Skip to main content

The Compound Interest in Relaxing Punctuality

  • Conference paper
  • First Online:
Formal Methods (FM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10951))

Included in the following conference series:

Abstract

Imprecision in timing can sometimes be beneficial: Metric interval temporal logic (MITL), disabling the expression of punctuality constraints, was shown to translate to timed automata, yielding an elementary decision procedure. We show how this principle extends to other forms of dense-time specification using regular expressions. By providing a clean, automaton-based formal framework for non-punctual languages, we are able to recover and extend several results in timed systems. Metric interval regular expressions (MIRE) are introduced, providing regular expressions with non-singular duration constraints. We obtain that MIRE are expressively complete relative to a class of one-clock timed automata, which can be determinized using additional clocks. Metric interval dynamic logic (MIDL) is then defined using MIRE as temporal modalities. We show that MIDL generalizes known extensions of MITL, while translating to timed automata at comparable cost.

This research was supported by the Austrian Science Fund (FWF) under grants S11402-N23 (RiSE/SHiNE) and Z211-N23 (Wittgenstein Award).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdulla, P.A., Deneux, J., Ouaknine, J., Quaas, K., Worrell, J.: Universality analysis for one-clock timed automata. Fundam. Inform. 89(4), 419–450 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)

    Article  MathSciNet  Google Scholar 

  3. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM 43(1), 116–146 (1996)

    Article  MathSciNet  Google Scholar 

  4. Alur, R., Henzinger, T.A.: Logics and models of real time: a survey. In: de Bakker, J.W., Huizing, C., de Roever, W.P., Rozenberg, G. (eds.) REX 1991. LNCS, vol. 600, pp. 74–106. Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0031988

    Chapter  Google Scholar 

  5. Alur, R., La Torre, S., Madhusudan, P.: Perturbed timed automata. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 70–85. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31954-2_5

    Chapter  Google Scholar 

  6. Asarin, E., Caspi, P., Maler, O.: Timed regular expressions. J. ACM 49(2), 172–206 (2002)

    Article  MathSciNet  Google Scholar 

  7. Basin, D., Krstić, S., Traytel, D.: Almost event-rate independent monitoring of metric dynamic logic. In: Lahiri, S., Reger, G. (eds.) RV 2017. LNCS, vol. 10548, pp. 85–102. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67531-2_6

    Chapter  Google Scholar 

  8. Bersani, M.M., Rossi, M., Pietro, P.S.: A tool for deciding the satisfiability of continuous-time metric temporal logic. Acta Informatica 53(2), 171–206 (2016)

    Article  MathSciNet  Google Scholar 

  9. Bouyer, P., Chevalier, F., Markey, N.: On the expressiveness of TPTL and MTL. In: Sarukkai, S., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 432–443. Springer, Heidelberg (2005). https://doi.org/10.1007/11590156_35

    Chapter  MATH  Google Scholar 

  10. Brihaye, T., Estiévenart, M., Geeraerts, G.: On MITL and alternating timed automata. In: Braberman, V., Fribourg, L. (eds.) FORMATS 2013. LNCS, vol. 8053, pp. 47–61. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40229-6_4

    Chapter  MATH  Google Scholar 

  11. Brihaye, T., Estiévenart, M., Geeraerts, G.: On MITL and alternating timed automata over infinite words. In: Legay, A., Bozga, M. (eds.) FORMATS 2014. LNCS, vol. 8711, pp. 69–84. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10512-3_6

    Chapter  MATH  Google Scholar 

  12. Brihaye, T., Geeraerts, G., Ho, H.-M., Monmege, B.: MightyL: a compositional translation from MITL to timed automata. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 421–440. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_21

    Chapter  Google Scholar 

  13. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on finite traces. IJCAI 13, 854–860 (2013)

    Google Scholar 

  14. Eisner, C., Fisman, D.: A Practical Introduction to PSL. Integrated Circuits and Systems. Springer, Heidelberg (2006). https://doi.org/10.1007/978-0-387-36123-9

    Book  Google Scholar 

  15. Fischer, M.J.: Propositional dynamic logic of regular programs. J. Comput. Syst. Sci. 18(2), 194–211 (1979)

    Article  MathSciNet  Google Scholar 

  16. Furia, C.A., Rossi, M.: MTL with bounded variability: decidability and complexity. In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 109–123. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85778-5_9

    Chapter  MATH  Google Scholar 

  17. Henzinger, T.A., Raskin, J.-F., Schobbens, P.-Y.: The regular real-time languages. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 580–591. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055086

    Chapter  Google Scholar 

  18. Hirshfeld, Y., Rabinovich, A.: An expressive temporal logic for real time. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 492–504. Springer, Heidelberg (2006). https://doi.org/10.1007/11821069_43

    Chapter  Google Scholar 

  19. Hirshfeld, Y., Rabinovich, A.: Expressiveness of metric modalities for continuous time. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 211–220. Springer, Heidelberg (2006). https://doi.org/10.1007/11753728_23

    Chapter  Google Scholar 

  20. Kleene, S.C.: Representation of events in nerve nets and finite automata. Automata Stud., 3–42 (1956)

    Google Scholar 

  21. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Syst. 2(4), 255–299 (1990)

    Article  Google Scholar 

  22. Krishna, S.N., Madnani, K., Pandya, P.K.: Metric temporal logic with counting. In: Jacobs, B., Löding, C. (eds.) FoSSaCS 2016. LNCS, vol. 9634, pp. 335–352. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49630-5_20

    Chapter  Google Scholar 

  23. Krishna, S.N., Madnani, K., Pandya, P.K.: Making metric temporal logic rational. In: Mathematical Foundations of Computer Science, pp. 77:1–77:14 (2017)

    Google Scholar 

  24. Lasota, S., Walukiewicz, I.: Alternating timed automata. In: Sassone, V. (ed.) FoSSaCS 2005. LNCS, vol. 3441, pp. 250–265. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31982-5_16

    Chapter  Google Scholar 

  25. Maler, O., Nickovic, D., Pnueli, A.: Real time temporal logic: past, present, future. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 2–16. Springer, Heidelberg (2005). https://doi.org/10.1007/11603009_2

    Chapter  Google Scholar 

  26. Maler, O., Nickovic, D., Pnueli, A.: From MITL to timed automata. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 274–289. Springer, Heidelberg (2006). https://doi.org/10.1007/11867340_20

    Chapter  MATH  Google Scholar 

  27. Michel, M.: Composition of temporal operators. Logique et Analyse 28(110/111), 137–152 (1985)

    MathSciNet  MATH  Google Scholar 

  28. Ničković, D., Piterman, N.: From Mtl to deterministic timed automata. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 152–167. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9_13

    Chapter  MATH  Google Scholar 

  29. Ouaknine, J., Rabinovich, A., Worrell, J.: Time-bounded verification. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 496–510. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04081-8_33

    Chapter  Google Scholar 

  30. Ouaknine, J., Worrell, J.: On the decidability of metric temporal logic. In: Logic in Computer Science, pp. 188–197. IEEE (2005)

    Google Scholar 

  31. Ouaknine, J., Worrell, J.: On metric temporal logic and faulty turing machines. In: Aceto, L., Ingólfsdóttir, A. (eds.) FoSSaCS 2006. LNCS, vol. 3921, pp. 217–230. Springer, Heidelberg (2006). https://doi.org/10.1007/11690634_15

    Chapter  MATH  Google Scholar 

  32. Pnueli, A.: The temporal logic of programs. In: Foundations of Computer Science, pp. 46–57. IEEE (1977)

    Google Scholar 

  33. Pnueli, A., Zaks, A.: On the merits of temporal testers. In: Grumberg, O., Veith, H. (eds.) 25 Years of Model Checking. LNCS, vol. 5000, pp. 172–195. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69850-0_11

    Chapter  MATH  Google Scholar 

  34. Roohi, N., Viswanathan, M.: Revisiting MITL to fix decision procedures. In: Verification, Model Checking, and Abstract Interpretation. LNCS, vol. 10747, pp. 474–494. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73721-8_22

    Chapter  Google Scholar 

  35. Sipser, M.: Introduction to the Theory of Computation, vol. 2. Thomson Course Technology, Boston (2006)

    MATH  Google Scholar 

  36. Vardi, M.Y.: From philosophical to industrial logics. In: Ramanujam, R., Sarukkai, Sundar (eds.) ICLA 2009. LNCS (LNAI), vol. 5378, pp. 89–115. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92701-3_7

    Chapter  Google Scholar 

  37. Wilke, T.: Specifying timed state sequences in powerful decidable logics and timed automata. In: Langmaack, H., de Roever, W.-P., Vytopil, J. (eds.) FTRTFT 1994. LNCS, vol. 863, pp. 694–715. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58468-4_191

    Chapter  Google Scholar 

Download references

Acknowledgments

I thank Eugene Asarin, Tom Henzinger, Oded Maler, Dejan Ničković, and anonymous reviewers of multiple conferences for their helpful feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Ferrère .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ferrère, T. (2018). The Compound Interest in Relaxing Punctuality. In: Havelund, K., Peleska, J., Roscoe, B., de Vink, E. (eds) Formal Methods. FM 2018. Lecture Notes in Computer Science(), vol 10951. Springer, Cham. https://doi.org/10.1007/978-3-319-95582-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95582-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95581-0

  • Online ISBN: 978-3-319-95582-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics