zhou Y, Zhang C, Xu J (2020) First report of green mold disease caused by Trichoderma hengshanicum on Ganoderma lingzhi. Mycobiology 48:427–430

    Article  PubMed  PubMed Central  Google Scholar 

  • Cao XT, Bian YB, Xu ZY (2014) First report of Trichoderma oblongisporum causing green mold disease on Lentinula edodes (shiitake) in China. Plant Dis 98:1440

    Article  CAS  PubMed  Google Scholar 

  • Castle A, Speranzini D, Rghei N, Alm G, Rinker D, Bissett J (1998) Morphological and molecular identification of Trichoderma isolates on North American mushroom farms. Appl Environ Microbiol 64:133–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Catlin NJ, Wuest PJ, Beyer DM (2004) Green mold harbored by wood: post-crop steaming and preservatives. Mushroom Sci 16:449–458

    Google Scholar 

  • Chang ST, Miles PG (2004) Mushrooms: cultivation, nutritional value, medicinal effect and environmental impact. CRC Press, Boca Raton

    Google Scholar 

  • Chen AW (2005) Chapter 1: what is shiitake. In: MushroomWorld (ed) Mushroom growers’ handbook, 2nd edn. MushroomWorld, Seoul, pp 1–11

    Google Scholar 

  • Chen AW, Moy M (2004) Mushroom cultivation: building mold contamination. Int Soc Mushroom Sci 16:82

    Google Scholar 

  • Chen X, Romaine CP, Ospina-Giraldo MD, Royse DJ (1999a) A polymerase chain reaction-based test for the identification of Trichoderma harzianum biotypes 2 and 4, responsible for the worldwide green mold epidemic in cultivated Agaricus bisporus. Appl Microbiol Biotechnol 52:246–250

    Article  CAS  Google Scholar 

  • Chen X, Romaine CP, Tan Q, Schlagnhaufer B, Ospina-Giraldo MD, Royse DJ, Huff DR (1999b) PCR-based genotyping of epidemic and preepidemic Trichoderma isolates associated with green mold of Agaricus bisporus. Appl Environ Microbiol 65:2674–2678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Ospina-Giraldo MD, Wilkinson V, Royse DJ, Romaine CP (2003) Resistance of pre- and post-epidemic strains of Agaricus bisporus to Trichoderma aggressivum f. aggressivum. Plant Dis 87:1457–1461

    Article  CAS  PubMed  Google Scholar 

  • Chittihunsa T, Bangeekhan E, Wongsamitkul N, Subsomboon T (2007) Screening of Bacillus spp. suppressing the infection of Trichoderma sp. in mushroom cultivation. KMITL Sci Technol J 7:S19–S27

    Google Scholar 

  • Choi KW (2004) Shelf cultivation of oyster mushroom with emphasis on substrate fermentation. In: Mushroom growers’ handbook 1. Oyster mushroom cultivation. Mushworld-Heineart Inc, Seoul

    Google Scholar 

  • Choi I, Choi J, Sharma PK, Lee W (2010) Isolation and identification of mushroom pathogens from Agrocybe aegerita. Mycobiology 38:310–315

    Article  PubMed  PubMed Central  Google Scholar 

  • Chrysayi-Tokousbalides M, Kastanias MA, Philippoussis A, Diamantopoulou P (2007) Selective fungitoxicity of famoxadone, tebuconazole and trifloxystrobin between Verticillium fungicola and Agaricus bisporus. Crop Prot 26:469–475

    Google Scholar 

  • Clift AD, Shamshad A (2009) Modelling mites, moulds and mushroom yields in the Australian Mushroom Industry. In: Proceedings of the 18th World IMACS/MODSIM Congress, Cairns, Australia, 13–17 July 2009, pp 491–497

    Google Scholar 

  • Colavolpe MB, Mejía SJ, Albertó E (2014) Efficiency of treatments for controlling Trichoderma spp. during spawning in cultivation of lignicolous mushrooms. Braz J Microbiol 45:1263–1270

    Article  PubMed  Google Scholar 

  • Dodd SL, Crowhurst RN, Rodrigo AG, Samuels GJ, Hills RA, Stewart A (2000) Examination of Trichoderma phylogenies derived from ribosomal DNA sequence data. Mycol Res 104:23–34

    Article  CAS  Google Scholar 

  • Doyle O (1991) Trichoderma green mould update. Irish Mushroom Rev 3:13–17

    Google Scholar 

  • Druzhinina IS, Kopchinskiy AG, Komon M, Bissett J, Szakács G, Kubicek CP (2005) An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. Fungal Genet Biol 42:813–828

    Article  CAS  PubMed  Google Scholar 

  • Đurović-Pejčev R, Potočnik I, Milijašević-Marčić S, Todorović B, Rekanović E, Stepanović M (2014) Antifungal activity of six plant essential oils from Serbia against Trichoderma aggressivum f. europaeum. Pestic Phytomed 29:291–297

    Article  Google Scholar 

  • Fletcher JT (1990) Trichoderma and Penicillium diseases of Agaricus bisporus. A literature review for the Horticultural Development Council. ADAS, London

    Google Scholar 

  • Fletcher JT (1997) Mushroom spawn and the development of Trichoderma harzianum compost mold. Mushroom News 45(8):6–8

    Google Scholar 

  • Fletcher JT, Gaze RH (2007) Mushroom pest and disease control a color handbook. CRC Press, Boca Raton

    Book  Google Scholar 

  • Fletcher JT, Connolly G, Mountfield EX, Jacobs L (1980) The disappearance of benomyl from mushroom casing. Ann Appl Biol 95:73–82

    Article  Google Scholar 

  • Fletcher JT, White PF, Gaze RH (1989) Mushroom pest and disease control, 2nd edn. Intercept, Andover

    Google Scholar 

  • Foulongne-Oriol M, Minvielle N, Savoie J (2011) QTL for resistance to Trichoderma lytic enzymes and metabolites in Agaricus bisporus. In: Proceedings of the 7th International Conference on Mushroom Biology and Mushroom Products (ICMBMP7), Arcachon, France, 4–7 October 2011, pp 17–25

    Google Scholar 

  • Gallucci MN, Oliva M, Casero C, Dambolena J, Luna A, Zygadlo J, Demo M (2009) Antimicrobial combined action of terpenes against the food-borne microorganisms Escherichia coli, Staphylococcus aureus and Bacillus cereus. Flavour Fragr J 24:348–354

    Article  CAS  Google Scholar 

  • Gams W, Meyer W (1998) What exactly is Trichoderma harzianum? Mycologia 90:904–915

    Article  CAS  Google Scholar 

  • Garcia-Morras JA, Olivan R (1997) Problemática actual de Trichoderma Pers. In: Proceedings of 2nd Technical Conference on Mushroom and Other Edible Fungi in Castilla-La Mancha, Casasimarro, Cuenca, Spain 4–5 November 1997, pp 131–140

    Google Scholar 

  • Gea FJ (2009) First report of Trichoderma pleurotum on oyster mushroom crops in Spain. J Plant Pathol 91:504

    Google Scholar 

  • Geels FP (1997) Rondetafel-bijeenkomst over Trichoderma. Champignoncultuur 41:13

    Google Scholar 

  • Geels FJ, van de Geijin LJLD, Rutjens A (1988) Pests and diseases. In: van Griensven LJLD (ed) The cultivation of mushrooms. Md: Interlingua, East Grinstead, Sussex, England, pp 361–422

    Google Scholar 

  • Górski R, Sobieralski K, Siwulski M, Frąszczak B, Sas-Golak I (2014) The effect of Trichoderma isolates, from family mushroom growing farms, on the yield of four Agaricus bisporus (Lange) Imbach strains. J Plant Prot Res 54:24–27

    Article  Google Scholar 

  • Gregori A, Svagelj M, Pohleven J (2007) Cultivation techniques and medicinal properties of Pleurotus spp. Food Technol Biotechnol 45:238–249

    Google Scholar 

  • Grogan HM, Jukes AA (2003) Persistence of the fungicides thiabendazole, carbendazim and prochloraz-Mn in mushroom casing soil. Pest Manag Sci 59:1225–1231.

    Google Scholar 

  • Grogan HM (2005) Zielone pleśnie – wczoraj i dziś. In: Materiały Ogolnopolskiej Konferencji Naukowej „Ochrona i uprawa pieczarki oraz innych grzybow uprawnych”, Wyd. Instytutu Warzywnictwa, Skierniewice, pp 19–25

    Google Scholar 

  • Grogan H (2008) Challenges facing mushroom disease control in the 21st century. In: Proceedings of the 6th International Conference on Mushroom Biology and Mushroom Products, Bonn, Germany, 29 September – 3 October 2008, pp 120–127

    Google Scholar 

  • Grogan HM, Keeling C, Jukes AA (2000) In vivo response of the mushroom pathogen Verticillium fungicola (dry bubble) to prochloraz-manganese. In: Proceedings of Brighton Crop Protection Conference: Pests & Diseases, BCPC, Farnham, Surrey, UK, pp 273–278

    Google Scholar 

  • Guler P, Ergene A, Tan S (2006) Production of high temperature-resistant strains of Agaricus bitorquis. Afr J Biotechnol 5:615–619

    Google Scholar 

  • Gunde-Cimerman N (1999) Medicinal value of the genus Pleurotus (Fr.) P. Karst (Agaricales s.l. Basidiomycetes). Int J Med Mushrooms 1:69–80

    Article  CAS  Google Scholar 

  • Gupta VK, Schmoll M, Herrera-Estrella A, Upadhyay RS, Druzhinina I, Tuohy MG (eds) (2014) Biotechnology and biology of Trichoderma. Elsevier, Amsterdam

    Google Scholar 

  • Guthrie JL, Castle AJ (2006) Chitinase production during interaction of Trichoderma aggressivum and Agaricus bisporus. Can J Microbiol 52:961–967

    Article  CAS  PubMed  Google Scholar 

  • Győrfi J (2002) Zöldpenészek, Trichoderma fajok. Magyar Gomba 18:28–29

    Google Scholar 

  • Győrfi J, Geösel A (2008) Biological control against Trichoderma species in Agaricus cultivation. In: Proceedings of the 6th International Conference on Mushroom Biology and Mushroom Products. Bonn, Germany, 29 September – 3 October 2008, pp 158–164

    Google Scholar 

  • Hassan S, Mohammad AZ, Kiramat K (2011) Cultivation of the oyster mushroom (Pleurotus ostreatus (Jacq.) P. Kumm.) in two different agroecological zones of Pakistan. Afr J Biotechnol 10:183–188

    Google Scholar 

  • Hasselbach OE, Mutsers P (1971) Agaricus bitorquis (Quel.) Sacc. ein warmeliebendes Familienmitglied der Champignon. Champignon 130:20–22

    Google Scholar 

  • Hatvani L (2008) Mushroom pathogenic Trichoderma species: occurrence, biodiversity, diagnosis and extracellular enzyme production. PhD-dissertation, University of Szeged, Hungary

    Google Scholar 

  • Hatvani L, Antal Z, Manczinger L, Szekeres A, Druzhinina IS, Kubicek CP, Nagy A, Nagy E, Vágvölgyi C, Kredics L (2007) Green mould diseases of Agaricus and Pleurotus spp. are caused by related but phylogenetically different Trichoderma species. Phytopathology 97:532–537

    Article  CAS  PubMed  Google Scholar 

  • Hatvani L, Kocsubé S, Manczinger L, Antal Z, Szekeres A, Druzhinina IS, Komoń-Zelazowska M, Kubicek CP, Nagy A, Vágvölgyi C, Kredics L (2008) The green mould disease global threat to the cultivation of oyster mushroom (Pleurotus ostreatus): a review. Mushroom Sci 17:485–495

    Google Scholar 

  • Hatvani L, Sabolic P, Kocsubé S, Kredics L, Czifra D, Vágvölgyi C, Kaliterna J, Ivić D, Ɖermić E, Kosalec I (2012) First report of mushroom green mould disease in Croatia. Arh Hig Rada Toksikol 63:481–487

    Article  PubMed  Google Scholar 

  • Hatvani L, Kredics L, Allaga H, Manczinger L, Vágvölgyi C, Kuti K, Geösel A (2017) First report of Trichoderma aggressivum f. aggressivum green mold on Agaricus bisporus in Europe. Plant Dis 101(1052)

    Google Scholar 

  • Hermosa MR, Grondona I, Monte E (1999) Isolation of Trichoderma harzianum Th2 from commercial mushroom compost in Spain. Plant Dis 83:591

    Article  CAS  PubMed  Google Scholar 

  • Hermosa MR, Grondona I, Iturriaga EA, Diaz-Minguez JM, Castro C, Monte E, Garcia-Acha I (2000) Molecular characterization and identification of biocontrol isolates of Trichoderma spp. Appl Environ Microbiol 66:1890–1898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Innocenti G, Montanari M (2014) Trichoderma green mould disease: a case study in a Pleurotus ostreatus farm. Preliminary data. Micol Ital 43:49–57

    Google Scholar 

  • Innocenti G, Montanari M, Righini H, Roberti R (2019) Trichoderma species associated with green mould disease of Pleurotus ostreatus and their sensitivity to prochloraz. Plant Pathol 68:392–398

    Article  CAS  Google Scholar 

  • Jaklitsch WM (2011) European species of Hypocrea part II: species with hyaline ascospores. Fungal Divers 48:1–250

    Article  PubMed  PubMed Central  Google Scholar 

  • Jayalal RGU, Adikaram NKB (2007) Influence of Trichoderma harzianum metabolites on the development of green mould disease in the oyster mushroom. Ceylon J Sci 36:53–60

    Google Scholar 

  • Kai D, Zhixiang L, Qiong W, Mi N, Chuanjin Y, Meng W et al (2020) MIST: a multilocus identification system for Trichoderma. Appl Environ Microbiol 86:e01532–e01520

    Google Scholar 

  • Khan SM, Kausar AG, Ali MA (1981) Yield performance of different strains of oyster mushroom (Pleurotus spp.) on paddy straw in Pakistan. Mushroom Sci 11:675–678

    Google Scholar 

  • Khan I, Shah F, Bulman S, Scott I (2008) Molecular diagnostic tools for improved mushroom production. In: Abstracts of the XVII International Congress on the Science and Cultivation of Edible and Medicinal Fungi, Cape Town, South Africa

    Google Scholar 

  • Kim JY, Yun YH, Hyun MW, Kim MH, Kim SH (2010) Identification and characterization of Gliocladium viride isolated from mushroom fly infested oak log used for shiitake cultivation. Mycobiology 38:7–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim CS, Shirouzu T, Nakagiri A, Sotome K, Nagasawa E, Maekawa N (2012a) Trichoderma mienum sp. nov., isolated from mushroom farms in Japan. Anton Leeuw Int J G 102:629–641

    Article  CAS  Google Scholar 

  • Kim CS, Yu SH, Nakagiri A, Shirouzu T, Sotome K, Kim SC, Maekawa N (2012b) Re-evaluation of Hypocrea pseudogelatinosa and H. pseudostraminea isolated from shiitake mushroom (Lentinula edodes) cultivation in Korea and Japan. Plant Pathol J 28:341–356

    Article  Google Scholar 

  • Kim CS, Shirouzu T, Nakagiri A, Sotome K, Maekawa N (2013) Trichoderma eijii and T. pseudolacteum, two new species from Japan. Mycol Prog 12:739–753

    Article  Google Scholar 

  • Komoń-Zelazowska M, Bissett J, Zafari D, Hatvani L, Manczinger L, Woo S, Lorito M, Kredics L, Kubicek CP, Druzhinina IS (2007) Genetically closely related but phenotypically divergent Trichoderma species cause worldwide green mould disease in oyster mushroom farms. Appl Environ Microbiol 73:7415–7426

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kosanović D, Potočnik I, Duduk B, Vukojević J, Stajić M, Rekanović E, Milijašević-Marčić S (2013) Trichoderma species on Agaricus bisporus farms in Serbia and their biocontrol. Ann Appl Biol 163:218–230

    Article  Google Scholar 

  • Kosanović D, Potočnik I, Vukojević J, Stajić M, Rekanović E, Stepanović M, Todorović B (2015) Fungicide sensitivity of Trichoderma spp. from Agaricus bisporus farms in Serbia. J Environ Sci Health B 50:607–613

    Article  PubMed  CAS  Google Scholar 

  • Kosanović D, Sheehan G, Grogan H, Kavanagh K (2019) Characterisation of the interaction of Pseudomonas putida and Pseudomonas tolaasii with Trichoderma aggressivum. Eur J Plant Pathol 156:111–121

    Article  CAS  Google Scholar 

  • Kosanović D, Grogan H, Kavanagh K (2020) Exposure of Agaricus bisporus to Trichoderma aggressivum f. europaeum leads to growth inhibition and induction of an oxidative stress response. Fungal Biol 124:814–820

    Article  PubMed  CAS  Google Scholar 

  • Kredics L, Hatvani L, Antal Z, Manczinger L, Druzhinina IS, Kubicek CP, Szekeres A, Nagy A, Vágvölgyi C, Nagy E (2006) Green mould disease of oyster mushroom in Hungary and Transylvania. Acta Microbiol Immunol Hung 53:306–307

    Google Scholar 

  • Kredics L, Cseh T, Körmöczi P, Hatvani L, Manczinger L, Vágvölgyi C (2008a) Extracellular enzyme production of the two causative agents of oyster mushroom green mould under inductive and non-inductive conditions. In: Proceedings of the 6th International Conference on Mushroom Biology and Mushroom Products, Bonn, Germany, 29 September – 3 October 2008, p 48

    Google Scholar 

  • Kredics L, Cseh T, Körmöczi P, Hatvani L, Antal Z, Manczinger L, Vágvölgyi C (2008b) Proteolytic enzyme production of the causative agents of oyster mushroom green mould under inductive and non-inductive conditions. Acta Microbiol Immunol Hung 55:211–212

    Google Scholar 

  • Kredics L, Kocsubé S, Nagy L, Komon-Zelazowska M, Manczinger L, Sajben E, Nagy A, Vágvölgyi C, Kubicek CP, Druzhinina IS, Hatvani L (2009) Molecular identification of Trichoderma species associated with Pleurotus ostreatus and natural substrates of the oyster mushroom. FEMS Microbiol Lett 300:58–67

    Article  CAS  PubMed  Google Scholar 

  • Kredics L, Jimenez LG, Naeimi S, Czifra D, Urban P, Manczinger L, Vágvölgyi C, Hatvani L (2010) A challenge to mushroom growers: the green mould disease of cultivated champignons. In: Méndez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology. Formatex, Badajoz, pp 295–305

    Google Scholar 

  • Kredics L, Láday M, Körmöczi P, Manczinger L, Rákhely G, Vágvölgyi C, Szekeres A (2012) Genetic and biochemical diversity among Trichoderma isolates in soil samples from winter wheat fields of the Great Hungarian Plain. Acta Biol Szeged 56:141–149

    Google Scholar 

  • Krupke O, Castle A, Rinker D (2003) The North American mushroom competitor, Trichoderma aggressivum f. aggressivum, produces antifungal compounds in mushroom compost that inhibit mycelial growth of the commercial mushroom Agaricus bisporus. Mycol Res 107:1467–1475

    Article  PubMed  Google Scholar 

  • Kubicek CP, Herrera-Estrella A, Seidl-Seiboth V, Martinez DA, Druzhinina IS, Thon M et al (2011) Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol 12:R40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kullnig-Gradinger CM, Szakács G, Kubicek CP (2002) Phylogeny and evolution of the fungal genus Trichoderma – a multigene approach. Mycol Res 106:757–767

    Article  CAS  Google Scholar 

  • Lane C (2008) Trichoderma green mould – determining diversity and highlighting risks. HDC Project Report M46, 17 pp

    Google Scholar 

  • Largeteau ML, Savoie JM (2010) Microbially induced diseases of Agaricus bisporus: biochemical mechanisms and impact on commercial mushroom production. Appl Microbiol Biotechnol 86:63–73

    Article  CAS  PubMed  Google Scholar 

  • Largeteau-Mamoun ML, Mata G, Savoie JM (2002) Green mold disease: adaptation of Trichoderma harzianum Th2 to mushroom compost. In: Proceedings of the 4th International Conference on Mushroom Biology and Mushroom Products, Cuernavaca, Mexico, 20–22 February 2002, pp 179–187

    Google Scholar 

  • Lavi ID, Levinson D, Peri I, Hadar Y, Schwartz B (2010) Orally administered glucans from the edible mushroom (Pleurotus pulmonarius) reduce acute inflammation in dextran sulfate sodium induced experimental colitis. Br J Nutr 103:393–402

    Article  CAS  PubMed  Google Scholar 

  • Lee HB, Magan N, Yu SH (2000) Comparison of water relations of three cultivated Pleurotus species and Trichoderma green moulds. Plant Pathol J 16:25–28

    Google Scholar 

  • Lee SH, Jung HJ, Hong S-B, Choi JI, Ryua J-S. (2020) Molecular markers for detecting a wide range of Trichoderma spp. that might potentially cause green mold in Pleurotus eryngii. Mycobiology 48:313–320.

    Google Scholar 

  • Lelley J (1987) Disinfection in mushroom farming-possibilities and limits. Mushroom J 14:181–187

    Google Scholar 

  • Lelley J, Straetman U (1986) Hygiene in mushroom growing units-disinfection, disinfectants and their suitability for mushroom farms. Dev Crop Sci 10:621–636

    Article  Google Scholar 

  • Lu BH, Zuo B, Liu XL, Feng J, Wang ZM, Gao J (2016) Trichoderma harzianum causing green mold disease on cultivated Ganoderma lucidum in Jilin Province, China. Plant Dis 100:2524

    Article  Google Scholar 

  • Luković J, Milijašević-Marčić S, Hatvani L, Kredics L, Szűcs A, Vágvölgyi C, Duduk N, Vico I, Potočnik I (2021) Sensitivity of Trichoderma strains from edible mushrooms to the fungicides prochloraz and metrafenone. J Environ Sci Health B 56:54–63

    Article  PubMed  CAS  Google Scholar 

  • Luo XC (2004) Progress of xiang-gu (shiitake) cultivation in China. Mushroom Sci 16:317–322

    Google Scholar 

  • Mamoun ML, Iapicco R, Savoie J-M, Olivier JM (2000a) Green mould disease in France: Trichoderma harzianum Th2 and other species causing damages on mushroom farms. Mushroom Sci 15:625–632

    Google Scholar 

  • Mamoun ML, Savoie J-M, Olivier JM (2000b) Interactions between the pathogen Trichoderma harzianum Th2 and Agaricus bisporus in mushroom compost. Mycologia 92:233–240

    Article  Google Scholar 

  • Marik T, Urbán P, Tyagi C, Szekeres A, Leitgeb B, Vágvölgyi M, Manczinger L, Druzhinina IS, Vágvölgyi C, Kredics L (2017) Diversity profile and dynamics of peptaibols produced by green mould Trichoderma species in interactions with their hosts Agaricus bisporus and Pleurotus ostreatus. Chem Biodivers 14:e1700033

    Article  CAS  Google Scholar 

  • Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE et al (2008) Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 26:553–560

    Article  CAS  PubMed  Google Scholar 

  • Marzullo L, Cannio R, Giardina P, Santini MT, Sannia G (1995) Veratryl alcohol oxidase from Pleurotus ostreatus participates in lignin biodegradation and prevents polymerization of laccase-oxidized substrates. J Biol Chem 270:3823–3827

    Article  CAS  PubMed  Google Scholar 

  • Matcham SE, Wood DA (1992) Purification of Agaricus bisporus extracellular laccase from mushroom compost. Biotechnol Lett 14:297–300

    Article  CAS  Google Scholar 

  • Mattila PK, Suonpaa K, Piironen V (2000) Functional properties of edible mushrooms. Nutrition 16:694–696

    Article  CAS  PubMed  Google Scholar 

  • Mazin M, Harvey R, Andreadis S, Pecchia J, Cloonan K, Rajotte EG (2019) Mushroom sciarid fly, Lycoriella ingenua (Diptera: Sciaridae) adults and larvae vector mushroom green mold (Trichoderma aggressivum f. aggressivum) spores. Appl Entomol Zool 54:369–376

    Article  CAS  Google Scholar 

  • Milijašević-Marčić S, Stepanović M, Todorović B, Duduk B, Stepanović J, Rekanović E, Potočnik I (2017) Biological control of green mould on Agaricus bisporus by a native Bacillus subtilis strain from mushroom compost. Eur J Plant Pathol 148:509–519

    Article  Google Scholar 

  • Miyazaki K, Tsuchiya Y, Okuda T (2009) Specific PCR assays for the detection of Trichoderma harzianum causing green mold disease during mushroom cultivation. Mycoscience 50:94–99

    Article  CAS  Google Scholar 

  • Morin E, Kohler A, Baker AR, Foulongne-Oriol M, Lombard V, Nagy LG et al (2012) Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche. Proc Natl Acad Sci U S A 109:17501–17506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris E, Doyle O, Clancy KJ (1995a) A profile of Trichoderma species. I – mushroom compost production. Mushroom Sci 14:611–618

    Google Scholar 

  • Morris E, Doyle O, Clancy KJ (1995b) A profile of Trichoderma species. II – mushroom growing units. Mushroom Sci 14:619–625

    Google Scholar 

  • Morris E, Harrington O, Doyle ORE (2000) Green mould disease – the study of survival and dispersal characteristics of the weed mould Trichoderma, in the Irish mushroom industry. Mushroom Sci 15:645–652

    Google Scholar 

  • Mumpuni A, Sharma HSS, Brown AE (1998) Effect of metabolites produced by Trichoderma harzianum biotypes and Agaricus bisporus on their respective growth radii in culture. Appl Environ Microbiol 64:5053–5056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muthumeenakshi S, Mills PR (1995) Detection and differentiation of fungal pathogens of Agaricus bisporus. Mushroom Sci 14:603–610

    Google Scholar 

  • Muthumeenakshi S, Mills PR, Brown-Averil E, Seaby DA (1994) Intraspecific molecular variation among Trichoderma harzianum isolates colonizing mushroom compost in the British Isles. Microbiology (UK) 140:769–777

    Article  CAS  Google Scholar 

  • Muthumeenakshi S, Brown AE, Mills PR (1998) Genetic comparison of the aggressive weed mould strains of Trichoderma harzianum from mushroom compost in North America and the British Isles. Mycol Res 102:385–390

    Article  CAS  Google Scholar 

  • Naeimi S, Khosravi V, Nouri M-Z, Hoda H, Vágvölgyi C, Kredics L (2019) Biological control of rice sheath blight disease with formulation of indigenous Trichoderma strains under paddy field conditions. Acta Biol Szeged 63:37–43

    Article  Google Scholar 

  • Nagy A, Manczinger L, Tombácz D, Hatvani L, Győrfi J, Antal Z, Sajben E, Vágvölgyi C, Kredics L (2012) Biological control of oyster mushroom green mould disease by antagonistic Bacillus species. IOBC-WPRS Bull 78:289–293

    Google Scholar 

  • O’Brien M, Grogan H, Kavanagh K (2014) Proteomic response of Trichoderma aggressivum f. europaeum to Agaricus bisporus tissue and mushroom compost. Fungal Biol 118:785–791

    Article  PubMed  CAS  Google Scholar 

  • O’Brien M, Kavanagh K, Grogan H (2017) Detection of Trichoderma aggressivum in bulk phase III substrate and the effect of T. aggressivum inoculum, supplementation and substrate-mixing on Agaricus bisporus yields. Eur J Plant Pathol 147:199–209

    Article  Google Scholar 

  • Olmedo Monfil V, Casas-Flores S (2014) Molecular mechanisms of biocontrol in Trichoderma spp. and their applications in agriculture. In: Gupta VK, Schmoll M, Herrera-Estrella A, Upadhyay RS, Druzhinina I, Tuohy MG (eds) Biotechnology and biology of Trichoderma. Elsevier, Amsterdam, pp 429–476

    Google Scholar 

  • Ospina-Giraldo MD, Royse DJ, Thon MR, Chen X, Romaine CP (1998) Phylogenetic relationships of Trichoderma harzianum causing mushroom green mold in Europe and North America to other species of Trichoderma from world-wide sources. Mycologia 90:76–81

    Article  Google Scholar 

  • Ospina-Giraldo MD, Royse DJ, Chen X, Romaine CP (1999) Molecular phylogenetic analyses of biological controls strains of Trichoderma harzianum and other biotypes of Trichoderma ssp. associated with mushrooms green mold. Phytopatology 89:308–313

    Article  CAS  Google Scholar 

  • Pandin C, Vedie R, Rousseau T, Le Coq D, Aymericha S, Briandeta R (2018a) Dynamics of compost microbiota during the cultivation of Agaricus bisporus in the presence of Bacillus velezensis QST713 as biocontrol agent against Trichoderma aggressivum. Biol Control 127:39–54

    Article  Google Scholar 

  • Pandin C, Le Coq D, Deschamps J, Vedic R, Rousseau T, Aymerich S, Briandet R (2018b) Complete genome sequence of Bacillus velezensis QST713: a biocontrol agent that protects Agaricus bisporus crops against green mould disease. J Biotechnol 278:10–19

    Article  CAS  PubMed  Google Scholar 

  • Papadopoulos G (2006) The fate of prochloraz in mushroom casing. PhD dissertation, University of Reading, UK

    Google Scholar 

  • Park MS, Bae KS, Yu SH (2004) Molecular and morphological analysis of Trichoderma isolates associated with green mold epidemic of oyster mushroom in Korea. J Huazhong Agric Univ 23:157–164

    CAS  Google Scholar 

  • Park MS, Seo GS, Lee KH, Bae KS, Yu SH (2005) Characterization of Trichoderma spp. associated with green mold of oyster mushroom by PCR-RFLP and sequence analysis of ITS regions of rDNA. Plant Pathol J 21:229–236

    Article  Google Scholar 

  • Park MS, Bae KS, Yu SH (2006) Two new species of Trichoderma associated with green mold of oyster mushroom cultivation in Korea. Mycobiology 34:111–113

    Article  PubMed  PubMed Central  Google Scholar 

  • Pecchia JA (2012) Trichoderma green mold survey results. In: Proceedings from the Penn State Mushroom Short Course. State College, Pennsylvania

    Google Scholar 

  • Peil RM, Rosseto EA, Pierobom CR, Rocha MT (1996) Desinfestacao de composto para cultivo de cogumelo Agaricus bisporus (Lange) Imbach. Revista Bras Agrocienc 2:159–164

    Google Scholar 

  • Potočnik I, Stepanović M, Rekanović E, Todorović B, Milijašević-Marčić S (2015) Disease control by chemical and biological fungicides in cultivated mushrooms: button mushroom, oyster mushroom and shiitake. Pestic Phytomed 30:201–208

    Article  Google Scholar 

  • Potočnik I, Todorović B, Rekanović E, Luković J, Paunović D, Milijašević-Marčić S (2018) Impact of Bacillus subtilis QST713 mushroom grain spawn treatment on yield and green mould control. Pestic Phytomed 33:205–211

    Article  Google Scholar 

  • Potočnik I, Rekanović E, Todorović B, Luković J, Paunović D, Stanojević O, Milijašević-Marčić S (2019a) The effects of casing soil treatment with Bacillus subtilis Ch-13 biofungicide on green mould control and mushroom yield. Pestic Phytomed 34:53–60

    Article  Google Scholar 

  • Potočnik I, Milijašević-Marčić S, Stanojević O, Berić T, Stanković S, Kredics L, Hatvani L (2019b) The activity of native Bacillus subtilis strains in control of green mould disease of oyster mushroom (Pleurotus spp.). Pestic Phytomed 34:97–102

    Article  Google Scholar 

  • Prescott TJ, Wong B, Panaretou E, Boa A, Bond A, Chowdhury S et al (2018) Useful fungi. In: Willis K (ed) State of the world’s fungi, report. Royal Botanic Gardens, Kew/Richmond, pp 24–31

    Google Scholar 

  • Puniya AK, Shah KG, Hire SA, Ahire RN, Rathod MP, Mali RS (1996) Bioreactor for solid-state fermentation of agro-industrial wastes. Indian J Microbiol 36:177–178

    Google Scholar 

  • Qi T, Ospina-Giraldo MD, Romaine CP, Schlagnhaufer B, Xi C, Huff D, Royse DJ (1996) Genetic analysis of the Trichoderma spp. associated with the green mold epidemic in mushrooms. Phytopathology 86(S89)

    Google Scholar 

  • Radványi D, Geösel A, Jókai Z, Fodor P, Gere A (2020) Detection and identification of microbial volatile organic compounds of the green mold disease: MVOC profile on different media. Int J Agric Environ Inf Syst 11:14–28

    Article  Google Scholar 

  • Rasooli I, Mirmostafa SA (2002) Antibacterial properties of Thymus pubescens and Thymus serpyllum essential oils. Fitoterapia 73:244–250

    Article  CAS  PubMed  Google Scholar 

  • Rinker DL (1993) Disease management strategies for Trichoderma mould. Mushroom World 4:3–5

    Google Scholar 

  • Rinker DL (1994) Trichoderma green mold: a seminar by Dr. Donald Betterley. Monterey Labs Mushroom News 42:28–32

    Google Scholar 

  • Rinker DL (1996) Trichoderma disease: progress toward solutions. Mushroom World 7:46–53

    Google Scholar 

  • Rinker DL, Alm G (2000) Management of green mould disease in Canada. Mushroom Sci 15:617–623

    Google Scholar 

  • Rinker DL, Alm G (2008) Management of casing Trichoderma using fungicides. Mushroom Sci 17:496–509

    CAS  Google Scholar 

  • Rinker DL, Alm G, Castle AJ, Rghei N (1997a) Not all green is Trichoderma green mould. Mushroom World 8:47–50

    Google Scholar 

  • Rinker DL, Alm G, Castle AJ, Rghei N (1997b) Distribution of green mould on infected mushroom farms. Mushroom World 8:71–75

    Google Scholar 

  • Roberti R, Di Francesco A, Innocenti G, Mari M (2019) Potential for biocontrol of Pleurotus ostreatus green mould disease by Aureobasidium pullulans De Bary (Arnaud). Biol Control 135:9–15

    Article  Google Scholar 

  • Romaine CP, Royse DJ, Wuest PJ, Beyer DM (1996) Mushroom green mold: cause, edaphic factors and control. Mushroom News 44:20–23

    Google Scholar 

  • Romaine CP, Royse DJ, Wuest PJ, Beyer DM (1998) Mushroom green mold: cause, edaphic factors and control. Mushroom News 46:12–17

    Google Scholar 

  • Romaine CP, Chen X, Ospina-Giraldo MD, Royse DJ (1999) Phylogenetic analysis of Trichoderma spp. associated with green mould on Agaricus bisporus using a sequence in β-tubulin gene 1. In: Proceedings of the 3rd International Conference on Mushroom Biology and Mushroom Products, 12–16 October 1999, Sydney, Australia, pp 116–124

    Google Scholar 

  • Romaine CP, Chen X, Ospina-Giraldo MD, Royse DJ (2001) Molecular genetics and pathogenicity of biocontrol and mushroom Trichoderma. IOBC WPRS Bull 24(3):333–336

    Google Scholar 

  • Romaine CPD, Royse DJ, Schlagnhaufer C (2005) Superpathogenic Trichoderma resistant to TopsinM found in Pennsylvania and Delaware. Mushroom News 53:6–9

    Google Scholar 

  • Romaine CP, Royse DJ, Schlagnhaufer C (2008) Emergence of benzimidazole-resistant green mould, Trichoderma aggressivum, on cultivated Agaricus bisporus in North America. Mushroom Sci 17:510–523

    CAS  Google Scholar 

  • Romero-Arenas O, Lara MH, Huato MAD, Hernandez FD, Victoria DAA (2009) The characteristics of Trichoderma harzianum as a limiting agent in edible mushrooms. Rev Colomb Biotechnol 11:143–151

    Google Scholar 

  • Royse DJ, Boomer K, Du Y, Handcock M (1999) Spatial distribution of green mold foci in 30 commercial mushroom crops. Plant Dis 83:71–76

    Article  CAS  PubMed  Google Scholar 

  • Royse DJ, Ospina-Giraldo MD, Chen X, Romaine CP (2001) Phylogenetic analyses of Trichoderma harzianum associated with mushroom culture or used for biological control of plant pathogens. IOBC WPRS Bull 24:341–344

    Google Scholar 

  • Royse DJ, Baars J, Tan Q (2017) Current overview of mushroom production in the world. In: Zied DC, Pardo-Giménez A (eds) Edible and medicinal mushrooms: technology and applications, 1st edn. Wiley-Blackwell, Hoboken, pp 2–13

    Google Scholar 

  • Samuels GJ, Dodd SL, Gams W, Castlebury LA, Petrini O (2002) Trichoderma species associated with the green mold epidemic of commercially grown Agaricus bisporus. Mycologia 94:146–170

    Article  PubMed  Google Scholar 

  • Sánchez-Montesinos B, Diánez F, Moreno-Gavira A, Gea FJ, Santos M (2019) Plant growth promotion and biocontrol of Pythium ultimum by saline tolerant Trichoderma isolates under salinity stress. Int J Environ Res Public Health 16:2053

    Article  PubMed Central  CAS  Google Scholar 

  • Sánchez-Montesinos B, Diánez F, Moreno-Gavíra A, Gea FJ, Santos M (2020) Role of Trichoderma aggressivum f. europaeum as plant-growth promoter in horticulture. Agronomy 10(7):1004

    Article  Google Scholar 

  • Šantrić L, Potočnik I, Radivojević L, Umiljendic JG, Rekanović E, Duduk B, Milijašević-Marčić S (2018) Impact of a native Streptomyces flavovirens from mushroom compost on green mold control and yield of Agaricus bisporus. J Environ Sci Health B 53:677–684

    Article  PubMed  CAS  Google Scholar 

  • Savoie J-M, Mata G (1999) The antagonistic action of Trichoderma sp. hyphae to Lentinula edodes hyphae changes lignocellulolytic activities during cultivation in wheat straw. World J Microbiol Biotechnol 15:369–373

    Article  Google Scholar 

  • Savoie J-M, Mata G (2003) Trichoderma harzianum metabolites pre-adapt mushrooms to Trichoderma aggressivum antagonism. Mycologia 95:191–199

    Article  PubMed  Google Scholar 

  • Savoie J-M, Iapicco R, Largeteau-Mamoun M (2001) Factors influencing the competitive saprophytic ability of Trichoderma harzianum Th2 in mushroom (Agaricus bisporus) compost. Mycol Res 105:1348–1356

    Article  CAS  Google Scholar 

  • Seaby DA (1987) Infection of mushroom compost by Trichoderma species. Mushroom J 179:355–361

    Google Scholar 

  • Seaby DA (1989) Further observations on Trichoderma. Mushroom 197:147–151

    Google Scholar 

  • Seaby DA (1996a) Differentiation of Trichoderma taxa associated with mushroom production. Plant Pathol 45:905–912

    Article  Google Scholar 

  • Seaby DA (1996b) Investigation of the epidemiology of green mould of mushroom (Agaricus bisporus) compost caused by Trichoderma harzianum. Plant Pathol 45:913–923

    Article  Google Scholar 

  • Seaby DA (1998) Trichoderma as weed mould or pathogen in mushroom cultivation. In: Harman GE, Kubicek CP (eds) Trichoderma and Gliocladium Vol. 2. Enzymes, biological control and commercial applications. Taylor and Francis, London, pp 267–287

    Google Scholar 

  • Shah S, Nasreen S, Munshi NA (2011) Evaluation of some botanicals in controlling green mold (Trichoderma harzianum) disease in oyster mushroom cultivation. Int J Bot 7:209–215

    Article  Google Scholar 

  • Sharma SR, Vijay B (1996) Yield loss in Pleurotus ostreatus spp. caused by Trichoderma viride. Mushroom Res 5:19–22

    Google Scholar 

  • Sharma HSS, Kilpatrick M, Ward F, Lyons G, Burns L (1999) Colonisation of phase II compost by biotypes of Trichoderma harzianum and their effect on mushroom yield and quality. Appl Microbiol Biotechnol 51:572–578

    Article  CAS  Google Scholar 

  • Sharma SR, Kumar S, Sharma VP (2007) Diseases and competitor moulds of mushrooms and their management. Technical Bulletin, National Research Centre for Mushroom (Indian Council of Agricultural Research), Chambaghat, India, pp 1–81

    Google Scholar 

  • Sinden JW (1971) Ecological control of pathogens and weed moulds in mushroom culture. Annu Rev Phytophatol 9:411–432

    Article  Google Scholar 

  • Sinden J, Hauser E (1953) Nature and control of three mildew diseases of mushrooms in America. Mushroom Sci 2:177–180

    Google Scholar 

  • Siwulski M, Sobieralski K, Błaszczyk L, Frąszczak B, Frużyńska-Jóźwiak D, Sas-Golak I (2011) Evaluation of mycelium growth of several T. pleurotum and T. pleuroticola isolates and their biotic interaction with Pleurotus florida. Phytopathologia 59:43–48

    Google Scholar 

  • Sobieralski K, Siwulski M, Fruzynska-Jozwiak D, Gorski R (2009a) Impact of Trichoderma aggressivum f. europaeum Th2 on the yielding of Agaricus bisporus. Phytopathologia 53:5–10

    Google Scholar 

  • Sobieralski K, Siwulski M, Fruzynska-Jozwiak D (2009b) Growth of aggressive isolates of Trichoderma aggressivum f. europaeum in dependence on temperature and medium. Phytopathologia 53:5–10

    Google Scholar 

  • Sobieralski K, Siwulski M, Frużyńska-Jóźwiak D, Górski R (2010a) Impact of infection with Trichoderma aggressivum f. europaeum isolates on carpophore setting and yielding of Agaricus bisporus. Phytopathologia 55:35–41

    Google Scholar 

  • Sobieralski K, Siwulski M, Fruyska-Józwiak D, Błaszczyk L, Sas-Golak I, Jasińska A (2010b) Impact of infections with two Trichoderma aggressivum f. europaeum isolates on the yielding of some wild strains of Agaricus bisporus (Lange) Imbach. J Plant Prot Res 50:501–504

    Article  Google Scholar 

  • Sobieralski K, Siwulski M, Jasińska A, Frużyńska-Joźwiak D, Sas-Golak I, Szymański J (2010c) Impact of infection with Trichoderma aggressivum f. europaeum isolates on the yielding of some wild strains of Agaricus bitorquis from different regions of Poland. Phytopathologia 58:5–11

    Google Scholar 

  • Sobieralski K, Siwulski M, Górski R, Fruyska-Jówiak D, Nowak-Sowiska M (2010d) Impact of Trichoderma aggressivum f. europaeum isolates on yielding and morphological features of Pleurotus eryngii. Phytopatol Pol 56:17–25

    Google Scholar 

  • Sobieralski K, Siwulski M, Błaszczyk L, Fruyska-Józwiak D, Lisiecka J (2012a) The effect of infestation with isolates of Trichoderma sp. on mycelium growth and yielding in single-spore heterokaryotic cultures of Agaricus bisporus (Lange) Imbach. Acta Sci Pol Hortic Cult 11:47–57

    Google Scholar 

  • Sobieralski K, Siwulski M, Błaszczyk L, Fraszczak B, Sas-Golak I (2012b) Impact of infections with Trichoderma pleurotum and Trichoderma pleuroticola isolates on yielding of wild strains of Pleurotus ostreatus (fr.) Kumm. obtained from natural sites. Acta Sci Pol Hortic Cult 11:239–249

    Google Scholar 

  • Sobieralski K, Siwulski M, Kommon-Żelazowska M, Błaszczyk L, Sas-Golak I, Frużyńska-Jóźwiak D (2012c) Impact of Trichoderma pleurotum and T. pleuroticola isolates on yielding of Pleurotus ostreatus (FR.) Kumm. J Plant Protect Res 52:165–168

    Article  Google Scholar 

  • Sobieralski K, Siwulski M, Komon-Żelazowska M, Błaszczyk L, Górski R, Spiżewski T, Sas-Golak I (2012d) Evaluation of the growth of Trichoderma pleurotum and Trichoderma pleuroticola isolates and their biotic interaction with Pleurotus sp. J Plant Protect Res 52:235–239

    Article  Google Scholar 

  • Soković M, van Griensven JLD (2006) Antimicrobial activity of essential oils and their components against the three major pathogens of the cultivated button mushroom, Agaricus bisporus. Eur J Plant Pathol 116: 211–224

    Google Scholar 

  • Speer M (2010) Effect of spawn type on Trichoderma disease. Mushroom News 4:4–6

    Google Scholar 

  • Spillmann A (2002) What’s killing the mushrooms of Pennsylvania? (a mushroom mystery). Agric Res 50:12

    Google Scholar 

  • Stanojević O, Milijašević-Marčić S, Potočnik I, Stepanović M, Dimkić I, Stanković S, Berić T (2016) Isolation and identification of Bacillus spp. from compost material, compost and mushroom casing soil active against Trichoderma spp. Arch Biol Sci 68:845–852

    Article  Google Scholar 

  • Stanojević O, Berić T, Potočnik I, Rekanović E, Stanković S, Milijašević-Marčić S (2019) Biological control of green mould and dry bubble diseases of cultivated mushroom (Agaricus bisporus L.) by Bacillus spp. Crop Prot 126:104944

    Article  CAS  Google Scholar 

  • Staunton L (1987) Trichoderma green mould in mushroom compost. Mushroom J 179:362–363

    Google Scholar 

  • Szczech M, Staniaszek M, Habdas H, Ulinski Z, Szymanski J (2008) Trichoderma spp. – the cause of green mould on Polish mushroom farms. Veg Crop Res Bull 69:105–114

    Google Scholar 

  • Szili I (2008) Gombatermesztők könyve. Mezőgazda Kiadó, Budapest

    Google Scholar 

  • Talavera-Ortiz A, Chaverri P, Díaz-Godínez G, Acosta-Urdapilleta ML, Villegas E, Téllez-Téllez M (2020) Mycelial inhibition of Trichoderma spp. (Hypocreaceae) isolated from the cultivation of Pleurotus ostreatus (Pleurotaceae) with an extract of Pycnoporus sp. (Polyporaceae). Acta Bot Mex 127:e1537

    Google Scholar 

  • Urbán P, Miao Y, Fekete C, Schönhardt K, Valasek A, Hatvani L et al (2016a) Complete genome sequence of Trichoderma aggressivum f. europaeum, the causal agent of green mould disease in the cultivation of champignon (Agaricus bisporus). In: Márialigeti K (ed) Book of abstracts, Annual Meeting of the Hungarian Society of Microbiology, Eötvös Loránd University, Budapest, Hungary, p 62

    Google Scholar 

  • Urbán P, Miao Y, Fekete C, Hatvani L, Büchner R, Vágvölgyi C et al (2016b) Complete genome sequence of the green mould pathogen Trichoderma pleuroti. In: Škrbić B (ed) 18th Danube-Kris-Mures-Tisa (DKMT) Euroregional Conference on Environment and Health: Book of abstracts. University of Novi Sad, Novi Sad, pp 51–52

    Google Scholar 

  • Vahabi K, Sharifnabi B, Zafari D (2009) Genetic diversity of Trichoderma spp. associated with button mushroom, Agaricus bisporus, inferred from AFLP markers and ITS sequencing. Acta Phytopathol Entomol Hung 44:239–253

    Article  CAS  Google Scholar 

  • Velázquez-Cedeño MA, Farnet AM, Mata G, Savoie JM (2006) Estudio preliminar de la microflora bacteriana termo tolerante de la pulpa de café y la paja de trigo con potencial de inhibición contra Trichoderma sp viride en el cultivo de Pleurotus. Rev Mex Micol 22:33–39

    Google Scholar 

  • Wang G, Cao X, Ma X, Guo M, Liu C, Yan L, Bian Y (2016) Diversity and effect of Trichoderma spp. associated with green mold disease on Lentinula edodes in China. Microbiol Open 5:709–718

    Article  CAS  Google Scholar 

  • Williams J, Clarkson JM, Mills PR, Cooper RM (2003a) Saprotrophic and mycoparasitic components of aggressiveness of Trichoderma harzianum groups toward the commercial mushroom Agaricus bisporus. Appl Environ Microbiol 69:4192–4199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams J, Clarkson JM, Mills PR, Cooper RM (2003b) A selective medium for quantitative reisolation of Trichoderma harzianum from Agaricus bisporus compost. Appl Environ Microbiol 69:4190–4191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woo SL, Di Benedetto P, Senatore M, Abadi K, Gigante S, Soriente I, Ferraioli S, Scala F, Lorito M (2004) Identification and characterization of Trichoderma species aggressive to Pleurotus in Italy. J Zhejiang Univ Agric Life Sci 30:469–470

    Google Scholar 

  • Woo SL, Kubicek CP, Druzhinina IS, Vinale F, Cavallo P, Lorito M (2009) Characterization of Trichoderma species associated with the production of Pleurotus ostreatus in Italy. J Plant Pathol 91:S94

    Google Scholar 

  • Yamamoto Y, Shirono H, Kono K, Ohashi Y (1997) Immunopotentiating activity of the water-soluble lignin rich fraction prepared from LEM – the extract of the solid culture medium of Lentinus edodes mycelia. Biosci Biotechnol Biochem 61:1909–1912

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Zhang C, Moodley O, Zhang L, Xu J (2019) Green mold caused by Trichoderma atroviride on the lingzhi medicinal mushroom, Ganoderma lingzhi (Agaricomycetes). Int J Med Mushrooms 21:515–521

    Article  Google Scholar 

  • Yarden O, Salomon R, Katan J, Aharonson N (1990) Involvement of fungi and bacteria in enhanced and nonenhanced biodegradation of carbendazim and other benzimidazole compounds in soil. Can J Microbiol 36:15–23

    Article  CAS  PubMed  Google Scholar 

  • Yu SH (2001) Integrated control of oyster mushroom green mould. Ministry of Agriculture and Forestry, Korea, 157 pp

    Google Scholar 

  • Zargarzadeh Z, Mohammadi Goltapeh E, Danesh YR, Mehrparvar M (2011) Identification of aggressive species of Trichoderma from button mushroom farms (Agaricus bisporus) using morphological and molecular methods. Rostaniha 12:83–90

    Google Scholar 

  • Zhang T, Lu MZ, Zhang CL, Xu JZ (2019) First report of Trichoderma longibrachiatum causing green mould disease on Ganoderma lingzhi. Plant Dis 103:156

    Google Scholar 

Download references

Conflicts of Interest/Competing Interests

The authors declare no conflict of interest.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All authors have seen and approved the final version of the manuscript.

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

Funding

The preparation of this review was supported by projects K-116475 (Hungarian Scientific Research Fund) and GINOP-2.2.1-15-2016-00006 (Széchenyi 2020 Programme).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Kredics .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kredics, L. et al. (2022). Trichoderma Green Mould Disease of Cultivated Mushrooms. In: Amaresan, N., Sankaranarayanan, A., Dwivedi, M.K., Druzhinina, I.S. (eds) Advances in Trichoderma Biology for Agricultural Applications. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-91650-3_21

Download citation

Publish with us

Policies and ethics