Skip to main content

On the Complex Pathogenesis of Sjögren’s Syndrome: Salivary Gland Epithelial Cells and Cells of the Innate and Adaptive Immune System

  • Chapter
  • First Online:
Sjögren’s Syndrome and the Salivary Glands

Part of the book series: Contemporary Rheumatology ((CR))

  • 542 Accesses

Abstract

Although the pathogenesis of primary Sjögren’s syndrome (pSS) is still not fully unraveled, new critical insights have been made in recent years. To date, there is burgeoning evidence indicating that pSS represents a multifactorial disease in which the interaction between genetic and environmental factors are thought to play a role. In this second part on the pathogenesis of Sjögren’s syndrome, the function of characteristic cytokines and chemokines and their expression by cells of the innate and adaptive immune systems are put into context with pathophysiological processes. Patients with pSS demonstrate an upregulation of type 1 interferon-inducible genes in salivary glands and peripheral blood cells. Also, the microenvironment of salivary gland epithelial cells will be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mitsias DI, Tzioufas AG, Veiopoulou C, Zintzaras E, Tassios IK, Kogopoulou O, et al. The Th1/Th2 cytokine balance changes with the progress of the immunopathological lesion of Sjogren’s syndrome. Clin Exp Immunol. 2002;128(3):562–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Voigt A, Bohn K, Sukumaran S, Stewart CM, Bhattacharya I, Nguyen CQ. Unique glandular ex-vivo Th1 and Th17 receptor motifs in Sjögren's syndrome patients using single-cell analysis. Clin Immunol. 2018;192:58–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Maehara T, Moriyama M, Hayashida JN, Tanaka A, Shinozaki S, Kubo Y, et al. Selective localization of T helper subsets in labial salivary glands from primary Sjögren's syndrome patients. Clin Exp Immunol. 2012;169(2):89–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rosloniec EF, Latham K, Guedez YB. Paradoxical roles of IFN-gamma in models of Th1-mediated autoimmunity. Arthritis Res. 2002;4(6):333–6.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chen X, Aqrawi LA, Utheim TP, Tashbayev B, Utheim ØA, Reppe S, et al. Elevated cytokine levels in tears and saliva of patients with primary Sjögren's syndrome correlate with clinical ocular and oral manifestations. Sci Rep. 2019;9(1):7319.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Mehta AK, Gracias DT, Croft M. TNF activity and T cells. Cytokine. 2018;101:14–8.

    Article  CAS  PubMed  Google Scholar 

  7. Zhao X, Gan Y, Jin Y, He J, Jia R, Li Y, et al. Interleukin 17E associates with haematologic involvement and autoantibody production in primary Sjögren's syndrome. Clin Exp Rheumatol. 2021;39(2):378–84.

    PubMed  Google Scholar 

  8. Adams RB, Planchon SM, Roche JK. IFN-gamma modulation of epithelial barrier function. Time course, reversibility, and site of cytokine binding. J Immunol. 1993;150(6):2356–63.

    CAS  PubMed  Google Scholar 

  9. Cong X, Zhang XM, Zhang Y, Wei T, He QH, Zhang LW, et al. Disruption of endothelial barrier function is linked with hyposecretion and lymphocytic infiltration in salivary glands of Sjögren’s syndrome. Biochim Biophys Acta Mol Basis Dis. 2018;1864(10):3154–63.

    Article  CAS  PubMed  Google Scholar 

  10. Weller S, Braun MC, Tan BK, Rosenwald A, Cordier C, Conley ME, et al. Human blood IgM “memory” B cells are circulating splenic marginal zone B cells harboring a prediversified immunoglobulin repertoire. Blood. 2004;104(12):3647–54.

    Article  CAS  PubMed  Google Scholar 

  11. Ewert P, Aguilera S, Alliende C, Kwon YJ, Albornoz A, Molina C, et al. Disruption of tight junction structure in salivary glands from Sjögren’s syndrome patients is linked to proinflammatory cytokine exposure. Arthritis Rheum. 2010;62(5):1280–9.

    Article  CAS  PubMed  Google Scholar 

  12. Brookes SM, Price EJ, Venables PJ, Maini RN. Interferon-gamma and epithelial cell activation in Sjögren’s syndrome. Br J Rheumatol. 1995;34(3):226–31.

    Article  CAS  PubMed  Google Scholar 

  13. Abu-Helu RF, Dimitriou ID, Kapsogeorgou EK, Moutsopoulos HM, Manoussakis MN. Induction of salivary gland epithelial cell injury in Sjogren’s syndrome: in vitro assessment of T cell-derived cytokines and Fas protein expression. J Autoimmun. 2001;17(2):141–53.

    Article  CAS  PubMed  Google Scholar 

  14. Mommsen P, Barkhausen T, Hildebrand F, Zeckey C, Krettek C, van Griensven M. Regulation of L-selectin expression by trauma-relevant cytokines. Pathol Res Pract. 2011;207(3):142–7.

    Article  CAS  PubMed  Google Scholar 

  15. Briscoe DM, Schoen FJ, Rice GE, Bevilacqua MP, Ganz P, Pober JS. Induced expression of endothelial-leukocyte adhesion molecules in human cardiac allografts. Transplantation. 1991;51(2):537–9.

    Article  CAS  PubMed  Google Scholar 

  16. Mukaida N, Mahe Y, Matsushima K. Cooperative interaction of nuclear factor-kappa B- and cis-regulatory enhancer binding protein-like factor binding elements in activating the interleukin-8 gene by pro-inflammatory cytokines. J Biol Chem. 1990;265(34):21128–33.

    Article  CAS  PubMed  Google Scholar 

  17. Holtmann H, Winzen R, Holland P, Eickemeier S, Hoffmann E, Wallach D, et al. Induction of interleukin-8 synthesis integrates effects on transcription and mRNA degradation from at least three different cytokine- or stress-activated signal transduction pathways. Mol Cell Biol. 1999;19(10):6742–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Alfaro C, Suarez N, Oñate C, Perez-Gracia JL, Martinez-Forero I, Hervas-Stubbs S, et al. Dendritic cells take up and present antigens from viable and apoptotic polymorphonuclear leukocytes. PLoS One. 2011;6(12):e29300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. de Bont CM, Stokman MEM, Faas P, Thurlings RM, Boelens WC, Wright HL, et al. Autoantibodies to neutrophil extracellular traps represent a potential serological biomarker in rheumatoid arthritis. J Autoimmun. 2020;113:102484.

    Article  PubMed  CAS  Google Scholar 

  20. Sisto M, Lisi S, Lofrumento DD, Ingravallo G, Mitolo V, D’Amore M. Expression of pro-inflammatory TACE-TNF-α-amphiregulin axis in Sjögren’s syndrome salivary glands. Histochem Cell Biol. 2010;134(4):345–53.

    Article  CAS  PubMed  Google Scholar 

  21. Fry TJ, Mackall CL. Interleukin-7: from bench to clinic. Blood. 2002;99(11):3892–904.

    Article  CAS  PubMed  Google Scholar 

  22. van Roon JA, Verweij MC, Wijk MW, Jacobs KM, Bijlsma JW, Lafeber FP. Increased intraarticular interleukin-7 in rheumatoid arthritis patients stimulates cell contact-dependent activation of CD4(+) T cells and macrophages. Arthritis Rheum. 2005;52(6):1700–10.

    Article  PubMed  CAS  Google Scholar 

  23. Kabeerdoss J, Sandhya P, Mandal SK, Gowri M, Danda D. High salivary soluble L-selectin and interleukin-7 levels in Asian Indian patients with primary Sjögren’s syndrome. Clin Rheumatol. 2016;35(12):3063–7.

    Article  PubMed  Google Scholar 

  24. Bikker A, van Woerkom JM, Kruize AA, Wenting-van Wijk M, de Jager W, Bijlsma JW, et al. Increased expression of interleukin-7 in labial salivary glands of patients with primary Sjögren’s syndrome correlates with increased inflammation. Arthritis Rheum. 2010;62(4):969–77.

    Article  CAS  PubMed  Google Scholar 

  25. Hillen MR, Blokland SL, Risselada AP, Bikker A, Lauwerys BR, Kruize AA, et al. High soluble IL-7 receptor expression in Sjögren’s syndrome identifies patients with increased immunopathology and dryness. Ann Rheum Dis. 2016;75(9):1735–6.

    Article  CAS  PubMed  Google Scholar 

  26. Pizarro TT, Michie MH, Bentz M, Woraratanadharm J, Smith MF Jr, Foley E, et al. IL-18, a novel immunoregulatory cytokine, is up-regulated in Crohn's disease: expression and localization in intestinal mucosal cells. J Immunol. 1999;162(11):6829–35.

    CAS  PubMed  Google Scholar 

  27. Gracie JA, Forsey RJ, Chan WL, Gilmour A, Leung BP, Greer MR, et al. A proinflammatory role for IL-18 in rheumatoid arthritis. J Clin Invest. 1999;104(10):1393–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bombardieri M, Barone F, Pittoni V, Alessandri C, Conigliaro P, Blades MC, et al. Increased circulating levels and salivary gland expression of interleukin-18 in patients with Sjögren’s syndrome: relationship with autoantibody production and lymphoid organization of the periductal inflammatory infiltrate. Arthritis Res Ther. 2004;6(5):R447–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Manoussakis MN, Boiu S, Korkolopoulou P, Kapsogeorgou EK, Kavantzas N, Ziakas P, et al. Rates of infiltration by macrophages and dendritic cells and expression of interleukin-18 and interleukin-12 in the chronic inflammatory lesions of Sjögren’s syndrome: correlation with certain features of immune hyperactivity and factors associated with high risk of lymphoma development. Arthritis Rheum. 2007;56(12):3977–88.

    Article  CAS  PubMed  Google Scholar 

  30. Charras A, Arvaniti P, Le Dantec C, Arleevskaya MI, Zachou K, Dalekos GN, et al. JAK inhibitors suppress innate epigenetic reprogramming: a promise for patients with Sjögren’s syndrome. Clin Rev Allergy Immunol. 2020;58(2):182–93.

    Article  CAS  PubMed  Google Scholar 

  31. Aota K, Yamanoi T, Kani K, Ono S, Momota Y, Azuma M. Inhibition of JAK-STAT signaling by Baricitinib reduces interferon-γ-induced CXCL10 production in human salivary gland ductal cells. Inflammation. 2021;44(1):206–16.

    Article  CAS  PubMed  Google Scholar 

  32. Walker JA, McKenzie ANJ. T(H)2 cell development and function. Nat Rev Immunol. 2018;18(2):121–33.

    Article  CAS  PubMed  Google Scholar 

  33. Crotty S. A brief history of T cell help to B cells. Nat Rev Immunol. 2015;15(3):185–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zheng W, Flavell RA. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell. 1997;89(4):587–96.

    Article  CAS  PubMed  Google Scholar 

  35. Swain SL, McKenzie DT, Weinberg AD, Hancock W. Characterization of T helper 1 and 2 cell subsets in normal mice. Helper T cells responsible for IL-4 and IL-5 production are present as precursors that require priming before they develop into lymphokine-secreting cells. J Immunol. 1988;141(10):3445–55.

    CAS  PubMed  Google Scholar 

  36. Khoury P, Herold J, Alpaugh A, Dinerman E, Holland-Thomas N, Stoddard J, et al. Episodic angioedema with eosinophilia (Gleich syndrome) is a multilineage cell cycling disorder. Haematologica. 2015;100(3):300–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nakanishi K, Yoshimoto T, Tsutsui H, Okamura H. Interleukin-18 regulates both Th1 and Th2 responses. Annu Rev Immunol. 2001;19:423–74.

    Article  CAS  PubMed  Google Scholar 

  38. Pertovaara M, Antonen J, Hurme M. Th2 cytokine genotypes are associated with a milder form of primary Sjogren’s syndrome. Ann Rheum Dis. 2006;65(5):666–70.

    Article  CAS  PubMed  Google Scholar 

  39. Kolls JK, Lindén A. Interleukin-17 family members and inflammation. Immunity. 2004;21(4):467–76.

    Article  CAS  PubMed  Google Scholar 

  40. Weaver CT, Hatton RD, Mangan PR, Harrington LE. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol. 2007;25:821–52.

    Article  CAS  PubMed  Google Scholar 

  41. Liu H, Rohowsky-Kochan C. Regulation of IL-17 in human CCR6+ effector memory T cells. J Immunol. 2008;180(12):7948–57.

    Article  CAS  PubMed  Google Scholar 

  42. Spolski R, Leonard WJ. Interleukin-21: basic biology and implications for cancer and autoimmunity. Annu Rev Immunol. 2008;26:57–79.

    Article  CAS  PubMed  Google Scholar 

  43. Liang SC, Tan XY, Luxenberg DP, Karim R, Dunussi-Joannopoulos K, Collins M, et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med. 2006;203(10):2271–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kawaguchi M, Kokubu F, Odaka M, Watanabe S, Suzuki S, Ieki K, et al. Induction of granulocyte-macrophage colony-stimulating factor by a new cytokine, ML-1 (IL-17F), via Raf I-MEK-ERK pathway. J Allergy Clin Immunol. 2004;114(2):444–50.

    Article  CAS  PubMed  Google Scholar 

  45. Oda N, Canelos PB, Essayan DM, Plunkett BA, Myers AC, Huang SK. Interleukin-17F induces pulmonary neutrophilia and amplifies antigen-induced allergic response. Am J Respir Crit Care Med. 2005;171(1):12–8.

    Article  PubMed  Google Scholar 

  46. Ishigame H, Kakuta S, Nagai T, Kadoki M, Nambu A, Komiyama Y, et al. Differential roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial infection and allergic responses. Immunity. 2009;30(1):108–19.

    Article  CAS  PubMed  Google Scholar 

  47. Gaffen SL, Moutsopoulos NM. Regulation of host-microbe interactions at oral mucosal barriers by type 17 immunity. Sci Immunol. 2020;5(43)

    Google Scholar 

  48. Khader SA, Gaffen SL, Kolls JK. Th17 cells at the crossroads of innate and adaptive immunity against infectious diseases at the mucosa. Mucosal Immunol. 2009;2(5):403–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Edwards LA, Nistala K, Mills DC, Stephenson HN, Zilbauer M, Wren BW, et al. Delineation of the innate and adaptive T-cell immune outcome in the human host in response to Campylobacter jejuni infection. PLoS One. 2010;5(11):e15398.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Stange J, Hepworth MR, Rausch S, Zajic L, Kühl AA, Uyttenhove C, et al. IL-22 mediates host defense against an intestinal intracellular parasite in the absence of IFN-γ at the cost of Th17-driven immunopathology. J Immunol. 2012;188(5):2410–8.

    Article  CAS  PubMed  Google Scholar 

  51. Pavlova A, Sharafutdinov I. Recognition of Candida albicans and role of innate type 17 immunity in oral candidiasis. Microorganisms. 2020;8(9)

    Google Scholar 

  52. Hirota K, Hashimoto M, Yoshitomi H, Tanaka S, Nomura T, Yamaguchi T, et al. T cell self-reactivity forms a cytokine milieu for spontaneous development of IL-17+ Th cells that cause autoimmune arthritis. J Exp Med. 2007;204(1):41–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sudzius G, Mieliauskaite D, Butrimiene I, Siaurys A, Mackiewicz Z, Dumalakiene I. Activity of T-helper cells in patients with primary Sjogren’s syndrome. In Vivo. 2013;27(2):263–8.

    CAS  PubMed  Google Scholar 

  54. Katsifis GE, Rekka S, Moutsopoulos NM, Pillemer S, Wahl SM. Systemic and local interleukin-17 and linked cytokines associated with Sjögren's syndrome immunopathogenesis. Am J Pathol. 2009;175(3):1167–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity. 2006;24(2):179–89.

    Article  CAS  PubMed  Google Scholar 

  56. Lee Y, Awasthi A, Yosef N, Quintana FJ, Xiao S, Peters A, et al. Induction and molecular signature of pathogenic TH17 cells. Nat Immunol. 2012;13(10):991–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ciccia F, Guggino G, Rizzo A, Ferrante A, Raimondo S, Giardina A, et al. Potential involvement of IL-22 and IL-22-producing cells in the inflamed salivary glands of patients with Sjogren’s syndrome. Ann Rheum Dis. 2012;71(2):295–301.

    Article  CAS  PubMed  Google Scholar 

  58. Yang XO, Panopoulos AD, Nurieva R, Chang SH, Wang D, Watowich SS, et al. STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J Biol Chem. 2007;282(13):9358–63.

    Article  CAS  PubMed  Google Scholar 

  59. Leonard WJ, O’Shea JJ. Jaks and STATs: biological implications. Annu Rev Immunol. 1998;16:293–322.

    Article  CAS  PubMed  Google Scholar 

  60. Jetten AM, Takeda Y, Slominski A, Kang HS. Retinoic acid-related Orphan Receptor γ (RORγ): connecting sterol metabolism to regulation of the immune system and autoimmune disease. Curr Opin Toxicol. 2018;8:66–80.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Orosz CG, Roopenian DC, Widmer MB, Bach FH. Analysis of cloned T cell function. II. Differential blockade of various cloned T cell functions by cyclosporine. Transplantation. 1983;36(6):706–11.

    Article  CAS  PubMed  Google Scholar 

  62. Wang K, Shi L, Yu Z, Deng Z, He A, Li S, et al. Cyclosporine a suppresses the activation of the Th17 cells in patients with primary Sjögren’s syndrome. Iran J Allergy Asthma Immunol. 2015;14(2):198–207.

    PubMed  Google Scholar 

  63. Hjelmervik TO, Petersen K, Jonassen I, Jonsson R, Bolstad AI. Gene expression profiling of minor salivary glands clearly distinguishes primary Sjögren’s syndrome patients from healthy control subjects. Arthritis Rheum. 2005;52(5):1534–44.

    Article  CAS  PubMed  Google Scholar 

  64. Li L, He J, Zhu L, Yang Y, Jin Y, Jia R, et al. The clinical relevance of IL-17-producing CD4+CD161+ cell and its subpopulations in primary Sjögren’s syndrome. J Immunol Res. 2015;2015:307453.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Zhao L, Nocturne G, Haskett S, Boudaoud S, Lazure T, Le Pajolec C, et al. Clinical relevance of RORγ positive and negative subsets of CD161+CD4+ T cells in primary Sjögren’s syndrome. Rheumatology (Oxford). 2017;56(2):303–12.

    Article  CAS  Google Scholar 

  66. Liu R, Gao C, Chen H, Li Y, Jin Y, Qi H. Analysis of Th17-associated cytokines and clinical correlations in patients with dry eye disease. PLoS One. 2017;12(4):e0173301.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Gan Y, Zhao X, He J, Liu X, Li Y, Sun X, et al. Increased interleukin-17F is associated with elevated autoantibody levels and more clinically relevant than interleukin-17A in primary Sjögren’s syndrome. J Immunol Res. 2017;2017:4768408.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Reksten TR, Jonsson MV, Szyszko EA, Brun JG, Jonsson R, Brokstad KA. Cytokine and autoantibody profiling related to histopathological features in primary Sjogren's syndrome. Rheumatology (Oxford). 2009;48(9):1102–6.

    Article  CAS  Google Scholar 

  69. Alunno A, Carubbi F, Bistoni O, Caterbi S, Bartoloni E, Bigerna B, et al. CD4(−)CD8(−) T-cells in primary Sjögren’s syndrome: association with the extent of glandular involvement. J Autoimmun. 2014;51:38–43.

    Article  CAS  PubMed  Google Scholar 

  70. Alunno A, Bistoni O, Caterbi S, Bartoloni E, Cafaro G, Gerli R. Serum interleukin-17 in primary Sjögren's syndrome: association with disease duration and parotid gland swelling. Clin Exp Rheumatol. 2015;33(1):129.

    PubMed  Google Scholar 

  71. Fei Y, Zhang W, Lin D, Wu C, Li M, Zhao Y, et al. Clinical parameter and Th17 related to lymphocytes infiltrating degree of labial salivary gland in primary Sjögren’s syndrome. Clin Rheumatol. 2014;33(4):523–9.

    Article  PubMed  Google Scholar 

  72. Sakai A, Sugawara Y, Kuroishi T, Sasano T, Sugawara S. Identification of IL-18 and Th17 cells in salivary glands of patients with Sjögren’s syndrome, and amplification of IL-17-mediated secretion of inflammatory cytokines from salivary gland cells by IL-18. J Immunol. 2008;181(4):2898–906.

    Article  CAS  PubMed  Google Scholar 

  73. Yanagawa T, Hayashi Y, Nagamine S, Yoshida H, Yura Y, Sato M. Generation of cells with phenotypes of both intercalated duct-type and myoepithelial cells in human parotid gland adenocarcinoma clonal cells grown in athymic nude mice. Virchows Arch B Cell Pathol Incl Mol Pathol. 1986;51(3):187–95.

    Article  CAS  PubMed  Google Scholar 

  74. Spolski R, Leonard WJ. Interleukin-21: a double-edged sword with therapeutic potential. Nat Rev Drug Discov. 2014;13(5):379–95.

    Article  CAS  PubMed  Google Scholar 

  75. Ettinger R, Sims GP, Robbins R, Withers D, Fischer RT, Grammer AC, et al. IL-21 and BAFF/BLyS synergize in stimulating plasma cell differentiation from a unique population of human splenic memory B cells. J Immunol. 2007;178(5):2872–82.

    Article  CAS  PubMed  Google Scholar 

  76. Tangye SG, Ma CS. Regulation of the germinal center and humoral immunity by interleukin-21. J Exp Med. 2020;217(1).

    Google Scholar 

  77. Pène J, Gauchat JF, Lécart S, Drouet E, Guglielmi P, Boulay V, et al. Cutting edge: IL-21 is a switch factor for the production of IgG1 and IgG3 by human B cells. J Immunol. 2004;172(9):5154–7.

    Article  PubMed  Google Scholar 

  78. Kang KY, Kim HO, Kwok SK, Ju JH, Park KS, Sun DI, et al. Impact of interleukin-21 in the pathogenesis of primary Sjögren’s syndrome: increased serum levels of interleukin-21 and its expression in the labial salivary glands. Arthritis Res Ther. 2011;13(5):R179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pestka S, Krause CD, Sarkar D, Walter MR, Shi Y, Fisher PB. Interleukin-10 and related cytokines and receptors. Annu Rev Immunol. 2004;22:929–79.

    Article  CAS  PubMed  Google Scholar 

  80. Vivier E, Spits H, Cupedo T. Interleukin-22-producing innate immune cells: new players in mucosal immunity and tissue repair? Nat Rev Immunol. 2009;9(4):229–34.

    Article  CAS  PubMed  Google Scholar 

  81. Dudakov JA, Hanash AM, van den Brink MR. Interleukin-22: immunobiology and pathology. Annu Rev Immunol. 2015;33:747–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ouyang W, Kolls JK, Zheng Y. The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity. 2008;28(4):454–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Brand S, Beigel F, Olszak T, Zitzmann K, Eichhorst ST, Otte JM, et al. IL-22 is increased in active Crohn's disease and promotes proinflammatory gene expression and intestinal epithelial cell migration. Am J Physiol Gastrointest Liver Physiol. 2006;290(4):G827–38.

    Article  CAS  PubMed  Google Scholar 

  84. Xuan X, Zhang L, Tian C, Wu T, Ye H, Cao J, et al. Interleukin-22 and connective tissue diseases: emerging role in pathogenesis and therapy. Cell Biosci. 2021;11(1):2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lavoie TN, Stewart CM, Berg KM, Li Y, Nguyen CQ. Expression of interleukin-22 in Sjögren's syndrome: significant correlation with disease parameters. Scand J Immunol. 2011;74(4):377–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Barone F, Nayar S, Campos J, Cloake T, Withers DR, Toellner KM, et al. IL-22 regulates lymphoid chemokine production and assembly of tertiary lymphoid organs. Proc Natl Acad Sci U S A. 2015;112(35):11024–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hao LR, Li XF, Gao C, Cao L, Han ZY, Gao H. Th17/Treg cell level and clinical characteristics of peripheral blood of patients with Sjogren’s syndrome complicated with primary biliary cirrhosis. Medicine. 2019;98(24):e15952.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Grosskreutz CL, Hockey HU, Serra D, Dryja TP. Dry eye signs and symptoms persist during systemic neutralization of IL-1β by Canakinumab or IL-17A by Secukinumab. Cornea. 2015;34(12):1551–6.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995;155(3):1151–64.

    CAS  PubMed  Google Scholar 

  90. Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell. 2008;133(5):775–87.

    Article  CAS  PubMed  Google Scholar 

  91. Shevach EM. Certified professionals: CD4(+)CD25(+) suppressor T cells. J Exp Med. 2001;193(11):F41–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Suri-Payer E, Amar AZ, Thornton AM, Shevach EM. CD4+CD25+ T cells inhibit both the induction and effector function of autoreactive T cells and represent a unique lineage of immunoregulatory cells. J Immunol. 1998;160(3):1212–8.

    CAS  PubMed  Google Scholar 

  93. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol. 2003;4(4):330–6.

    Article  CAS  PubMed  Google Scholar 

  94. Karube K, Ohshima K, Tsuchiya T, Yamaguchi T, Kawano R, Suzumiya J, et al. Expression of FoxP3, a key molecule in CD4CD25 regulatory T cells, in adult T-cell leukaemia/lymphoma cells. Br J Haematol. 2004;126(1):81–4.

    Article  CAS  PubMed  Google Scholar 

  95. Polansky JK, Kretschmer K, Freyer J, Floess S, Garbe A, Baron U, et al. DNA methylation controls Foxp3 gene expression. Eur J Immunol. 2008;38(6):1654–63.

    Article  CAS  PubMed  Google Scholar 

  96. Toker A, Engelbert D, Garg G, Polansky JK, Floess S, Miyao T, et al. Active demethylation of the Foxp3 locus leads to the generation of stable regulatory T cells within the thymus. J Immunol. 2013;190(7):3180–8.

    Article  CAS  PubMed  Google Scholar 

  97. Gotot J, Gottschalk C, Leopold S, Knolle PA, Yagita H, Kurts C, et al. Regulatory T cells use programmed death 1 ligands to directly suppress autoreactive B cells in vivo. Proc Natl Acad Sci U S A. 2012;109(26):10468–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhao DM, Thornton AM, DiPaolo RJ, Shevach EM. Activated CD4+CD25+ T cells selectively kill B lymphocytes. Blood. 2006;107(10):3925–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chen W. Tregs in immunotherapy: opportunities and challenges. Immunotherapy. 2011;3(8):911–4.

    Article  PubMed  Google Scholar 

  100. Morishima N, Mizoguchi I, Takeda K, Mizuguchi J, Yoshimoto T. TGF-beta is necessary for induction of IL-23R and Th17 differentiation by IL-6 and IL-23. Biochem Biophys Res Commun. 2009;386(1):105–10.

    Article  CAS  PubMed  Google Scholar 

  101. Roes J, Choi BK, Cazac BB. Redirection of B cell responsiveness by transforming growth factor beta receptor. Proc Natl Acad Sci U S A. 2003;100(12):7241–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kawanami T, Sawaki T, Sakai T, Miki M, Iwao H, Nakajima A, et al. Skewed production of IL-6 and TGFβ by cultured salivary gland epithelial cells from patients with Sjögren’s syndrome. PLoS One. 2012;7(10):e45689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Buelens C, Verhasselt V, De Groote D, Thielemans K, Goldman M, Willems F. Human dendritic cell responses to lipopolysaccharide and CD40 ligation are differentially regulated by interleukin-10. Eur J Immunol. 1997;27(8):1848–52.

    Article  CAS  PubMed  Google Scholar 

  104. Buelens C, Willems F, Delvaux A, Piérard G, Delville JP, Velu T, et al. Interleukin-10 differentially regulates B7-1 (CD80) and B7-2 (CD86) expression on human peripheral blood dendritic cells. Eur J Immunol. 1995;25(9):2668–72.

    Article  CAS  PubMed  Google Scholar 

  105. Taylor A, Verhagen J, Akkoç T, Wenig R, Flory E, Blaser K, et al. IL-10 suppresses CD2-mediated T cell activation via SHP-1. Mol Immunol. 2009;46(4):622–9.

    Article  CAS  PubMed  Google Scholar 

  106. Chinen T, Kannan AK, Levine AG, Fan X, Klein U, Zheng Y, et al. An essential role for the IL-2 receptor in T(reg) cell function. Nat Immunol. 2016;17(11):1322–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. von Spee-Mayer C, Siegert E, Abdirama D, Rose A, Klaus A, Alexander T, et al. Low-dose interleukin-2 selectively corrects regulatory T cell defects in patients with systemic lupus erythematosus. Ann Rheum Dis. 2016;75(7):1407–15.

    Article  CAS  Google Scholar 

  108. Ng WF, Duggan PJ, Ponchel F, Matarese G, Lombardi G, Edwards AD, et al. Human CD4(+)CD25(+) cells: a naturally occurring population of regulatory T cells. Blood. 2001;98(9):2736–44.

    Article  CAS  PubMed  Google Scholar 

  109. Miyara M, Sakaguchi S. Human FoxP3(+)CD4(+) regulatory T cells: their knowns and unknowns. Immunol Cell Biol. 2011;89(3):346–51.

    Article  CAS  PubMed  Google Scholar 

  110. Alunno A, Carubbi F, Bistoni O, Caterbi S, Bartoloni E, Mirabelli G, et al. T regulatory and T helper 17 cells in primary Sjögren’s syndrome: facts and perspectives. Mediat Inflamm. 2015;2015:243723.

    Google Scholar 

  111. Li X, Li X, Qian L, Wang G, Zhang H, Wang X, et al. T regulatory cells are markedly diminished in diseased salivary glands of patients with primary Sjögren's syndrome. J Rheumatol. 2007;34(12):2438–45.

    PubMed  Google Scholar 

  112. Liu MF, Lin LH, Weng CT, Weng MY. Decreased CD4+CD25+bright T cells in peripheral blood of patients with primary Sjogren’s syndrome. Lupus. 2008;17(1):34–9.

    Article  CAS  PubMed  Google Scholar 

  113. Sarigul M, Yazisiz V, Bassorgun CI, Ulker M, Avci AB, Erbasan F, et al. The numbers of Foxp3 + Treg cells are positively correlated with higher grade of infiltration at the salivary glands in primary Sjogren’s syndrome. Lupus. 2010;19(2):138–45.

    Article  CAS  PubMed  Google Scholar 

  114. Christodoulou MI, Kapsogeorgou EK, Moutsopoulos NM, Moutsopoulos HM. Foxp3+ T-regulatory cells in Sjogren's syndrome: correlation with the grade of the autoimmune lesion and certain adverse prognostic factors. Am J Pathol. 2008;173(5):1389–96.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Banica L, Besliu A, Pistol G, Stavaru C, Ionescu R, Forsea AM, et al. Quantification and molecular characterization of regulatory T cells in connective tissue diseases. Autoimmunity. 2009;42(1):41–9.

    Article  CAS  PubMed  Google Scholar 

  116. Szodoray P, Papp G, Horvath IF, Barath S, Sipka S, Nakken B, et al. Cells with regulatory function of the innate and adaptive immune system in primary Sjögren's syndrome. Clin Exp Immunol. 2009;157(3):343–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Gottenberg JE, Lavie F, Abbed K, Gasnault J, Le Nevot E, Delfraissy JF, et al. CD4 CD25high regulatory T cells are not impaired in patients with primary Sjögren's syndrome. J Autoimmun. 2005;24(3):235–42.

    Article  CAS  PubMed  Google Scholar 

  118. Furuzawa-Carballeda J, Hernández-Molina G, Lima G, Rivera-Vicencio Y, Férez-Blando K, Llorente L. Peripheral regulatory cells immunophenotyping in primary Sjögren's syndrome: a cross-sectional study. Arthritis Res Ther. 2013;15(3):R68.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Hahm K, Cobb BS, McCarty AS, Brown KE, Klug CA, Lee R, et al. Helios, a T cell-restricted Ikaros family member that quantitatively associates with Ikaros at centromeric heterochromatin. Genes Dev. 1998;12(6):782–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Takatori H, Kawashima H, Matsuki A, Meguro K, Tanaka S, Iwamoto T, et al. Helios enhances Treg cell function in cooperation with FoxP3. Arthritis Rheumatol. 2015;67(6):1491–502.

    Article  CAS  PubMed  Google Scholar 

  121. Getnet D, Grosso JF, Goldberg MV, Harris TJ, Yen HR, Bruno TC, et al. A role for the transcription factor Helios in human CD4(+)CD25(+) regulatory T cells. Mol Immunol. 2010;47(7–8):1595–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zabransky DJ, Nirschl CJ, Durham NM, Park BV, Ceccato CM, Bruno TC, et al. Phenotypic and functional properties of Helios+ regulatory T cells. PLoS One. 2012;7(3):e34547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Liu C, Guan Z, Zhao L, Song Y, Wang H. Elevated level of circulating CD4(+)Helios(+)FoxP3(+) cells in primary Sjogren's syndrome patients. Mod Rheumatol. 2017;27(4):630–7.

    Article  CAS  PubMed  Google Scholar 

  124. Alunno A, Petrillo MG, Nocentini G, Bistoni O, Bartoloni E, Caterbi S, et al. Characterization of a new regulatory CD4+ T cell subset in primary Sjögren’s syndrome. Rheumatology (Oxford). 2013;52(8):1387–96.

    Article  CAS  Google Scholar 

  125. Liao W, Lin JX, Leonard WJ. IL-2 family cytokines: new insights into the complex roles of IL-2 as a broad regulator of T helper cell differentiation. Curr Opin Immunol. 2011;23(5):598–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Arenas-Ramirez N, Woytschak J, Boyman O. Interleukin-2: biology, design and application. Trends Immunol. 2015;36(12):763–77.

    Article  CAS  PubMed  Google Scholar 

  127. Delespine-Carmagnat M, Bouvier G, Bertoglio J. Association of STAT1, STAT3 and STAT5 proteins with the IL-2 receptor involves different subdomains of the IL-2 receptor beta chain. Eur J Immunol. 2000;30(1):59–68.

    Article  CAS  PubMed  Google Scholar 

  128. Luo J, Ming B, Zhang C, Deng X, Li P, Wei Z, et al. IL-2 inhibition of Th17 generation rather than induction of Treg cells is impaired in primary Sjögren’s syndrome patients. Front Immunol. 2018;9:1755.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Tanaka H, Zhang W, Yang GX, Ando Y, Tomiyama T, Tsuneyama K, et al. Successful immunotherapy of autoimmune cholangitis by adoptive transfer of forkhead box protein 3(+) regulatory T cells. Clin Exp Immunol. 2014;178(2):253–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Trenado A, Sudres M, Tang Q, Maury S, Charlotte F, Grégoire S, et al. Ex vivo-expanded CD4+CD25+ immunoregulatory T cells prevent graft-versus-host-disease by inhibiting activation/differentiation of pathogenic T cells. J Immunol. 2006;176(2):1266–73.

    Article  CAS  PubMed  Google Scholar 

  131. Amini L, Greig J, Schmueck-Henneresse M, Volk HD, Bézie S, Reinke P, et al. Super-Treg: toward a new era of adoptive Treg therapy enabled by genetic modifications. Front Immunol. 2020;11:611638.

    Article  CAS  PubMed  Google Scholar 

  132. Bluestone JA, Buckner JH, Fitch M, Gitelman SE, Gupta S, Hellerstein MK, et al. Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Sci Transl Med. 2015;7(315):315ra189.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Miao M, Hao Z, Guo Y, Zhang X, Zhang S, Luo J, et al. Short-term and low-dose IL-2 therapy restores the Th17/Treg balance in the peripheral blood of patients with primary Sjögren’s syndrome. Ann Rheum Dis. 2018;77(12):1838–40.

    Article  CAS  PubMed  Google Scholar 

  134. Miyara M, Ito Y, Sakaguchi S. TREG-cell therapies for autoimmune rheumatic diseases. Nat Rev Rheumatol. 2014;10(9):543–51.

    Article  CAS  PubMed  Google Scholar 

  135. Sawant DV, Vignali DA. Once a Treg, always a Treg? Immunol Rev. 2014;259(1):173–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Fazilleau N, Mark L, McHeyzer-Williams LJ, McHeyzer-Williams MG. Follicular helper T cells: lineage and location. Immunity. 2009;30(3):324–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Glatman Zaretsky A, Taylor JJ, King IL, Marshall FA, Mohrs M, Pearce EJ. T follicular helper cells differentiate from Th2 cells in response to helminth antigens. J Exp Med. 2009;206(5):991–9.

    Article  PubMed  CAS  Google Scholar 

  138. Breitfeld D, Ohl L, Kremmer E, Ellwart J, Sallusto F, Lipp M, et al. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J Exp Med. 2000;192(11):1545–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Mackay CR. Follicular homing T helper (Th) cells and the Th1/Th2 paradigm. J Exp Med. 2000;192(11):F31–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Schaerli P, Willimann K, Lang AB, Lipp M, Loetscher P, Moser B. CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J Exp Med. 2000;192(11):1553–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Nurieva RI, Chung Y, Martinez GJ, Yang XO, Tanaka S, Matskevitch TD, et al. Bcl6 mediates the development of T follicular helper cells. Science (New York, NY). 2009;325(5943):1001–5.

    Article  CAS  Google Scholar 

  142. Morita R, Schmitt N, Bentebibel SE, Ranganathan R, Bourdery L, Zurawski G, et al. Human blood CXCR5(+)CD4(+) T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion. Immunity. 2011;34(1):108–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Schmitt N, Liu Y, Bentebibel SE, Munagala I, Bourdery L, Venuprasad K, et al. The cytokine TGF-β co-opts signaling via STAT3-STAT4 to promote the differentiation of human TFH cells. Nat Immunol. 2014;15(9):856–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Xu H, Li X, Liu D, Li J, Zhang X, Chen X, et al. Follicular T-helper cell recruitment governed by bystander B cells and ICOS-driven motility. Nature. 2013;496(7446):523–7.

    Article  CAS  PubMed  Google Scholar 

  145. Vinuesa CG, Linterman MA, Yu D, MacLennan IC. Follicular helper T cells. Annu Rev Immunol. 2016;34:335–68.

    Article  CAS  PubMed  Google Scholar 

  146. Blanco P, Ueno H, Schmitt N. T follicular helper (Tfh) cells in lupus: activation and involvement in SLE pathogenesis. Eur J Immunol. 2016;46(2):281–90.

    Article  CAS  PubMed  Google Scholar 

  147. Simpson N, Gatenby PA, Wilson A, Malik S, Fulcher DA, Tangye SG, et al. Expansion of circulating T cells resembling follicular helper T cells is a fixed phenotype that identifies a subset of severe systemic lupus erythematosus. Arthritis Rheum. 2010;62(1):234–44.

    Article  CAS  PubMed  Google Scholar 

  148. Zhang F, Wei K, Slowikowski K, Fonseka CY, Rao DA, Kelly S, et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat Immunol. 2019;20(7):928–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Abolhassani H, El-Sherbiny YM, Arumugakani G, Carter C, Richards S, Lawless D, et al. Expanding clinical phenotype and novel insights into the pathogenesis of ICOS deficiency. J Clin Immunol. 2020;40(2):277–88.

    Article  CAS  PubMed  Google Scholar 

  150. Havenar-Daughton C, Lindqvist M, Heit A, Wu JE, Reiss SM, Kendric K, et al. CXCL13 is a plasma biomarker of germinal center activity. Proc Natl Acad Sci U S A. 2016;113(10):2702–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Kramer JM, Klimatcheva E, Rothstein TL. CXCL13 is elevated in Sjögren's syndrome in mice and humans and is implicated in disease pathogenesis. J Leukoc Biol. 2013;94(5):1079–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Traianos EY, Locke J, Lendrem D, Bowman S, Hargreaves B, Macrae V, et al. Serum CXCL13 levels are associated with lymphoma risk and lymphoma occurrence in primary Sjögren’s syndrome. Rheumatol Int. 2020;40(4):541–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Li XY, Wu ZB, Ding J, Zheng ZH, Li XY, Chen LN, et al. Role of the frequency of blood CD4(+) CXCR5(+) CCR6(+) T cells in autoimmunity in patients with Sjögren’s syndrome. Biochem Biophys Res Commun. 2012;422(2):238–44.

    Article  CAS  PubMed  Google Scholar 

  154. Jin L, Yu D, Li X, Yu N, Li X, Wang Y, et al. CD4+CXCR5+ follicular helper T cells in salivary gland promote B cells maturation in patients with primary Sjogren’s syndrome. Int J Clin Exp Pathol. 2014;7(5):1988–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Szabo K, Papp G, Barath S, Gyimesi E, Szanto A, Zeher M. Follicular helper T cells may play an important role in the severity of primary Sjögren's syndrome. Clin Immunol. 2013;147(2):95–104.

    Article  CAS  PubMed  Google Scholar 

  156. Szabo K, Papp G, Dezso B, Zeher M. The histopathology of labial salivary glands in primary Sjögren's syndrome: focusing on follicular helper T cells in the inflammatory infiltrates. Mediat Inflamm. 2014;2014:631787.

    Article  CAS  Google Scholar 

  157. Pontarini E, Murray-Brown WJ, Croia C, Lucchesi D, Conway J, Rivellese F, et al. Unique expansion of IL-21+ Tfh and Tph cells under control of ICOS identifies Sjögren's syndrome with ectopic germinal centres and MALT lymphoma. Ann Rheum Dis. 2020;79(12):1588–99.

    Article  CAS  PubMed  Google Scholar 

  158. Blokland SLM, Hillen MR, Kruize AA, Meller S, Homey B, Smithson GM, et al. Increased CCL25 and T helper cells expressing CCR9 in the salivary glands of patients with primary Sjögren’s syndrome: potential new Axis in lymphoid Neogenesis. Arthritis Rheumatol. 2017;69(10):2038–51.

    Article  CAS  PubMed  Google Scholar 

  159. Fonseca VR, Agua-Doce A, Maceiras AR, Pierson W, Ribeiro F, Romão VC, et al. Human blood T(fr) cells are indicators of ongoing humoral activity not fully licensed with suppressive function. Sci Immunol. 2017;2(14)

    Google Scholar 

  160. Fonseca VR, Romão VC, Agua-Doce A, Santos M, López-Presa D, Ferreira AC, et al. The ratio of blood T follicular regulatory cells to T follicular helper cells marks ectopic lymphoid structure formation while activated follicular helper T cells indicate disease activity in primary Sjögren’s syndrome. Arthritis & Rheumatol. 2018;70(5):774–84.

    Article  CAS  Google Scholar 

  161. Szabó K, Jámbor I, Szántó A, Horváth IF, Tarr T, Nakken B, et al. The imbalance of circulating follicular T helper cell subsets in primary Sjögren’s syndrome associates with serological alterations and abnormal B-cell distribution. Front Immunol. 2021;12:639975.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Blokland SLM, van Vliet-Moret FM, Hillen MR, Pandit A, Goldschmeding R, Kruize AA, et al. Epigenetically quantified immune cells in salivary glands of Sjögren's syndrome patients: a novel tool that detects robust correlations of T follicular helper cells with immunopathology. Rheumatology (Oxford). 2020;59(2):335–43.

    Article  CAS  Google Scholar 

  163. Zhou X, Liu Y, Jin Y, Wang Y, Miao M, Chen J, et al. Immune responses after influenza vaccination in patients of primary Sjögren’s syndrome. Rheumatology (Oxford). 2021;60(1):224–30.

    Article  CAS  Google Scholar 

  164. Verstappen GM, Kroese FG, Meiners PM, Corneth OB, Huitema MG, Haacke EA, et al. B cell depletion therapy normalizes circulating follicular Th cells in primary Sjögren syndrome. J Rheumatol. 2017;44(1):49–58.

    Article  CAS  PubMed  Google Scholar 

  165. Verstappen GM, Meiners PM, Corneth OBJ, Visser A, Arends S, Abdulahad WH, et al. Attenuation of follicular helper T cell-dependent B cell hyperactivity by Abatacept treatment in primary Sjögren's syndrome. Arthritis Rheumatol. 2017;69(9):1850–61.

    Article  CAS  PubMed  Google Scholar 

  166. Deng Q, Luo Y, Chang C, Wu H, Ding Y, Xiao R. The emerging epigenetic role of CD8+T cells in autoimmune diseases: a systematic review. Front Immunol. 2019;10:856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Rossjohn J, Gras S, Miles JJ, Turner SJ, Godfrey DI, McCluskey J. T cell antigen receptor recognition of antigen-presenting molecules. Annu Rev Immunol. 2015;33:169–200.

    Article  CAS  PubMed  Google Scholar 

  168. Tasaki S, Suzuki K, Nishikawa A, Kassai Y, Takiguchi M, Kurisu R, et al. Multiomic disease signatures converge to cytotoxic CD8 T cells in primary Sjögren’s syndrome. Ann Rheum Dis. 2017;76(8):1458–66.

    Article  CAS  PubMed  Google Scholar 

  169. Narkeviciute I, Sudzius G, Mieliauskaite D, Mackiewicz Z, Butrimiene I, Viliene R, et al. Are cytotoxic effector cells changes in peripheral blood of patients with Sjögren's syndrome related to persistent virus infection: suggestions and conundrums. Cell Immunol. 2016;310:123–30.

    Article  CAS  PubMed  Google Scholar 

  170. Gao CY, Yao Y, Li L, Yang SH, Chu H, Tsuneyama K, et al. Tissue-resident memory CD8+ T cells acting as mediators of salivary gland damage in a murine model of Sjögren’s syndrome. Arthritis Rheumatol. 2019;71(1):121–32.

    Article  CAS  PubMed  Google Scholar 

  171. Mingueneau M, Boudaoud S, Haskett S, Reynolds TL, Nocturne G, Norton E, et al. Cytometry by time-of-flight immunophenotyping identifies a blood Sjögren’s signature correlating with disease activity and glandular inflammation. J Allergy Clin Immunol. 2016;137(6):1809–21.e12.

    Article  PubMed  Google Scholar 

  172. Blokland SLM, Kislat A, Homey B, Smithson GM, Kruize AA, Radstake T, et al. Decreased circulating CXCR3 + CCR9+T helper cells are associated with elevated levels of their ligands CXCL10 and CCL25 in the salivary gland of patients with Sjögren's syndrome to facilitate their concerted migration. Scand J Immunol. 2020;91(3):e12852.

    Article  PubMed  Google Scholar 

  173. Caldeira-Dantas S, Furmanak T, Smith C, Quinn M, Teos LY, Ertel A, et al. The chemokine receptor CXCR3 promotes CD8(+) T cell accumulation in uninfected salivary glands but is not necessary after murine cytomegalovirus infection. J Immunol. 2018;200(3):1133–45.

    Article  CAS  PubMed  Google Scholar 

  174. Zhou J, Yu Q. Disruption of CXCR3 function impedes the development of Sjögren’s syndrome-like xerostomia in non-obese diabetic mice. Lab Investig. 2018;98(5):620–8.

    Article  CAS  PubMed  Google Scholar 

  175. Baer AN, Gottenberg JE, St Clair EW, Sumida T, Takeuchi T, Seror R, et al. Efficacy and safety of abatacept in active primary Sjögren’s syndrome: results of a phase III, randomised, placebo-controlled trial. Ann Rheum Dis. 2020;80(3):339–48.

    Article  CAS  Google Scholar 

  176. Cerutti A, Cols M, Puga I. Marginal zone B cells: virtues of innate-like antibody-producing lymphocytes. Nat Rev Immunol. 2013;13(2):118–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Lopes-Carvalho T, Kearney JF. Development and selection of marginal zone B cells. Immunol Rev. 2004;197:192–205.

    Article  PubMed  Google Scholar 

  178. Bendelac A, Bonneville M, Kearney JF. Autoreactivity by design: innate B and T lymphocytes. Nat Rev Immunol. 2001;1(3):177–86.

    Article  CAS  PubMed  Google Scholar 

  179. Amano M, Baumgarth N, Dick MD, Brossay L, Kronenberg M, Herzenberg LA, et al. CD1 expression defines subsets of follicular and marginal zone B cells in the spleen: beta 2-microglobulin-dependent and independent forms. J Immunol. 1998;161(4):1710–7.

    CAS  PubMed  Google Scholar 

  180. Appelgren D, Eriksson P, Ernerudh J, Segelmark M. Marginal-zone B-cells are Main producers of IgM in humans, and are reduced in patients with autoimmune vasculitis. Front Immunol. 2018;9:2242.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Palm AE, Kleinau S. Marginal zone B cells: from housekeeping function to autoimmunity? J Autoimmun. 2021;119:102627.

    Article  CAS  PubMed  Google Scholar 

  182. Balázs M, Martin F, Zhou T, Kearney J. Blood dendritic cells interact with splenic marginal zone B cells to initiate T-independent immune responses. Immunity. 2002;17(3):341–52.

    Article  PubMed  Google Scholar 

  183. Oliver AM, Martin F, Kearney JF. IgMhighCD21high lymphocytes enriched in the splenic marginal zone generate effector cells more rapidly than the bulk of follicular B cells. J Immunol. 1999;162(12):7198–207.

    CAS  PubMed  Google Scholar 

  184. Cobb BA, Wang Q, Tzianabos AO, Kasper DL. Polysaccharide processing and presentation by the MHCII pathway. Cell. 2004;117(5):677–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Palm AK, Friedrich HC, Kleinau S. Nodal marginal zone B cells in mice: a novel subset with dormant self-reactivity. Sci Rep. 2016;6:27687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Tangye SG, Liu YJ, Aversa G, Phillips JH, de Vries JE. Identification of functional human splenic memory B cells by expression of CD148 and CD27. J Exp Med. 1998;188(9):1691–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Dunn-Walters DK, Isaacson PG, Spencer J. Analysis of mutations in immunoglobulin heavy chain variable region genes of microdissected marginal zone (MGZ) B cells suggests that the MGZ of human spleen is a reservoir of memory B cells. J Exp Med. 1995;182(2):559–66.

    Article  CAS  PubMed  Google Scholar 

  188. Guerrier T, Le Pottier L, Devauchelle V, Pers JO, Jamin C, Youinou P. Role of Toll-like receptors in primary Sjögren’'s syndrome with a special emphasis on B-cell maturation within exocrine tissues. J Autoimmun. 2012;39(1–2):69–76.

    Article  CAS  PubMed  Google Scholar 

  189. Daridon C, Pers JO, Devauchelle V, Martins-Carvalho C, Hutin P, Pennec YL, et al. Identification of transitional type II B cells in the salivary glands of patients with Sjögren’s syndrome. Arthritis Rheum. 2006;54(7):2280–8.

    Article  CAS  PubMed  Google Scholar 

  190. Loder F, Mutschler B, Ray RJ, Paige CJ, Sideras P, Torres R, et al. B cell development in the spleen takes place in discrete steps and is determined by the quality of B cell receptor-derived signals. J Exp Med. 1999;190(1):75–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Cariappa A, Tang M, Parng C, Nebelitskiy E, Carroll M, Georgopoulos K, et al. The follicular versus marginal zone B lymphocyte cell fate decision is regulated by Aiolos, Btk, and CD21. Immunity. 2001;14(5):603–15.

    Article  CAS  PubMed  Google Scholar 

  192. Weill JC, Weller S, Reynaud CA. Human marginal zone B cells. Annu Rev Immunol. 2009;27:267–85.

    Article  CAS  PubMed  Google Scholar 

  193. Spencer J, Finn T, Pulford KA, Mason DY, Isaacson PG. The human gut contains a novel population of B lymphocytes which resemble marginal zone cells. Clin Exp Immunol. 1985;62(3):607–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Zhao Y, Uduman M, Siu JHY, Tull TJ, Sanderson JD, Wu YB, et al. Spatiotemporal segregation of human marginal zone and memory B cell populations in lymphoid tissue. Nat Commun. 2018;9(1):3857.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Lindner C, Thomsen I, Wahl B, Ugur M, Sethi MK, Friedrichsen M, et al. Diversification of memory B cells drives the continuous adaptation of secretory antibodies to gut microbiota. Nat Immunol. 2015;16(8):880–8.

    Article  CAS  PubMed  Google Scholar 

  196. Magri G, Comerma L, Pybus M, Sintes J, Lligé D, Segura-Garzón D, et al. Human secretory IgM emerges from plasma cells clonally related to gut memory B cells and targets highly diverse commensals. Immunity. 2017;47(1):118–34.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Segundo C, Rodríguez C, García-Poley A, Aguilar M, Gavilán I, Bellas C, et al. Thyroid-infiltrating B lymphocytes in Graves’ disease are related to marginal zone and memory B cell compartments. Thyroid. 2001;11(6):525–30.

    Article  CAS  PubMed  Google Scholar 

  198. Mariño E, Batten M, Groom J, Walters S, Liuwantara D, Mackay F, et al. Marginal-zone B-cells of nonobese diabetic mice expand with diabetes onset, invade the pancreatic lymph nodes, and present autoantigen to diabetogenic T-cells. Diabetes. 2008;57(2):395–404.

    Article  PubMed  CAS  Google Scholar 

  199. Nocturne G, Virone A, Ng WF, Le Guern V, Hachulla E, Cornec D, et al. Rheumatoid factor and disease activity are independent predictors of lymphoma in primary Sjögren’s syndrome. Arthritis Rheumatol. 2016;68(4):977–85.

    Article  CAS  PubMed  Google Scholar 

  200. Seifert M, Küppers R. Human memory B cells. Leukemia. 2016;30(12):2283–92.

    Article  CAS  PubMed  Google Scholar 

  201. Jacob J, Kelsoe G. In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. II. A common clonal origin for periarteriolar lymphoid sheath-associated foci and germinal centers. J Exp Med. 1992;176(3):679–87.

    Article  CAS  PubMed  Google Scholar 

  202. Klein U, Dalla-Favera R. Germinal centres: role in B-cell physiology and malignancy. Nat Rev Immunol. 2008;8(1):22–33.

    Article  CAS  PubMed  Google Scholar 

  203. Kitano M, Moriyama S, Ando Y, Hikida M, Mori Y, Kurosaki T, et al. Bcl6 protein expression shapes pre-germinal center B cell dynamics and follicular helper T cell heterogeneity. Immunity. 2011;34(6):961–72.

    Article  CAS  PubMed  Google Scholar 

  204. Garside P, Ingulli E, Merica RR, Johnson JG, Noelle RJ, Jenkins MK. Visualization of specific B and T lymphocyte interactions in the lymph node. Science (New York, NY). 1998;281(5373):96–9.

    Article  CAS  Google Scholar 

  205. Di Noia JM, Neuberger MS. Molecular mechanisms of antibody somatic hypermutation. Annu Rev Biochem. 2007;76:1–22.

    Article  PubMed  CAS  Google Scholar 

  206. Rajewsky K. Clonal selection and learning in the antibody system. Nature. 1996;381(6585):751–8.

    Article  CAS  PubMed  Google Scholar 

  207. Gitlin AD, von Boehmer L, Gazumyan A, Shulman Z, Oliveira TY, Nussenzweig MC. Independent roles of switching and hypermutation in the development and persistence of B lymphocyte memory. Immunity. 2016;44(4):769–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Shapiro-Shelef M, Calame K. Regulation of plasma-cell development. Nat Rev Immunol. 2005;5(3):230–42.

    Article  CAS  PubMed  Google Scholar 

  209. Tiller T, Tsuiji M, Yurasov S, Velinzon K, Nussenzweig MC, Wardemann H. Autoreactivity in human IgG+ memory B cells. Immunity. 2007;26(2):205–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Crotty S, Felgner P, Davies H, Glidewell J, Villarreal L, Ahmed R. Cutting edge: long-term B cell memory in humans after smallpox vaccination. J Immunol. 2003;171(10):4969–73.

    Article  CAS  PubMed  Google Scholar 

  211. Yu X, Tsibane T, McGraw PA, House FS, Keefer CJ, Hicar MD, et al. Neutralizing antibodies derived from the B cells of 1918 influenza pandemic survivors. Nature. 2008;455(7212):532–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Maruyama M, Lam KP, Rajewsky K. Memory B-cell persistence is independent of persisting immunizing antigen. Nature. 2000;407(6804):636–42.

    Article  CAS  PubMed  Google Scholar 

  213. Good KL, Avery DT, Tangye SG. Resting human memory B cells are intrinsically programmed for enhanced survival and responsiveness to diverse stimuli compared to naive B cells. J Immunol. 2009;182(2):890–901.

    Article  CAS  PubMed  Google Scholar 

  214. Ticha O, Slanina P, Moos L, Stichova J, Vlkova M, Bekeredjian-Ding I. TNFR2 expression is a hallmark of human memory B cells with suppressive function. Eur J Immunol. 2021;

    Google Scholar 

  215. De Salort J, Sintes J, Llinàs L, Matesanz-Isabel J, Engel P. Expression of SLAM (CD150) cell-surface receptors on human B-cell subsets: from pro-B to plasma cells. Immunol Lett. 2011;134(2):129–36.

    Article  PubMed  CAS  Google Scholar 

  216. Avery DT, Deenick EK, Ma CS, Suryani S, Simpson N, Chew GY, et al. B cell-intrinsic signaling through IL-21 receptor and STAT3 is required for establishing long-lived antibody responses in humans. J Exp Med. 2010;207(1):155–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Bernasconi NL, Onai N, Lanzavecchia A. A role for Toll-like receptors in acquired immunity: up-regulation of TLR9 by BCR triggering in naive B cells and constitutive expression in memory B cells. Blood. 2003;101(11):4500–4.

    Article  CAS  PubMed  Google Scholar 

  218. Good KL, Tangye SG. Decreased expression of Kruppel-like factors in memory B cells induces the rapid response typical of secondary antibody responses. Proc Natl Acad Sci U S A. 2007;104(33):13420–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Dorner M, Brandt S, Tinguely M, Zucol F, Bourquin JP, Zauner L, et al. Plasma cell toll-like receptor (TLR) expression differs from that of B cells, and plasma cell TLR triggering enhances immunoglobulin production. Immunology. 2009;128(4):573–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Amft N, Curnow SJ, Scheel-Toellner D, Devadas A, Oates J, Crocker J, et al. Ectopic expression of the B cell-attracting chemokine BCA-1 (CXCL13) on endothelial cells and within lymphoid follicles contributes to the establishment of germinal center-like structures in Sjögren’s syndrome. Arthritis Rheum. 2001;44(11):2633–41.

    Article  CAS  PubMed  Google Scholar 

  221. Salomonsson S, Larsson P, Tengnér P, Mellquist E, Hjelmström P, Wahren-Herlenius M. Expression of the B cell-attracting chemokine CXCL13 in the target organ and autoantibody production in ectopic lymphoid tissue in the chronic inflammatory disease Sjögren’s syndrome. Scand J Immunol. 2002;55(4):336–42.

    Article  CAS  PubMed  Google Scholar 

  222. Rawstron AC. Immunophenotyping of plasma cells. Curr Protoc Cytom 2006;Chapter 6:Unit6.23.

    Google Scholar 

  223. Frigyesi I, Adolfsson J, Ali M, Christophersen MK, Johnsson E, Turesson I, et al. Robust isolation of malignant plasma cells in multiple myeloma. Blood. 2014;123(9):1336–40.

    Article  CAS  PubMed  Google Scholar 

  224. Shen P, Roch T, Lampropoulou V, O'Connor RA, Stervbo U, Hilgenberg E, et al. IL-35-producing B cells are critical regulators of immunity during autoimmune and infectious diseases. Nature. 2014;507(7492):366–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Bohnhorst JO, Thoen JE, Natvig JB, Thompson KM. Significantly depressed percentage of CD27+ (memory) B cells among peripheral blood B cells in patients with primary Sjögren's syndrome. Scand J Immunol. 2001;54(4):421–7.

    Article  CAS  PubMed  Google Scholar 

  226. Barcelos F, Martins C, Madeira N, Ângelo-Dias M, Cardigos J, Alves N, et al. Lymphocyte subpopulations in Sjögren’s syndrome are distinct in anti-SSA-positive patients and related to disease activity. Clin Rheumatol. 2021;

    Google Scholar 

  227. Castigli E, Wilson SA, Scott S, Dedeoglu F, Xu S, Lam KP, et al. TACI and BAFF-R mediate isotype switching in B cells. J Exp Med. 2005;201(1):35–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Gross JA, Johnston J, Mudri S, Enselman R, Dillon SR, Madden K, et al. TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease. Nature. 2000;404(6781):995–9.

    Article  CAS  PubMed  Google Scholar 

  229. Smulski CR, Eibel H. BAFF and BAFF-receptor in B cell selection and survival. Front Immunol. 2018;9:2285.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  230. Ittah M, Miceli-Richard C, Eric Gottenberg J, Lavie F, Lazure T, Ba N, et al. B cell-activating factor of the tumor necrosis factor family (BAFF) is expressed under stimulation by interferon in salivary gland epithelial cells in primary Sjögren’s syndrome. Arthritis Res Ther. 2006;8(2):R51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  231. Navarra SV, Guzmán RM, Gallacher AE, Hall S, Levy RA, Jimenez RE, et al. Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial. Lancet. 2011;377(9767):721–31.

    Article  CAS  PubMed  Google Scholar 

  232. Furie R, Petri M, Zamani O, Cervera R, Wallace DJ, Tegzová D, et al. A phase III, randomized, placebo-controlled study of belimumab, a monoclonal antibody that inhibits B lymphocyte stimulator, in patients with systemic lupus erythematosus. Arthritis Rheum. 2011;63(12):3918–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Vincent FB, Morand EF, Mackay F. BAFF and innate immunity: new therapeutic targets for systemic lupus erythematosus. Immunol Cell Biol. 2012;90(3):293–303.

    Article  CAS  PubMed  Google Scholar 

  234. Mariette X, Roux S, Zhang J, Bengoufa D, Lavie F, Zhou T, et al. The level of BLyS (BAFF) correlates with the titre of autoantibodies in human Sjögren’s syndrome. Ann Rheum Dis. 2003;62(2):168–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Lavie F, Miceli-Richard C, Quillard J, Roux S, Leclerc P, Mariette X. Expression of BAFF (BLyS) in T cells infiltrating labial salivary glands from patients with Sjögren’s syndrome. J Pathol. 2004;202(4):496–502.

    Article  CAS  PubMed  Google Scholar 

  236. Ittah M, Miceli-Richard C, Gottenberg JE, Sellam J, Eid P, Lebon P, et al. Viruses induce high expression of BAFF by salivary gland epithelial cells through TLR- and type-I IFN-dependent and -independent pathways. Eur J Immunol. 2008;38(4):1058–64.

    Article  CAS  PubMed  Google Scholar 

  237. Jonsson MV, Szodoray P, Jellestad S, Jonsson R, Skarstein K. Association between circulating levels of the novel TNF family members APRIL and BAFF and lymphoid organization in primary Sjögren's syndrome. J Clin Immunol. 2005;25(3):189–201.

    Article  CAS  PubMed  Google Scholar 

  238. Quartuccio L, Salvin S, Fabris M, Maset M, Pontarini E, Isola M, et al. BLyS upregulation in Sjogren's syndrome associated with lymphoproliferative disorders, higher ESSDAI score and B-cell clonal expansion in the salivary glands. Rheumatology (Oxford). 2013;52(2):276–81.

    Article  CAS  Google Scholar 

  239. Mariette X, Seror R, Quartuccio L, Baron G, Salvin S, Fabris M, et al. Efficacy and safety of belimumab in primary Sjögren's syndrome: results of the BELISS open-label phase II study. Ann Rheum Dis. 2015;74(3):526–31.

    Article  CAS  PubMed  Google Scholar 

  240. De Vita S, Quartuccio L, Seror R, Salvin S, Ravaud P, Fabris M, et al. Efficacy and safety of belimumab given for 12 months in primary Sjögren's syndrome: the BELISS open-label phase II study. Rheumatology (Oxford). 2015;54(12):2249–56.

    Google Scholar 

  241. Quartuccio L, Salvin S, Corazza L, Gandolfo S, Fabris M, De Vita S. Efficacy of belimumab and targeting of rheumatoid factor-positive B-cell expansion in Sjögren's syndrome: follow-up after the end of the phase II open-label BELISS study. Clin Exp Rheumatol. 2016;34(2):311–4.

    PubMed  Google Scholar 

  242. Ramos-Casals M, Brito-Zerón P, Bombardieri S, Bootsma H, De Vita S, Dörner T, et al. EULAR recommendations for the management of Sjögren’s syndrome with topical and systemic therapies. Ann Rheum Dis. 2020;79(1):3–18.

    Article  CAS  PubMed  Google Scholar 

  243. Dörner T, Posch MG, Li Y, Petricoul O, Cabanski M, Milojevic JM, et al. Treatment of primary Sjögren's syndrome with ianalumab (VAY736) targeting B cells by BAFF receptor blockade coupled with enhanced, antibody-dependent cellular cytotoxicity. Ann Rheum Dis. 2019;78(5):641–7.

    Article  PubMed  CAS  Google Scholar 

  244. Yoshimoto K, Tanaka M, Kojima M, Setoyama Y, Kameda H, Suzuki K, et al. Regulatory mechanisms for the production of BAFF and IL-6 are impaired in monocytes of patients of primary Sjögren's syndrome. Arthritis Res Ther. 2011;13(5):R170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Felten R, Devauchelle-Pensec V, Seror R, Duffau P, Saadoun D, Hachulla E, et al. Interleukin 6 receptor inhibition in primary Sjögren syndrome: a multicentre double-blind randomised placebo-controlled trial. Ann Rheum Dis. 2020;

    Google Scholar 

  246. Devauchelle-Pensec V, Mariette X, Jousse-Joulin S, Berthelot JM, Perdriger A, Puéchal X, et al. Treatment of primary Sjögren syndrome with rituximab: a randomized trial. Ann Intern Med. 2014;160(4):233–42.

    Article  PubMed  Google Scholar 

  247. Hamza N, Bootsma H, Yuvaraj S, Spijkervet FK, Haacke EA, Pollard RP, et al. Persistence of immunoglobulin-producing cells in parotid salivary glands of patients with primary Sjögren's syndrome after B cell depletion therapy. Ann Rheum Dis. 2012;71(11):1881–7.

    Article  CAS  PubMed  Google Scholar 

  248. Meijer JM, Meiners PM, Vissink A, Spijkervet FK, Abdulahad W, Kamminga N, et al. Effectiveness of rituximab treatment in primary Sjögren's syndrome: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 2010;62(4):960–8.

    Article  CAS  PubMed  Google Scholar 

  249. Gandolfo S, De Vita S. Double anti-B cell and anti-BAFF targeting for the treatment of primary Sjögren’s syndrome. Clin Exp Rheumatol. 2019;37 Suppl 118(3):199–208.

    PubMed  Google Scholar 

  250. Chevalier K, Belkhir R, Seror R, Mariette X, Nocturne G. Efficacity of a sequential treatment by anti-CD 20 monoclonal antibody and belimumab in type II cryoglobulinaemia associated with primary Sjögren syndrome refractory to rituximab alone. Ann Rheum Dis. 2020;79(9):1257–9.

    Article  PubMed  Google Scholar 

  251. Mizoguchi A, Bhan AK. A case for regulatory B cells. J Immunol. 2006;176(2):705–10.

    Article  CAS  PubMed  Google Scholar 

  252. Blair PA, Noreña LY, Flores-Borja F, Rawlings DJ, Isenberg DA, Ehrenstein MR, et al. CD19(+)CD24(hi)CD38(hi) B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic Lupus Erythematosus patients. Immunity. 2010;32(1):129–40.

    Article  CAS  PubMed  Google Scholar 

  253. Duddy ME, Alter A, Bar-Or A. Distinct profiles of human B cell effector cytokines: a role in immune regulation? J Immunol. 2004;172(6):3422–7.

    Article  CAS  PubMed  Google Scholar 

  254. Iwata Y, Matsushita T, Horikawa M, Dilillo DJ, Yanaba K, Venturi GM, et al. Characterization of a rare IL-10-competent B-cell subset in humans that parallels mouse regulatory B10 cells. Blood. 2011;117(2):530–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Parekh VV, Prasad DV, Banerjee PP, Joshi BN, Kumar A, Mishra GC. B cells activated by lipopolysaccharide, but not by anti-Ig and anti-CD40 antibody, induce anergy in CD8+ T cells: role of TGF-beta 1. J Immunol. 2003;170(12):5897–911.

    Article  CAS  PubMed  Google Scholar 

  256. Serra P, Santamaria P. To 'B' regulated: B cells as members of the regulatory workforce. Trends Immunol. 2006;27(1):7–10.

    Article  CAS  PubMed  Google Scholar 

  257. Yang M, Rui K, Wang S, Lu L. Regulatory B cells in autoimmune diseases. Cell Mol Immunol. 2013;10(2):122–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  258. Matsushita T, Horikawa M, Iwata Y, Tedder TF. Regulatory B cells (B10 cells) and regulatory T cells have independent roles in controlling experimental autoimmune encephalomyelitis initiation and late-phase immunopathogenesis. J Immunol. 2010;185(4):2240–52.

    Article  CAS  PubMed  Google Scholar 

  259. Rodríguez-Pinto D, Moreno J. B cells can prime naive CD4+ T cells in vivo in the absence of other professional antigen-presenting cells in a CD154-CD40-dependent manner. Eur J Immunol. 2005;35(4):1097–105.

    Article  PubMed  CAS  Google Scholar 

  260. Szabó K, Papp G, Szántó A, Tarr T, Zeher M. A comprehensive investigation on the distribution of circulating follicular T helper cells and B cell subsets in primary Sjögren’s syndrome and systemic lupus erythematosus. Clin Exp Immunol. 2016;183(1):76–89.

    Article  PubMed  CAS  Google Scholar 

  261. Lin X, Wang X, Xiao F, Ma K, Liu L, Wang X, et al. IL-10-producing regulatory B cells restrain the T follicular helper cell response in primary Sjögren’s syndrome. Cell Mol Immunol. 2019;16(12):921–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Mielle J, Nutz A, Guillpain P, Audo R, Gaujoux-Viala C, Combe B, et al. IL-10-producing regulatory B cells are present and functional in primary Sjögren patients. Immunol Res. 2021;69(1):107–13.

    Article  PubMed  CAS  Google Scholar 

  263. Randolph GJ, Angeli V, Swartz MA. Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat Rev Immunol. 2005;5(8):617–28.

    Article  CAS  PubMed  Google Scholar 

  264. Guermonprez P, Valladeau J, Zitvogel L, Théry C, Amigorena S. Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol. 2002;20:621–67.

    Article  CAS  PubMed  Google Scholar 

  265. Tan JK, O'Neill HC. Maturation requirements for dendritic cells in T cell stimulation leading to tolerance versus immunity. J Leukoc Biol. 2005;78(2):319–24.

    Article  CAS  PubMed  Google Scholar 

  266. Granucci F, Zanoni I, Feau S, Capuano G, Ricciardi-Castagnoli P. The regulatory role of dendritic cells in the immune response. Int Arch Allergy Immunol. 2004;134(3):179–85.

    Article  PubMed  Google Scholar 

  267. Rescigno M, Urbano M, Valzasina B, Francolini M, Rotta G, Bonasio R, et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol. 2001;2(4):361–7.

    Article  CAS  PubMed  Google Scholar 

  268. Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells. Annu Rev Immunol. 2003;21:685–711.

    Article  CAS  PubMed  Google Scholar 

  269. Kurts C, Kosaka H, Carbone FR, Miller JF, Heath WR. Class I-restricted cross-presentation of exogenous self-antigens leads to deletion of autoreactive CD8(+) T cells. J Exp Med. 1997;186(2):239–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Adler AJ, Marsh DW, Yochum GS, Guzzo JL, Nigam A, Nelson WG, et al. CD4+ T cell tolerance to parenchymal self-antigens requires presentation by bone marrow-derived antigen-presenting cells. J Exp Med. 1998;187(10):1555–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Verhasselt V, Vosters O, Beuneu C, Nicaise C, Stordeur P, Goldman M. Induction of FOXP3-expressing regulatory CD4pos T cells by human mature autologous dendritic cells. Eur J Immunol. 2004;34(3):762–72.

    Article  CAS  PubMed  Google Scholar 

  272. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392(6673):245–52.

    Article  CAS  PubMed  Google Scholar 

  273. Krenacs T, van Dartel M, Lindhout E, Rosendaal M. Direct cell/cell communication in the lymphoid germinal center: connexin43 gap junctions functionally couple follicular dendritic cells to each other and to B lymphocytes. Eur J Immunol. 1997;27(6):1489–97.

    Article  CAS  PubMed  Google Scholar 

  274. Munro JM, Freedman AS, Aster JC, Gribben JG, Lee NC, Rhynhart KK, et al. In vivo expression of the B7 costimulatory molecule by subsets of antigen-presenting cells and the malignant cells of Hodgkin’s disease. Blood. 1994;83(3):793–8.

    Article  CAS  PubMed  Google Scholar 

  275. Reis e Sousa C, Hieny S, Scharton-Kersten T, Jankovic D, Charest H, Germain RN, et al. In vivo microbial stimulation induces rapid CD40 ligand-independent production of interleukin 12 by dendritic cells and their redistribution to T cell areas. J Exp Med. 1997;186(11):1819–29.

    Article  CAS  PubMed  Google Scholar 

  276. Siegal FP, Kadowaki N, Shodell M, Fitzgerald-Bocarsly PA, Shah K, Ho S, et al. The nature of the principal type 1 interferon-producing cells in human blood. Science (New York, NY). 1999;284(5421):1835–7.

    Article  CAS  Google Scholar 

  277. Swiecki M, Colonna M. The multifaceted biology of plasmacytoid dendritic cells. Nat Rev Immunol. 2015;15(8):471–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Witas R, Gupta S, Nguyen CQ. Contributions of major cell populations to Sjögren’s syndrome. J Clin Med. 2020;9(9)

    Google Scholar 

  279. Cravens PD, Lipsky PE. Dendritic cells, chemokine receptors and autoimmune inflammatory diseases. Immunol Cell Biol. 2002;80(5):497–505.

    Article  CAS  PubMed  Google Scholar 

  280. Park CS, Choi YS. How do follicular dendritic cells interact intimately with B cells in the germinal centre? Immunology. 2005;114(1):2–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Germic N, Frangez Z, Yousefi S, Simon HU. Regulation of the innate immune system by autophagy: monocytes, macrophages, dendritic cells and antigen presentation. Cell Death Differ. 2019;26(4):715–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Sanjuan MA, Dillon CP, Tait SW, Moshiach S, Dorsey F, Connell S, et al. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature. 2007;450(7173):1253–7.

    Article  CAS  PubMed  Google Scholar 

  283. van Blokland SC, Wierenga-Wolf AF, van Helden-Meeuwsen CG, Drexhage HA, Hooijkaas H, van de Merwe JP, et al. Professional antigen presenting cells in minor salivary glands in Sjögren's syndrome: potential contribution to the histopathological diagnosis? Lab Investig. 2000;80(12):1935–41.

    Article  PubMed  Google Scholar 

  284. Christodoulou MI, Kapsogeorgou EK, Moutsopoulos HM. Characteristics of the minor salivary gland infiltrates in Sjögren’s syndrome. J Autoimmun. 2010;34(4):400–7.

    Article  CAS  PubMed  Google Scholar 

  285. Bombardieri M, Barone F, Humby F, Kelly S, McGurk M, Morgan P, et al. Activation-induced cytidine deaminase expression in follicular dendritic cell networks and interfollicular large B cells supports functionality of ectopic lymphoid neogenesis in autoimmune sialoadenitis and MALT lymphoma in Sjögren’s syndrome. J Immunol. 2007;179(7):4929–38.

    Article  CAS  PubMed  Google Scholar 

  286. Xanthou G, Tapinos NI, Polihronis M, Nezis IP, Margaritis LH, Moutsopoulos HM. CD4 cytotoxic and dendritic cells in the immunopathologic lesion of Sjögren’s syndrome. Clin Exp Immunol. 1999;118(1):154–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Jonsson MV, Skarstein K. Follicular dendritic cells confirm lymphoid organization in the minor salivary glands of primary Sjögren’s syndrome. J Oral Pathol Med. 2008;37(9):515–21.

    Article  PubMed  Google Scholar 

  288. Barone F, Bombardieri M, Rosado MM, Morgan PR, Challacombe SJ, De Vita S, et al. CXCL13, CCL21, and CXCL12 expression in salivary glands of patients with Sjogren's syndrome and MALT lymphoma: association with reactive and malignant areas of lymphoid organization. J Immunol. 2008;180(7):5130–40.

    Article  CAS  PubMed  Google Scholar 

  289. Ozaki Y, Amakawa R, Ito T, Iwai H, Tajima K, Uehira K, et al. Alteration of peripheral blood dendritic cells in patients with primary Sjögren’s syndrome. Arthritis Rheum. 2001;44(2):419–31.

    Article  CAS  PubMed  Google Scholar 

  290. Ozaki Y, Ito T, Son Y, Amuro H, Shimamoto K, Sugimoto H, et al. Decrease of blood dendritic cells and increase of tissue-infiltrating dendritic cells are involved in the induction of Sjögren’s syndrome but not in the maintenance. Clin Exp Immunol. 2010;159(3):315–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Vogelsang P, Karlsen M, Brun JG, Jonsson R, Appel S. Altered phenotype and Stat1 expression in Toll-like receptor 7/8 stimulated monocyte-derived dendritic cells from patients with primary Sjögren’s syndrome. Arthritis Res Ther. 2014;16(4):R166.

    Article  PubMed  PubMed Central  Google Scholar 

  292. Shi B, Qi J, Yao G, Feng R, Zhang Z, Wang D, et al. Mesenchymal stem cell transplantation ameliorates Sjögren's syndrome via suppressing IL-12 production by dendritic cells. Stem Cell Res Ther. 2018;9(1):308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Båve U, Nordmark G, Lövgren T, Rönnelid J, Cajander S, Eloranta ML, et al. Activation of the type I interferon system in primary Sjögren’s syndrome: a possible etiopathogenic mechanism. Arthritis Rheum. 2005;52(4):1185–95.

    Article  PubMed  CAS  Google Scholar 

  294. Vogelsang P, Brun JG, Oijordsbakken G, Skarstein K, Jonsson R, Appel S. Levels of plasmacytoid dendritic cells and type-2 myeloid dendritic cells are reduced in peripheral blood of patients with primary Sjogren’s syndrome. Ann Rheum Dis. 2010;69(6):1235–8.

    Article  CAS  PubMed  Google Scholar 

  295. Gottenberg JE, Cagnard N, Lucchesi C, Letourneur F, Mistou S, Lazure T, et al. Activation of IFN pathways and plasmacytoid dendritic cell recruitment in target organs of primary Sjögren's syndrome. Proc Natl Acad Sci U S A. 2006;103(8):2770–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Wildenberg ME, van Helden-Meeuwsen CG, van de Merwe JP, Drexhage HA, Versnel MA. Systemic increase in type I interferon activity in Sjögren’s syndrome: a putative role for plasmacytoid dendritic cells. Eur J Immunol. 2008;38(7):2024–33.

    Article  CAS  PubMed  Google Scholar 

  297. Hillen MR, Pandit A, Blokland SLM, Hartgring SAY, Bekker CPJ, van der Heijden EHM, et al. Plasmacytoid DCs from patients with Sjögren’s syndrome are transcriptionally primed for enhanced pro-inflammatory cytokine production. Front Immunol. 2019;10:2096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Hillen MR, Chouri E, Wang M, Blokland SLM, Hartgring SAY, Concepcion AN, et al. Dysregulated miRNome of plasmacytoid dendritic cells from patients with Sjögren's syndrome is associated with processes at the centre of their function. Rheumatology (Oxford). 2019;58(12):2305–14.

    Article  CAS  Google Scholar 

  299. Ainola M, Porola P, Takakubo Y, Przybyla B, Kouri VP, Tolvanen TA, et al. Activation of plasmacytoid dendritic cells by apoptotic particles - mechanism for the loss of immunological tolerance in Sjögren’s syndrome. Clin Exp Immunol. 2018;191(3):301–10.

    Article  CAS  PubMed  Google Scholar 

  300. Long EO, Barber DF, Burshtyn DN, Faure M, Peterson M, Rajagopalan S, et al. Inhibition of natural killer cell activation signals by killer cell immunoglobulin-like receptors (CD158). Immunol Rev. 2001;181:223–33.

    Article  CAS  PubMed  Google Scholar 

  301. Lazetic S, Chang C, Houchins JP, Lanier LL, Phillips JH. Human natural killer cell receptors involved in MHC class I recognition are disulfide-linked heterodimers of CD94 and NKG2 subunits. J Immunol. 1996;157(11):4741–5.

    CAS  PubMed  Google Scholar 

  302. Gessner JE, Grussenmeyer T, Dumbsky M, Schmidt RE. Separate promoters from proximal and medial control regions contribute to the natural killer cell-specific transcription of the human FcgammaRIII-A (CD16-A) receptor gene. J Biol Chem. 1996;271(48):30755–64.

    Article  CAS  PubMed  Google Scholar 

  303. Höglund P, Waldenström M, Kärre K. Role of major histocompatibility complex class I alpha 1/alpha 2 domain polymorphism and in vivo expression pattern in tumor resistance: studies with transgenic mice and lymphoma cell transfectants. J Immunother Emphasis Tumor Immunol. 1993;14(3):175–81.

    Article  PubMed  Google Scholar 

  304. Bryceson YT, March ME, Ljunggren HG, Long EO. Activation, coactivation, and costimulation of resting human natural killer cells. Immunol Rev. 2006;214:73–91.

    Article  CAS  PubMed  Google Scholar 

  305. Hefeneider SH, Conlon PJ, Henney CS, Gillis S. In vivo interleukin 2 administration augments the generation of alloreactive cytolytic T lymphocytes and resident natural killer cells. J Immunol. 1983;130(1):222–7.

    CAS  PubMed  Google Scholar 

  306. Aste-Amezaga M, D'Andrea A, Kubin M, Trinchieri G. Cooperation of natural killer cell stimulatory factor/interleukin-12 with other stimuli in the induction of cytokines and cytotoxic cell-associated molecules in human T and NK cells. Cell Immunol. 1994;156(2):480–92.

    Article  CAS  PubMed  Google Scholar 

  307. Lauwerys BR, Garot N, Renauld JC, Houssiau FA. Cytokine production and killer activity of NK/T-NK cells derived with IL-2, IL-15, or the combination of IL-12 and IL-18. J Immunol. 2000;165(4):1847–53.

    Article  CAS  PubMed  Google Scholar 

  308. Moretta L, Ferlazzo G, Bottino C, Vitale M, Pende D, Mingari MC, et al. Effector and regulatory events during natural killer-dendritic cell interactions. Immunol Rev. 2006;214:219–28.

    Article  CAS  PubMed  Google Scholar 

  309. Ferlazzo G, Moretta L. Dendritic cell editing by natural killer cells. Crit Rev Oncog. 2014;19(1–2):67–75.

    Article  PubMed  Google Scholar 

  310. Arai S, Meagher R, Swearingen M, Myint H, Rich E, Martinson J, et al. Infusion of the allogeneic cell line NK-92 in patients with advanced renal cell cancer or melanoma: a phase I trial. Cytotherapy. 2008;10(6):625–32.

    Article  CAS  PubMed  Google Scholar 

  311. Tonn T, Schwabe D, Klingemann HG, Becker S, Esser R, Koehl U, et al. Treatment of patients with advanced cancer with the natural killer cell line NK-92. Cytotherapy. 2013;15(12):1563–70.

    Article  CAS  PubMed  Google Scholar 

  312. Burger MC, Zhang C, Harter PN, Romanski A, Strassheimer F, Senft C, et al. CAR-engineered NK cells for the treatment of glioblastoma: turning innate effectors into precision tools for cancer immunotherapy. Front Immunol. 2019;10:2683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Lin M, Luo H, Liang S, Chen J, Liu A, Niu L, et al. Pembrolizumab plus allogeneic NK cells in advanced non-small cell lung cancer patients. J Clin Invest. 2020;130(5):2560–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Struyf NJ, Snoeck HW, Bridts CH, De Clerck LS, Stevens WJ. Natural killer cell activity in Sjögren's syndrome and systemic lupus erythematosus: stimulation with interferons and interleukin-2 and correlation with immune complexes. Ann Rheum Dis. 1990;49(9):690–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Sudzius G, Mieliauskaite D, Siaurys A, Viliene R, Butrimiene I, Characiejus D, et al. Distribution of peripheral lymphocyte populations in primary Sjögren’s syndrome patients. J Immunol Res. 2015;2015:854706.

    Article  PubMed  PubMed Central  Google Scholar 

  316. Izumi Y, Ida H, Huang M, Iwanaga N, Tanaka F, Aratake K, et al. Characterization of peripheral natural killer cells in primary Sjögren's syndrome: impaired NK cell activity and low NK cell number. J Lab Clin Med. 2006;147(5):242–9.

    Article  CAS  PubMed  Google Scholar 

  317. Seror R, Nocturne G, Lazure T, Hendel-Chavez H, Desmoulins F, Belkhir R, et al. Low numbers of blood and salivary natural killer cells are associated with a better response to belimumab in primary Sjögren's syndrome: results of the BELISS study. Arthritis Res Ther. 2015;17(1):241.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  318. Wehner R, Dietze K, Bachmann M, Schmitz M. The bidirectional crosstalk between human dendritic cells and natural killer cells. J Innate Immun. 2011;3(3):258–63.

    Article  CAS  PubMed  Google Scholar 

  319. Rusakiewicz S, Nocturne G, Lazure T, Semeraro M, Flament C, Caillat-Zucman S, et al. NCR3/NKp30 contributes to pathogenesis in primary Sjogren's syndrome. Sci Transl Med. 2013;5(195):195ra96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  320. Kapsogeorgou EK, Tzioufas AG. Interaction of human salivary gland epithelial cells with B lymphocytes: implications in the pathogenesis of Sjögren’s syndrome. Mediterr J Rheumatol. 2020;31(4):424–6.

    Article  PubMed  PubMed Central  Google Scholar 

  321. Rivière E, Pascaud J, Tchitchek N, Boudaoud S, Paoletti A, Ly B, et al. Salivary gland epithelial cells from patients with Sjögren's syndrome induce B-lymphocyte survival and activation. Ann Rheum Dis. 2020;79(11):1468–77.

    Article  PubMed  CAS  Google Scholar 

  322. Shimizu T, Nakamura H, Takatani A, Umeda M, Horai Y, Kurushima S, et al. Activation of Toll-like receptor 7 signaling in labial salivary glands of primary Sjögren's syndrome patients. Clin Exp Immunol. 2019;196(1):39–51.

    Article  CAS  PubMed  Google Scholar 

  323. Spachidou MP, Bourazopoulou E, Maratheftis CI, Kapsogeorgou EK, Moutsopoulos HM, Tzioufas AG, et al. Expression of functional Toll-like receptors by salivary gland epithelial cells: increased mRNA expression in cells derived from patients with primary Sjögren's syndrome. Clin Exp Immunol. 2007;147(3):497–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Kawakami A, Nakashima K, Tamai M, Nakamura H, Iwanaga N, Fujikawa K, et al. Toll-like receptor in salivary glands from patients with Sjögren's syndrome: functional analysis by human salivary gland cell line. J Rheumatol. 2007;34(5):1019–26.

    CAS  PubMed  Google Scholar 

  325. Goules AV, Kapsogeorgou EK, Tzioufas AG. Insight into pathogenesis of Sjögren’s syndrome: dissection on autoimmune infiltrates and epithelial cells. Clin Immunol. 2017;182:30–40.

    Article  CAS  PubMed  Google Scholar 

  326. Manoussakis MN, Spachidou MP, Maratheftis CI. Salivary epithelial cells from Sjogren's syndrome patients are highly sensitive to anoikis induced by TLR-3 ligation. J Autoimmun. 2010;35(3):212–8.

    Article  CAS  PubMed  Google Scholar 

  327. Nakamura H, Horai Y, Suzuki T, Okada A, Ichinose K, Yamasaki S, et al. TLR3-mediated apoptosis and activation of phosphorylated Akt in the salivary gland epithelial cells of primary Sjögren's syndrome patients. Rheumatol Int. 2013;33(2):441–50.

    Article  CAS  PubMed  Google Scholar 

  328. Berger J, Moller DE. The mechanisms of action of PPARs. Annu Rev Med. 2002;53:409–35.

    Article  CAS  PubMed  Google Scholar 

  329. Adachi M, Kurotani R, Morimura K, Shah Y, Sanford M, Madison BB, et al. Peroxisome proliferator activated receptor gamma in colonic epithelial cells protects against experimental inflammatory bowel disease. Gut. 2006;55(8):1104–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  330. Hernandez-Quiles M, Broekema MF, Kalkhoven E. PPARgamma in metabolism, immunity, and cancer: unified and diverse mechanisms of action. Front Endocrinol. 2021;12:624112.

    Article  Google Scholar 

  331. Vakrakou AG, Polyzos A, Kapsogeorgou EK, Thanos D, Manoussakis MN. Impaired anti-inflammatory activity of PPARγ in the salivary epithelia of Sjögren's syndrome patients imposed by intrinsic NF-κB activation. J Autoimmun. 2018;86:62–74.

    Article  CAS  PubMed  Google Scholar 

  332. Rivière E, Pascaud J, Virone A, Dupré A, Ly B, Paoletti A, et al. Interleukin-7/interferon axis drives T cell and salivary gland epithelial cell interactions in Sjögren’s syndrome. Arthritis Rheumatol. 2021;73(4):631–40.

    Article  PubMed  CAS  Google Scholar 

  333. Boussiotis VA, Freeman GJ, Gribben JG, Nadler LM. The role of B7-1/B7-2:CD28/CLTA-4 pathways in the prevention of anergy, induction of productive immunity and down-regulation of the immune response. Immunol Rev. 1996;153:5–26.

    Article  CAS  PubMed  Google Scholar 

  334. Freeman GJ, Gribben JG, Boussiotis VA, Ng JW, Restivo VA Jr, Lombard LA, et al. Cloning of B7-2: a CTLA-4 counter-receptor that costimulates human T cell proliferation. Science (New York, NY). 1993;262(5135):909–11.

    Article  CAS  Google Scholar 

  335. Kapsogeorgou EK, Moutsopoulos HM, Manoussakis MN. Functional expression of a costimulatory B7.2 (CD86) protein on human salivary gland epithelial cells that interacts with the CD28 receptor, but has reduced binding to CTLA4. J Immunol. 2001;166(5):3107–13.

    Article  CAS  PubMed  Google Scholar 

  336. Tsunawaki S, Nakamura S, Ohyama Y, Sasaki M, Ikebe-Hiroki A, Hiraki A, et al. Possible function of salivary gland epithelial cells as nonprofessional antigen-presenting cells in the development of Sjögren's syndrome. J Rheumatol. 2002;29(9):1884–96.

    CAS  PubMed  Google Scholar 

  337. Gong YZ, Nititham J, Taylor K, Miceli-Richard C, Sordet C, Wachsmann D, et al. Differentiation of follicular helper T cells by salivary gland epithelial cells in primary Sjögren’s syndrome. J Autoimmun. 2014;51:57–66.

    Article  CAS  PubMed  Google Scholar 

  338. Broxmeyer HE, Kohli L, Kim CH, Lee Y, Mantel C, Cooper S, et al. Stromal cell-derived factor-1/CXCL12 directly enhances survival/antiapoptosis of myeloid progenitor cells through CXCR4 and G(alpha)i proteins and enhances engraftment of competitive, repopulating stem cells. J Leukoc Biol. 2003;73(5):630–8.

    Article  CAS  PubMed  Google Scholar 

  339. Barone F, Bombardieri M, Manzo A, Blades MC, Morgan PR, Challacombe SJ, et al. Association of CXCL13 and CCL21 expression with the progressive organization of lymphoid-like structures in Sjögren's syndrome. Arthritis Rheum. 2005;52(6):1773–84.

    Article  CAS  PubMed  Google Scholar 

  340. Tandon M, Perez P, Burbelo PD, Calkins C, Alevizos I. Laser microdissection coupled with RNA-seq reveal cell-type and disease-specific markers in the salivary gland of Sjögren's syndrome patients. Clin Exp Rheumatol. 2017;35(5):777–85.

    PubMed  Google Scholar 

  341. Hetz C, Papa FR. The unfolded protein response and cell fate control. Mol Cell. 2018;69(2):169–81.

    Article  CAS  PubMed  Google Scholar 

  342. Katsiougiannis S, Tenta R, Skopouli FN. Endoplasmic reticulum stress causes autophagy and apoptosis leading to cellular redistribution of the autoantigens Ro/Sjögren's syndrome-related antigen A (SSA) and La/SSB in salivary gland epithelial cells. Clin Exp Immunol. 2015;181(2):244–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  343. Barrera MJ, Aguilera S, Castro I, Cortés J, Bahamondes V, Quest AFG, et al. Pro-inflammatory cytokines enhance ERAD and ATF6α pathway activity in salivary glands of Sjögren's syndrome patients. J Autoimmun. 2016;75:68–81.

    Article  CAS  PubMed  Google Scholar 

  344. Katsiougiannis S, Kapsogeorgou EK, Manoussakis MN, Skopouli FN. Salivary gland epithelial cells: a new source of the immunoregulatory hormone adiponectin. Arthritis Rheum. 2006;54(7):2295–9.

    Article  CAS  PubMed  Google Scholar 

  345. Katsiougiannis S, Tenta R, Skopouli FN. Activation of AMP-activated protein kinase by adiponectin rescues salivary gland epithelial cells from spontaneous and interferon-gamma-induced apoptosis. Arthritis Rheum. 2010;62(2):414–9.

    CAS  PubMed  Google Scholar 

  346. Aqrawi LA, Kvarnström M, Brokstad KA, Jonsson R, Skarstein K, Wahren-Herlenius M. Ductal epithelial expression of Ro52 correlates with inflammation in salivary glands of patients with primary Sjögren's syndrome. Clin Exp Immunol. 2014;177(1):244–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  347. Tsinti M, Kassi E, Korkolopoulou P, Kapsogeorgou E, Moutsatsou P, Patsouris E, et al. Functional estrogen receptors alpha and beta are expressed in normal human salivary gland epithelium and apparently mediate immunomodulatory effects. Eur J Oral Sci. 2009;117(5):498–505.

    Article  CAS  PubMed  Google Scholar 

  348. Manoussakis MN, Tsinti M, Kapsogeorgou EK, Moutsopoulos HM. The salivary gland epithelial cells of patients with primary Sjögren's syndrome manifest significantly reduced responsiveness to 17β-estradiol. J Autoimmun. 2012;39(1–2):64–8.

    Article  CAS  PubMed  Google Scholar 

  349. Fayyaz A, Kurien BT, Scofield RH. Autoantibodies in Sjögren’s Syndrome. Rheum Dis Clin N Am. 2016;42(3):419–34.

    Article  Google Scholar 

  350. Jonsson R, Theander E, Sjöström B, Brokstad K, Henriksson G. Autoantibodies present before symptom onset in primary Sjögren syndrome. JAMA. 2013;310(17):1854–5.

    Article  CAS  PubMed  Google Scholar 

  351. Vitali C, Bootsma H, Bowman SJ, Dorner T, Gottenberg JE, Mariette X, et al. Classification criteria for Sjogren's syndrome: we actually need to definitively resolve the long debate on the issue. Ann Rheum Dis. 2013;72(4):476–8.

    Article  PubMed  Google Scholar 

  352. Elkon KB, Gharavi AE, Hughes GR, Moutsoupoulos HM. Autoantibodies in the sicca syndrome (primary Sjögren's syndrome). Ann Rheum Dis. 1984;43(2):243–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  353. Hung T, Pratt GA, Sundararaman B, Townsend MJ, Chaivorapol C, Bhangale T, et al. The Ro60 autoantigen binds endogenous retroelements and regulates inflammatory gene expression. Science (New York, NY). 2015;350(6259):455–9.

    Article  CAS  Google Scholar 

  354. Hogg JR, Collins K. Human Y5 RNA specializes a Ro ribonucleoprotein for 5S ribosomal RNA quality control. Genes Dev. 2007;21(23):3067–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  355. Rhodes DA, Ihrke G, Reinicke AT, Malcherek G, Towey M, Isenberg DA, et al. The 52 000 MW Ro/SS-A autoantigen in Sjögren's syndrome/systemic lupus erythematosus (Ro52) is an interferon-gamma inducible tripartite motif protein associated with membrane proximal structures. Immunology. 2002;106(2):246–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  356. Tzioufas AG, Wassmuth R, Dafni UG, Guialis A, Haga HJ, Isenberg DA, et al. Clinical, immunological, and immunogenetic aspects of autoantibody production against Ro/SSA, La/SSB and their linear epitopes in primary Sjögren's syndrome (pSS): a European multicentre study. Ann Rheum Dis. 2002;61(5):398–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  357. Mavragani CP, Tzioufas AG, Moutsopoulos HM. Sjögren’s syndrome: autoantibodies to cellular antigens. Clinical and molecular aspects. Int Arch Allergy Immunol. 2000;123(1):46–57.

    Article  CAS  PubMed  Google Scholar 

  358. Brucato A, Frassi M, Franceschini F, Cimaz R, Faden D, Pisoni MP, et al. Risk of congenital complete heart block in newborns of mothers with anti-Ro/SSA antibodies detected by counterimmunoelectrophoresis: a prospective study of 100 women. Arthritis Rheum. 2001;44(8):1832–5.

    Article  CAS  PubMed  Google Scholar 

  359. Lee LA, Coulter S, Erner S, Chu H. Cardiac immunoglobulin deposition in congenital heart block associated with maternal anti-Ro autoantibodies. Am J Med. 1987;83(4):793–6.

    Article  CAS  PubMed  Google Scholar 

  360. Buyon J, Szer I. Passively acquired autoimmunity and the maternal fetal dyad in systemic lupus erythematosus. Springer Semin Immunopathol 1986;9(2–3):283–304.

    Google Scholar 

  361. Quartuccio L, Isola M, Baldini C, Priori R, Bartoloni E, Carubbi F, et al. Clinical and biological differences between cryoglobulinaemic and hypergammaglobulinaemic purpura in primary Sjögren's syndrome: results of a large multicentre study. Scand J Rheumatol. 2015;44(1):36–41.

    Article  CAS  PubMed  Google Scholar 

  362. He J, Qiang L, Ding Y, Wei P, Li YN, Hua H, et al. The role of muscarinic acetylcholine receptor type 3 polypeptide (M3RP205-220) antibody in the saliva of patients with primary Sjögren’s syndrome. Clin Exp Rheumatol. 2012;30(3):322–6.

    CAS  PubMed  Google Scholar 

  363. Lee BH, Gauna AE, Perez G, Park YJ, Pauley KM, Kawai T, et al. Autoantibodies against muscarinic type 3 receptor in Sjögren’s syndrome inhibit aquaporin 5 trafficking. PLoS One. 2013;8(1):e53113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  364. Namkoong E, Lee SW, Kim N, Choi Y, Park K. Effect of anti-muscarinic autoantibodies on leukocyte function in Sjögren's syndrome. Mol Immunol. 2017;90:136–42.

    Article  CAS  PubMed  Google Scholar 

  365. Patel R, Shahane A. The epidemiology of Sjögren’s syndrome. Clin Epidemiol. 2014;6:247–55.

    PubMed  PubMed Central  Google Scholar 

  366. Molano-González N, Olivares-Martínez E, Anaya JM, Hernández-Molina G. Anti-citrullinated protein antibodies and arthritis in Sjögren’s syndrome: a systematic review and meta-analysis. Scand J Rheumatol. 2019;48(2):157–63.

    Article  PubMed  CAS  Google Scholar 

  367. Quartuccio L, Isola M, Baldini C, Priori R, Bartoloni Bocci E, Carubbi F, et al. Biomarkers of lymphoma in Sjögren’s syndrome and evaluation of the lymphoma risk in prelymphomatous conditions: results of a multicenter study. J Autoimmun. 2014;51:75–80.

    Article  PubMed  Google Scholar 

  368. Migliorini P, Baldini C, Rocchi V, Bombardieri S. Anti-Sm and anti-RNP antibodies. Autoimmunity. 2005;38(1):47–54.

    Article  CAS  PubMed  Google Scholar 

  369. Notarstefano C, Croia C, Pontarini E, Lucchesi D, Sutcliffe N, Tappuni A, et al. A clinical and histopathological analysis of the anti-centromere antibody positive subset of primary Sjögren's syndrome. Clin Exp Rheumatol. 2018;36 Suppl 112(3):145–9.

    PubMed  Google Scholar 

  370. Kajio N, Takeshita M, Suzuki K, Kaneda Y, Yamane H, Ikeura K, et al. Anti-centromere antibodies target centromere-kinetochore macrocomplex: a comprehensive autoantigen profiling. Ann Rheum Dis. 2020;

    Google Scholar 

  371. Tsukamoto M, Suzuki K, Takeuchi T. Clinical and immunological features of anti-centromere antibody-positive primary Sjögren’s syndrome. Rheumatol Therapy. 2018;5(2):499–505.

    Article  Google Scholar 

  372. Baldini C, Mosca M, Della Rossa A, Pepe P, Notarstefano C, Ferro F, et al. Overlap of ACA-positive systemic sclerosis and Sjögren’s syndrome: a distinct clinical entity with mild organ involvement but at high risk of lymphoma. Clin Exp Rheumatol. 2013;31(2):272–80.

    PubMed  Google Scholar 

  373. Koszarny A, Majdan M, Dryglewska M, Tabarkiewicz J. Prevalence of selected organ-specific autoantibodies in rheumatoid arthritis and primary Sjögren’s syndrome patients. Reumatologia. 2015;53(2):61–8.

    Article  PubMed  PubMed Central  Google Scholar 

  374. Hatzis GS, Fragoulis GE, Karatzaferis A, Delladetsima I, Barbatis C, Moutsopoulos HM. Prevalence and longterm course of primary biliary cirrhosis in primary Sjögren’s syndrome. J Rheumatol. 2008;35(10):2012–6.

    PubMed  Google Scholar 

  375. Ramos-Casals M, Sánchez-Tapias JM, Parés A, Forns X, Brito-Zerón P, Nardi N, et al. Characterization and differentiation of autoimmune versus viral liver involvement in patients with Sjögren’s syndrome. J Rheumatol. 2006;33(8):1593–9.

    PubMed  Google Scholar 

  376. Karp JK, Akpek EK, Anders RA. Autoimmune hepatitis in patients with primary Sjögren's syndrome: a series of two-hundred and two patients. Int J Clin Exp Pathol. 2010;3(6):582–6.

    PubMed  PubMed Central  Google Scholar 

  377. Takemoto F, Hoshino J, Sawa N, Tamura Y, Tagami T, Yokota M, et al. Autoantibodies against carbonic anhydrase II are increased in renal tubular acidosis associated with Sjogren syndrome. Am J Med. 2005;118(2):181–4.

    Article  CAS  PubMed  Google Scholar 

  378. Hu Q, Wang D, Chen W. The accuracy of the anti-α-fodrin antibody test for diagnosis of Sjögren's syndrome: a meta-analysis. Clin Biochem. 2013;46(15):1372–6.

    Article  CAS  PubMed  Google Scholar 

  379. de Seze J, Dubucquoi S, Fauchais AL, Hachulla E, Matthias T, Lefranc D, et al. Autoantibodies against alpha-fodrin in Sjögren’s syndrome with neurological manifestations. J Rheumatol. 2004;31(3):500–3.

    PubMed  Google Scholar 

  380. Witte T, Matthias T, Bierwirth J, Schmidt RE. Antibodies against alpha-fodrin are associated with sicca syndrome in the general population. Ann N Y Acad Sci. 2007;1108:414–7.

    Article  CAS  PubMed  Google Scholar 

  381. Rihl M, Ulbricht K, Schmidt RE, Witte T. Treatment of sicca symptoms with hydroxychloroquine in patients with Sjogren's syndrome. Rheumatology (Oxford). 2009;48(7):796–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie Finzel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Finzel, S., Voll, R.E. (2022). On the Complex Pathogenesis of Sjögren’s Syndrome: Salivary Gland Epithelial Cells and Cells of the Innate and Adaptive Immune System. In: Bruyn, G.A.W. (eds) Sjögren’s Syndrome and the Salivary Glands. Contemporary Rheumatology. Springer, Cham. https://doi.org/10.1007/978-3-030-90977-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90977-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90976-5

  • Online ISBN: 978-3-030-90977-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics