Skip to main content

Alcoholic Neuropathy

  • Chapter
  • First Online:
Pathogenesis of Neuropathic Pain
  • 619 Accesses

Abstract

Alcoholic neuropathy appears in approximately 25–66% of chronic alcoholics. It is associated with both the duration of alcohol abuse as well as the total lifetime alcohol consumption. Here is a higher prevalence with heavy and continuous alcohol abuse as compared to episodic binging; and there is a higher incidence in females than in males. The neuropathology of alcoholic exposure may manifest itself through supraspinal effects or as a peripheral neuropathy. The supraspinal component includes GABA receptors; calcium channels, excitatory amino acids, dopamine release, and adenosine transport and receptor binding.

The peripheral neuropathic effect of alcohol exposure involves several molecular mechanisms which will be described here and includes activation of microglia and mGlu5 receptors; oxidative stress and cytokine release associated with activation of protein kinase.

Treatment of alcohol neuropathy ranges from hepatic transplantation to a plethora of novel pharmacologic interventions to spinal cord stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Monforte R, Estruch R, Valls-Sole J, et al. Autonomic and peripheral neuropathies in patients with chronic alcoholism. A dose-related toxic effect of alcohol. Arch Neurol. 1995;52(1):45–51.

    Article  CAS  PubMed  Google Scholar 

  2. Edwards S, Yeh AY, Molina PE, et al. Animal model of combined alcoholic neuropathy and complex regional pain syndrome: additive effects on hyperalgesia in female rats. Alcohol Clin Exp Res. 2018;42:33A.

    Google Scholar 

  3. Dina OA, Gear RW, Messing RO, et al. Severity of alcohol-induced painful peripheral neuropathy in female rats: role of estrogen and protein kinase (A and Cepsilon). Neuroscience. 2007;145(1):350–6.

    Article  CAS  PubMed  Google Scholar 

  4. Chopra K, Tiwari V. Alcoholic neuropathy: possible mechanisms and future treatment possibilities. Br J Clin Pharmacol. 2012;73(3):348–62.

    Article  CAS  PubMed  Google Scholar 

  5. Neundorfer B. Alcoholic polyneuropathy. Aktuel Neurol. 1974;1(3):169–74.

    Google Scholar 

  6. Kucera P, Balaz M, Varsik P, et al. Pathogenesis of alcoholic neuropathy. Bratisl Lek Listy. 2002;103(1):26–9.

    CAS  PubMed  Google Scholar 

  7. Rottenberg H. Membrane solubility of ethanol in chronic alcoholism. The effect of ethanol feeding and its withdrawal on the protection by alcohol of rat red blood cells from hypotonic hemolysis. Biochim Biophys Acta. 1986;855(2):211–22.

    Article  CAS  PubMed  Google Scholar 

  8. Goldstein DB, Chin JH. Interaction of ethanol with biological membranes. Fed Proc. 1981;40(7):2073–6.

    CAS  PubMed  Google Scholar 

  9. Bone GH, Majchrowicz E, Martin PR, et al. A comparison of calcium antagonists and diazepam in reducing ethanol withdrawal tremors. Psychopharmacology. 1989;99(3):386–8.

    Article  CAS  PubMed  Google Scholar 

  10. Messing RO, Carpenter CL, Diamond I, et al. Ethanol regulates calcium channels in clonal neural cells. Proc Natl Acad Sci U S A. 1986;83(16):6213–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Little HJ, Dolin SJ, Halsey MJ. Calcium channel antagonists decrease the ethanol withdrawal syndrome. Life Sci. 1986;39(22):2059–65.

    Article  CAS  PubMed  Google Scholar 

  12. Hoffman PL, Moses F, Luthin GR, et al. Acute and chronic effects of ethanol on receptor-mediated phosphatidylinositol 4,5-bisphosphate breakdown in mouse brain. Mol Pharmacol. 1986;30(1):13–8.

    CAS  PubMed  Google Scholar 

  13. Nicoll RA. The coupling of neurotransmitter receptors to ion channels in the brain. Science. 1988;241(4865):545–51.

    Article  CAS  PubMed  Google Scholar 

  14. Diamond I, Messing RO. Neurologic effects of alcoholism. West J Med. 1994;161(3):279–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Diamond I, Wrubel B, Estrin W, et al. Basal and adenosine receptor-stimulated levels of cAMP are reduced in lymphocytes from alcoholic patients. Proc Natl Acad Sci U S A. 1987;84(5):1413–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gordon AS, Nagy L, Mochly-Rosen D, et al. Chronic ethanol-induced heterologous desensitization is mediated by changes in adenosine transport. Biochem Soc Symp. 1990;56:117–36.

    CAS  PubMed  Google Scholar 

  17. Krauss SW, Ghirnikar RB, Diamond I, et al. Inhibition of adenosine uptake by ethanol is specific for one class of nucleoside transporters. Mol Pharmacol. 1993;44(5):1021–6.

    CAS  PubMed  Google Scholar 

  18. Nagy LE, Diamond I, Casso DJ, et al. Ethanol increases extracellular adenosine by inhibiting adenosine uptake via the nucleoside transporter. J Biol Chem. 1990;265(4):1946–51.

    Article  CAS  PubMed  Google Scholar 

  19. Nagy LE, Diamond I, Gordon A. Cultured lymphocytes from alcoholic subjects have altered cAMP signal transduction. Proc Natl Acad Sci U S A. 1988;85(18):6973–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gordon AS, Collier K, Diamond I. Ethanol regulation of adenosine receptor-stimulated cAMP levels in a clonal neural cell line: an in vitro model of cellular tolerance to ethanol. Proc Natl Acad Sci U S A. 1986;83(7):2105–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mochly-Rosen D, Chang FH, Cheever L, et al. Chronic ethanol causes heterologous desensitization of receptors by reducing alpha s messenger RNA. Nature. 1988;333(6176):848–50.

    Article  CAS  PubMed  Google Scholar 

  22. Mellion M, Gilchrist JM, de la Monte S. Alcohol-related peripheral neuropathy: nutritional, toxic, or both? Muscle Nerve. 2011;43(3):309–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chida K, Takasu T, Kawamura H. Changes in sympathetic and parasympathetic function in alcoholic neuropathy. Jpn J Alcohol Stud Drug Depend. 1998;33(1):44–55.

    Google Scholar 

  24. Chida K, Takasu T, Mori N, et al. Sympathetic dysfunction mediating cardiovascular regulation in alcoholic neuropathy. Funct Neurol. 1994;9(2):65–73.

    CAS  PubMed  Google Scholar 

  25. Hattori N, Koike H, Sobue G. Metabolic and nutritional neuropathy. Clin Neurol. 2008;48(11):1026–7.

    Google Scholar 

  26. Rolim LC, de Souza JS, Dib SA. Tests for early diagnosis of cardiovascular autonomic neuropathy: critical analysis and relevance. Front Endocrinol (Lausanne). 2013;4:173.

    Article  Google Scholar 

  27. Vetrugno R, Liguori R, Cortelli P, et al. Sympathetic skin response: basic mechanisms and clinical applications. Clin Auton Res. 2003;13(4):256–70.

    Article  PubMed  Google Scholar 

  28. Oishi M, Mochizuki Y, Suzuki Y, et al. Current perception threshold and sympathetic skin response in diabetic and alcoholic polyneuropathies. Intern Med (Tokyo, Japan). 2002;41(10):819–22.

    Article  Google Scholar 

  29. Haridas VT, Taly AB, Pratima M, et al. Sympathetic skin response [SSR] - inferences from alcoholic neuropathy. J Neurol Sci. 2009;285:S321.

    Article  Google Scholar 

  30. Kemppainen R, Juntunen J, Hillbom M. Drinking habits and peripheral alcoholic neuropathy. Acta Neurol Scand. 1982;65(1):11–8.

    Article  CAS  PubMed  Google Scholar 

  31. Bosch EP, Pelham RW, Rasool CG. Animal models of alcoholic neuropathy: morphologic, electrophysiologic, and biochemical findings. Muscle Nerve. 1979;2(2):133–44.

    Article  CAS  PubMed  Google Scholar 

  32. Ahmed M, Titoff I, Titoff V, et al. Alcoholic neuropathy: clinical characteristics based on a case series. Muscle Nerve. 2017;56(3):557.

    Google Scholar 

  33. Maiya RP, Messing RO. Peripheral systems: neuropathy. Handb Clin Neurol. 2014;125:513–25.

    Article  PubMed  Google Scholar 

  34. Singleton CK, Martin PR. Molecular mechanisms of thiamine utilization. Curr Mol Med. 2001;1(2):197–207.

    Article  CAS  PubMed  Google Scholar 

  35. Fessel WJ. Pathogenesis of diabetic and alcoholic neuropathy. N Engl J Med. 1971;284(13):729.

    Article  CAS  PubMed  Google Scholar 

  36. Singh S, Sharma A, Sharma S, et al. Acute alcoholic myopathy, rhabdomyolysis and acute renal failure: a case report. Neurol India. 2000;48(1):84–5.

    CAS  PubMed  Google Scholar 

  37. Zambelis T, Karandreas N, Tzavellas E, et al. Large and small fiber neuropathy in chronic alcohol-dependent subjects. J Peripher Nerv Syst. 2005;10(4):375–81.

    Article  PubMed  Google Scholar 

  38. Dina OA, Barletta J, Chen X, et al. Key role for the epsilon isoform of protein kinase C in painful alcoholic neuropathy in the rat. J Neurosci. 2000;20(22):8614–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Narita M, Miyoshi K, Narita M, et al. Involvement of microglia in the ethanol-induced neuropathic pain-like state in the rat. Neurosci Lett. 2007;414(1):21–5.

    Article  CAS  PubMed  Google Scholar 

  40. Ferrari LF, Levine E, Levine JD. Independent contributions of alcohol and stress axis hormones to painful peripheral neuropathy. Neuroscience. 2013;228:409–17.

    Article  CAS  PubMed  Google Scholar 

  41. Levine JD, Dina OA, Messing RO. Alcohol-induced stress in painful alcoholic neuropathy. Alcohol. 2011;45(3):286.

    Google Scholar 

  42. Gianoulakis C, Dai X, Brown T. Effect of chronic alcohol consumption on the activity of the hypothalamic-pituitary-adrenal axis and pituitary beta-endorphin as a function of alcohol intake, age, and gender. Alcohol Clin Exp Res. 2003;27(3):410–23.

    Article  CAS  PubMed  Google Scholar 

  43. Thayer JF, Hall M, Sollers JJ 3rd, et al. Alcohol use, urinary cortisol, and heart rate variability in apparently healthy men: evidence for impaired inhibitory control of the HPA axis in heavy drinkers. Int J Psychophysiol. 2006;59(3):244–50.

    Article  PubMed  Google Scholar 

  44. Walter M, Gerhard U, Gerlach M, et al. Cortisol concentrations, stress-coping styles after withdrawal and long-term abstinence in alcohol dependence. Addict Biol. 2006;11(2):157–62.

    Article  CAS  PubMed  Google Scholar 

  45. Takeuchi M, Saito T. Cytotoxicity of acetaldehyde-derived advanced glycation end-products (AA-AGE) in alcoholic-induced neuronal degeneration. Alcohol Clin Exp Res. 2005;29(12 Suppl):220S–4S.

    Article  CAS  PubMed  Google Scholar 

  46. Lee I, Kim HK, Kim JH, et al. The role of reactive oxygen species in capsaicin-induced mechanical hyperalgesia and in the activities of dorsal horn neurons. Pain. 2007;133(1–3):9–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Padi SS, Kulkarni SK. Minocycline prevents the development of neuropathic pain, but not acute pain: possible anti-inflammatory and antioxidant mechanisms. Eur J Pharmacol. 2008;601(1–3):79–87.

    Article  CAS  PubMed  Google Scholar 

  48. Sharma SS, Sayyed SG. Effects of trolox on nerve dysfunction, thermal hyperalgesia and oxidative stress in experimental diabetic neuropathy. Clin Exp Pharmacol Physiol. 2006;33(11):1022–8.

    Article  CAS  PubMed  Google Scholar 

  49. Mantle D, Preedy VR. Free radicals as mediators of alcohol toxicity. Adverse Drug React Toxicol Rev. 1999;18(4):235–52.

    CAS  PubMed  Google Scholar 

  50. Bosch-Morell F, Martinez-Soriano F, Colell A, et al. Chronic ethanol feeding induces cellular antioxidants decrease and oxidative stress in rat peripheral nerves. Effect of S-adenosyl-L-methionine and N-acetyl-L-cysteine. Free Radic Biol Med. 1998;25(3):365–8.

    Article  CAS  PubMed  Google Scholar 

  51. Vetreno RP, Qin L, Crews FT. Increased receptor for advanced glycation end product expression in the human alcoholic prefrontal cortex is linked to adolescent drinking. Neurobiol Dis. 2013;59:52–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kane CJ, Drew PD. Inflammatory responses to alcohol in the CNS: nuclear receptors as potential therapeutics for alcohol-induced neuropathologies. J Leukoc Biol. 2016;100(5):951–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dina OA, Barletta J, Chen X, et al. Key role for the epsilon isoform of protein kinase C in painful alcoholic neuropathy in the rat. J Neurosci. 2000;20(22):8614–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Miyoshi K, Narita M, Takatsu M, et al. mGlu5 receptor and protein kinase C implicated in the development and induction of neuropathic pain following chronic ethanol consumption. Eur J Pharmacol. 2007;562(3):208–11.

    Article  CAS  PubMed  Google Scholar 

  55. Raghavendra V, Tanga F, DeLeo JA. Inhibition of microglial activation attenuates the development but not existing hypersensitivity in a rat model of neuropathy. J Pharmacol Exp Ther. 2003;306(2):624–30.

    Article  CAS  PubMed  Google Scholar 

  56. Norenberg MD. Astrocyte responses to CNS injury. J Neuropathol Exp Neurol. 1994;53(3):213–20.

    Article  CAS  PubMed  Google Scholar 

  57. Julius D, Basbaum AI. Molecular mechanisms of nociception. Nature. 2001;413(6852):203–10.

    Article  CAS  PubMed  Google Scholar 

  58. Robbins MA, Maksumova L, Pocock E, et al. Nuclear factor-kappaB translocation mediates double-stranded ribonucleic acid-induced NIT-1 beta-cell apoptosis and up-regulates caspase-12 and tumor necrosis factor receptor-associated ligand (TRAIL). Endocrinology. 2003;144(10):4616–25.

    Article  CAS  PubMed  Google Scholar 

  59. Jung ME, Gatch MB, Simpkins JW. Estrogen neuroprotection against the neurotoxic effects of ethanol withdrawal: potential mechanisms. Exp Biol Med (Maywood). 2005;230(1):8–22.

    Article  CAS  Google Scholar 

  60. Izumi Y, Kitabayashi R, Funatsu M, et al. A single day of ethanol exposure during development has persistent effects on bi-directional plasticity, N-methyl-D-aspartate receptor function and ethanol sensitivity. Neuroscience. 2005;136(1):269–79.

    Article  CAS  PubMed  Google Scholar 

  61. Miyoshi K, Narita M, Narita M, et al. Involvement of mGluR5 in the ethanol-induced neuropathic pain-like state in the rat. Neurosci Lett. 2006;410(2):105–9.

    Article  CAS  PubMed  Google Scholar 

  62. Narita M, Miyoshi K, Narita M, et al. Changes in function of NMDA receptor NR2B subunit in spinal cord of rats with neuropathy following chronic ethanol consumption. Life Sci. 2007;80(9):852–9.

    Article  CAS  PubMed  Google Scholar 

  63. Dina OA, Khasar SG, AlessandriHaber N, et al. Neurotoxic catecholamine metabolite in nociceptors contributes to painful peripheral neuropathy. Eur J Neurosci. 2008;28(6):1180–90.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hellweg R, Baethge C, Hartung HD, et al. NGF level in the rat sciatic nerve is decreased after long-term consumption of ethanol. Neuroreport. 1996;7(3):777–80.

    Article  CAS  PubMed  Google Scholar 

  65. Malatova Z, Cizkova D. Effect of ethanol on axonal transport of cholinergic enzymes in rat sciatic nerve. Alcohol. 2002;26(2):115–20.

    Article  CAS  PubMed  Google Scholar 

  66. McLane JA. Decreased axonal transport in rat nerve following acute and chronic ethanol exposure. Alcohol. 1987;4(5):385–9.

    Article  CAS  PubMed  Google Scholar 

  67. Shibuya N, La Fontaine J, Frania SJ. Alcohol-induced Neuroarthropathy in the foot: a case series and review of literature. J Foot Ankle Surg. 2008;47(2):118–24.

    Article  PubMed  Google Scholar 

  68. Pal S, Ghosal A, Biswas NM. Acute axonal polyneuropathy in a chronic alcoholic patient: a rare presentation. Toxicol Int. 2015;22(2):119–22.

    Article  Google Scholar 

  69. Tabaraud F, Vallat JM, Hugon J, et al. Acute or subacute alcoholic neuropathy mimicking Guillain-Barre syndrome. J Neurol Sci. 1990;97(2–3):195–205.

    Article  CAS  PubMed  Google Scholar 

  70. Vandenbulcke M, Janssens J. Acute axonal polyneuropathy in chronic alcoholism and malnutrition. Acta Neurol Belg. 1999;99(3):198–201.

    CAS  PubMed  Google Scholar 

  71. Ylikoski JS, House JW, Hernandez I. Eighth nerve alcoholic neuropathy: a case report with light and electron microscopic findings. J Laryngol Otol. 1981;95(6):631–42.

    Article  CAS  PubMed  Google Scholar 

  72. Shiraishi S, Inoue N, Murai Y, et al. Alcoholic neuropathy. Morphometric and ultrastructural study of sural nerve. J UOEH. 1982;4(4):495–504.

    Article  Google Scholar 

  73. Koike H, Mori K, Misu K, et al. Painful alcoholic polyneuropathy with predominant small-fiber loss and normal thiamine status. Neurology. 2001;56(12):1727–32.

    Article  CAS  PubMed  Google Scholar 

  74. Koike H, Iijima M, Sugiura M, et al. Alcoholic neuropathy is clinicopathologically distinct from thiamine-deficiency neuropathy. Ann Neurol. 2003;54(1):19–29.

    Article  PubMed  Google Scholar 

  75. Winship DH, Caflisch CR, Zboralske FF, et al. Deterioration of esophageal peristalsis in patients with alcoholic neuropathy. Gastroenterology (New York, N.Y.1943). 1968;55(2):173–8.

    CAS  Google Scholar 

  76. Illigens BM, Gibbons CH. Sweat testing to evaluate autonomic function. Clin Auton Res. 2009;19(2):79–87.

    Article  PubMed  Google Scholar 

  77. Novak DJ, Victor M. The vagus and sympathetic nerves in alcoholic polyneuropathy. Arch Neurol. 1974;30(4):273–84.

    Article  CAS  PubMed  Google Scholar 

  78. Fisher MA. AAEM Minimonograph #13: H reflexes and F waves: physiology and clinical indications. Muscle Nerve. 1992;15(11):1223–33.

    Article  CAS  PubMed  Google Scholar 

  79. Schott K, Schafer G, Gunthner A, et al. T-wave response: a sensitive test for latent alcoholic polyneuropathy. Addict Biol. 2002;7(3):315–9.

    Article  PubMed  Google Scholar 

  80. Gane E, Bergman R, Hutchinson D. Resolution of alcoholic neuropathy following liver transplantation. Liver Transpl. 2004;10(12):1545–8.

    Article  PubMed  Google Scholar 

  81. Babacan A, Akcali DT, Kocer B, et al. Intravenous lidocaine for the treatment of alcoholic neuropathy: report of a case. Gazi Med J. 1999;10(3):135–8.

    Google Scholar 

  82. Beroniade S, Armbrecht U, Stockbrugger RW. The treatment of diabetic and alcoholic neuropathy with mexiletine. Therapiewoche. 1990;40(18):1328–30.

    Google Scholar 

  83. Nishiyama K, Sakuta M. Mexiletine for painful alcoholic neuropathy. Intern Med. 1995;34(6):577–9.

    Article  CAS  PubMed  Google Scholar 

  84. Werdehausen R, Kremer D, Brandenburger T, et al. Lidocaine metabolites inhibit glycine transporter 1: a novel mechanism for the analgesic action of systemic lidocaine? Anesthesiology. 2012;116(1):147–58.

    Article  CAS  PubMed  Google Scholar 

  85. Hollmann MW, Durieux ME. Local anesthetics and the inflammatory response: a new therapeutic indication? Anesthesiology. 2000;93(3):858–75.

    Article  CAS  PubMed  Google Scholar 

  86. Challapalli V, Tremont-Lukats IW, McNicol ED, et al. Systemic administration of local anesthetic agents to relieve neuropathic pain. Cochrane Database Syst Rev. 2005;4:CD003345.

    Google Scholar 

  87. Hollmann MW, Durieux ME. Prolonged actions of short-acting drugs: local anesthetics and chronic pain. Reg Anesth Pain Med. 2000;25(4):337–9.

    CAS  PubMed  Google Scholar 

  88. Mao J, Chen LL. Systemic lidocaine for neuropathic pain relief. Pain. 2000;87(1):7–17.

    Article  CAS  PubMed  Google Scholar 

  89. Muth-Selbach U, Hermanns H, Stegmann JU, et al. Antinociceptive effects of systemic lidocaine: involvement of the spinal glycinergic system. Eur J Pharmacol. 2009;613(1–3):68–73.

    Article  CAS  PubMed  Google Scholar 

  90. Jeon YH. Spinal cord stimulation in pain management: a review. Kor J Pain. 2012;25(3):143–50.

    Article  Google Scholar 

  91. Melzack R, Wall PD. Pain mechanisms: a new theory. Science. 1965;150(3699):971–9.

    Article  CAS  PubMed  Google Scholar 

  92. Cui JG, Meyerson BA, Sollevi A, et al. Effect of spinal cord stimulation on tactile hypersensitivity in mononeuropathic rats is potentiated by simultaneous GABA(B) and adenosine receptor activation. Neurosci Lett. 1998;247(2–3):183–6.

    Article  CAS  PubMed  Google Scholar 

  93. Dubuisson D. Effect of dorsal-column stimulation on gelatinosa and marginal neurons of cat spinal cord. J Neurosurg. 1989;70(2):257–65.

    Article  CAS  PubMed  Google Scholar 

  94. Barolat G. Spinal cord stimulation for chronic pain management. Arch Med Res. 2000;31(3):258–62.

    Article  CAS  PubMed  Google Scholar 

  95. Barolat G, Sharan AD. Future trends in spinal cord stimulation. Neurol Res. 2000;22(3):279–84.

    Article  CAS  PubMed  Google Scholar 

  96. Yakovlev A, Karasev S, Yakovleva V. Spinal cord stimulation for treatment of alcoholic neuropathy; a case report. Eur J Pain Suppl. 2010;4(1):123.

    Google Scholar 

  97. Schmid U, Stopper H, Heidland A, et al. Benfotiamine exhibits direct antioxidative capacity and prevents induction of DNA damage in vitro. Diabetes Metab Res Rev. 2008;24(5):371–7.

    Article  CAS  PubMed  Google Scholar 

  98. Netzel M, Ziems M, Jung KH, et al. Effect of high-dosed thiamine hydrochloride and S-benzoyl-thiamine-O-monophosphate on thiamine-status after chronic ethanol administration. Biofactors. 2000;11(1–2):111–3.

    Article  CAS  PubMed  Google Scholar 

  99. Woelk H, Lehrl S, Bitsch R, et al. Benfotiamine in treatment of alcoholic polyneuropathy: an 8-week randomized controlled study (BAP I study). Alcohol Alcohol. 1998;33(6):631–8.

    Article  CAS  PubMed  Google Scholar 

  100. Database, N.C.f.B.I.P. Alpha lipoic acid (Thioctic Acid),CID=864. 2010, PubChem Database.

    Google Scholar 

  101. Kishi Y, Schmelzer JD, Yao JK, et al. Alpha-lipoic acid: effect on glucose uptake, sorbitol pathway, and energy metabolism in experimental diabetic neuropathy. Diabetes. 1999;48(10):2045–51.

    Article  CAS  PubMed  Google Scholar 

  102. Stevens MJ, Obrosova I, Cao X, et al. Effects of DL-alpha-lipoic acid on peripheral nerve conduction, blood flow, energy metabolism, and oxidative stress in experimental diabetic neuropathy. Diabetes. 2000;49(6):1006–15.

    Article  CAS  PubMed  Google Scholar 

  103. Di Stefano G, Di Lionardo A, Galosi E, et al. Acetyl-L-carnitine in painful peripheral neuropathy: a systematic review. J Pain Res. 2019;12:1341–51.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Tiwari V, Kuhad A, Chopra K. Tocotrienol ameliorates behavioral and biochemical alterations in the rat model of alcoholic neuropathy. Pain. 2009;145(1–2):129–35.

    Article  CAS  PubMed  Google Scholar 

  105. Weir DG, Scott JM. The biochemical basis of the neuropathy in cobalamin deficiency. Baillieres Clin Haematol. 1995;8(3):479–97.

    Article  CAS  PubMed  Google Scholar 

  106. Sundkvist G, Dahlin LB, Nilsson H, et al. Sorbitol and myo-inositol levels and morphology of sural nerve in relation to peripheral nerve function and clinical neuropathy in men with diabetic, impaired, and normal glucose tolerance. Diabet Med. 2000;17(4):259–68.

    Article  CAS  PubMed  Google Scholar 

  107. Carrington AL, Calcutt NA, Ettlinger CB, et al. Effects of treatment with myo-inositol or its 1,2,6-trisphosphate (PP56) on nerve conduction in streptozotocin-diabetes. Eur J Pharmacol. 1993;237(2–3):257–63.

    Article  CAS  PubMed  Google Scholar 

  108. Love A, Cotter MA, Cameron NE. Effects of the sulphydryl donor N-acetyl-L-cysteine on nerve conduction, perfusion, maturation and regeneration following freeze damage in diabetic rats. Eur J Clin Investig. 1996;26(8):698–706.

    Article  CAS  Google Scholar 

  109. Park SA, Choi KS, Bang JH, et al. Cisplatin-induced apoptotic cell death in mouse hybrid neurons is blocked by antioxidants through suppression of cisplatin-mediated accumulation of p53 but not of Fas/Fas ligand. J Neurochem. 2000;75(3):946–53.

    Article  CAS  PubMed  Google Scholar 

  110. Hudson G, Chinnery PF. Mitochondrial DNA polymerase-gamma and human disease. Hum Mol Genet. 2006;15 Spec No 2:R244–52.

    Article  PubMed  Google Scholar 

  111. Davidzon G, Greene P, Mancuso M, et al. Early-onset familial parkinsonism due to POLG mutations. Ann Neurol. 2006;59(5):859–62.

    Article  CAS  PubMed  Google Scholar 

  112. Horvath R, Hudson G, Ferrari G, et al. Phenotypic spectrum associated with mutations of the mitochondrial polymerase gamma gene. Brain. 2006;129(Pt 7):1674–84.

    Article  PubMed  Google Scholar 

  113. Kandhare AD, Ghosh P, Ghule AE, et al. Elucidation of molecular mechanism involved in neuroprotective effect of coenzyme Q10 in alcohol-induced neuropathic pain. Fundam Clin Pharmacol. 2013;27(6):603–22.

    Article  CAS  PubMed  Google Scholar 

  114. Hewlings SJ, Kalman DS. Curcumin: a review of its’ effects on human health. Foods. 2017;6(10):OctPMC5664031.

    Article  Google Scholar 

  115. Panchal S, Melkani I, Kaur M, et al. Co-administration of curcumin and sildenafil ameliorates behavioral and biochemical alterations in the rat model of alcoholic neuropathy. Asian J Pharm Clin Res. 2018;11(3):36.

    Google Scholar 

  116. Han KH, Kim SH, Jeong IC, et al. Electrophysiological and behavioral changes by phosphodiesterase 4 inhibitor in a rat model of alcoholic neuropathy. J Kor Neurosurg Soc. 2012;52(1):32–6.

    Article  Google Scholar 

  117. Quintans JSS, Antoniolli AR, Almeida JRGS, et al. Natural products evaluated in neuropathic pain models - a systematic review. Basic Clin Pharmacol Toxicol. 2014;114(6):442–50.

    Article  CAS  PubMed  Google Scholar 

  118. Yan Y, Shapiro JI. The physiological and clinical importance of sodium potassium ATPase in cardiovascular diseases. Curr Opin Pharmacol. 2016;27:43–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Cherian DA, Peter T, Narayanan A, et al. Malondialdehyde as a marker of oxidative stress in periodontitis patients. J Pharm Bioallied Sci. 2019;11(Suppl 2):S297–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Khan AA, Alsahli MA, Rahmani AH. Myeloperoxidase as an active disease biomarker: recent biochemical and pathological perspectives. Med Sci (Basel). 2018;6(2):33.

    Google Scholar 

  121. Raygude KS, Kandhare AD, Ghosh P, et al. Evaluation of ameliorative effect of quercetin in experimental model of alcoholic neuropathy in rats. Inflammopharmacology. 2012;20(6):331–41.

    Article  CAS  PubMed  Google Scholar 

  122. Salehi B, Mishra AP, Nigam M, et al. Resveratrol: A double-edged sword in health benefits. Biomedicine. 2018;6(3):91.

    CAS  Google Scholar 

  123. Newaz MA, Nawal NN. Effect of gamma-tocotrienol on blood pressure, lipid peroxidation and total antioxidant status in spontaneously hypertensive rats (SHR). Clin Exp Hypertens. 1999;21(8):1297–313.

    Article  CAS  PubMed  Google Scholar 

  124. Hsieh TC, Wu JM. Suppression of cell proliferation and gene expression by combinatorial synergy of EGCG, resveratrol and gamma-tocotrienol in estrogen receptor-positive MCF-7 breast cancer cells. Int J Oncol. 2008;33(4):851–9.

    CAS  PubMed  Google Scholar 

  125. Park GB, Kim YS, Lee HK, et al. Endoplasmic reticulum stress-mediated apoptosis of EBV-transformed B cells by cross-linking of CD70 is dependent upon generation of reactive oxygen species and activation of p38 MAPK and JNK pathway. J Immunol. 2010;185(12):7274–84.

    Article  CAS  PubMed  Google Scholar 

  126. Sun W, Wang Q, Chen B, et al. Gamma-tocotrienol-induced apoptosis in human gastric cancer SGC-7901 cells is associated with a suppression in mitogen-activated protein kinase signalling. Br J Nutr. 2008;99(6):1247–54.

    Article  CAS  PubMed  Google Scholar 

  127. Tiwari V, Kuhad A, Chopra K. Tocotrienol ameliorates behavioral and biochemical alterations in the rat model of alcoholic neuropathy. Pain. 2009;145(1–2):129–35.

    Article  CAS  PubMed  Google Scholar 

  128. Tiwari V, Kuhad A, Chopra K. Neuroprotective effect of vitamin e isoforms against chronic alcohol-induced peripheral neurotoxicity: possible involvement of oxidative-nitrodative stress. Phytother Res. 2012;26(11):1738–45.

    Article  CAS  PubMed  Google Scholar 

  129. Information, N.C.f.B., Epigallocatechin,CID=72277, in PubChem Database. 2020.

    Google Scholar 

  130. Tiwari V, Kuhad A, Chopra K. Downregulation of oxido-inflammatory cascade in alcoholic neuropathic pain by epigallocatechin-3-gallate. J Neurol. 2010;257:S66.

    Google Scholar 

  131. Cortese C, Motti C. MTHFR gene polymorphism, homocysteine and cardiovascular disease. Public Health Nutr. 2001;4(2B):493–7.

    Article  CAS  PubMed  Google Scholar 

  132. Schlaff G, Walter H, Lesch OM. The Lesch alcoholism typology - psychiatric and psychosocial treatment approaches. Ann Gastroenterol. 2011;24(2):89–97.

    PubMed  PubMed Central  Google Scholar 

  133. Saffroy R, Benyamina A, Pham P, et al. Protective effect against alcohol dependence of the thermolabile variant of MTHFR. Drug Alcohol Depend. 2008;96(1–2):30–6.

    Article  CAS  PubMed  Google Scholar 

  134. Tomanin R, Scarpa M. Why do we need new gene therapy viral vectors? Characteristics, limitations and future perspectives of viral vector transduction. Curr Gene Ther. 2004;4(4):357–72.

    Article  CAS  PubMed  Google Scholar 

  135. Kragh H. From disulfiram to antabuse:the invention of a drug. Bull Hist Chem. 2008;33(2):82–8.

    CAS  Google Scholar 

  136. Layek AK, Ghosh S, Mukhopadhyay S, et al. A rare case of disulfiram-induced peripheral neuropathy. Indian J Psychiatry. 2014;56:S65.

    Google Scholar 

  137. Behan C, Lane A, Clarke M. Disulfiram induced peripheral neuropathy: between the devil and the deep blue sea. Ir J Psychol Med. 2007;24(3):115–6.

    Article  PubMed  Google Scholar 

  138. Vujisić S, Radulović L, Knežević-Apostolski S, et al. Disulfiram-induced polyneurophaty. Vojnosanit Pregl. 2012;69(5):453–75.

    Article  PubMed  Google Scholar 

  139. De Seze J, Caparros-Lefebvre D, Nkenjuo JB, et al. Myoclonic encephalopathy, extrapyramidal syndrome, acute reversible neuropathy due to chronic disulfiram intake. Rev Neurol. 1995;151(11):667–9.

    PubMed  Google Scholar 

  140. Tran AT, Rison RA, Beydoun SR. Disulfiram neuropathy: two case reports. J Med Case Rep. 2016;10(1):314–6.

    Article  Google Scholar 

  141. Bevilacqua JA, Díaz M, Díaz V, et al. Disulfiram neuropathy. Report of 3 cases. Rev Med Chil. 2002;130(9):1037–42.

    PubMed  Google Scholar 

  142. Valentine WM, Amarnath V, Graham DG, et al. CS2-mediated cross-linking of erythrocyte spectrin and neurofilament protein: dose response and temporal relationship to the formation of axonal swellings. Toxicol Appl Pharmacol. 1997;142(1):95–105.

    Article  CAS  PubMed  Google Scholar 

  143. Sills RC, Valentine WM, Moser V, et al. Characterization of carbon disulfide neurotoxicity in C57BL6 mice: behavioral, morphologic, and molecular effects. Toxicol Pathol. 2000;28(1):142–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daryl I. Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chima, A., Smith, D.I. (2022). Alcoholic Neuropathy. In: Smith, D.I., Tran, H. (eds) Pathogenesis of Neuropathic Pain. Springer, Cham. https://doi.org/10.1007/978-3-030-91455-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91455-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91454-7

  • Online ISBN: 978-3-030-91455-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics