Skip to main content

Hypocalcemia

  • Chapter
  • First Online:
Endocrinology and Diabetes

Abstract

Hypocalcemia occurs commonly in both inpatients and outpatients. This laboratory abnormality has multiple causes and may occasionally occur in patients without symptoms but more commonly causes tingling paresthesias or muscle cramps in those with mild-to-moderate hypocalcemia. More severe hypocalcemia is associated with tetany, seizures, bronchospasm, laryngospasm, cardiac dysrhythmias, or sudden death. These variable symptoms are attributed to the fact that ionized calcium plays a critical role in many tissues, with roles as varied as regulation of cellular secretion, muscle contraction, nerve function, and blood clotting.

About 50% of serum calcium is found in the ionized form, unbound to proteins or anions, whereas 45–50% is bound to proteins, largely to albumin, and the remaining less than 5% bound to anions. Although serum ionized calcium is the biologically active form of calcium, measurement of this form of calcium is more difficult and often not routinely available. Because most laboratories report serum total calcium, this is often the only form of serum calcium available to clinicians trying to assess calcium homeostasis.

Several factors affect measurement of serum total and ionized calcium. Alterations in serum albumin increase or decrease serum calcium without affecting ionized calcium. Decreases in serum albumin below 4.0 g/dL decrease total calcium by 0.8 mg/dL for each 1.0 g/dL decrease in serum albumin. Correspondingly, increases in serum albumin above 4.0 g/dL increase total calcium by 0.8 mg/dL for each 1.0 g/dL increase. Albumin-corrected serum calcium is a more accurate representation of serum calcium than total calcium. Dehydration increases serum total calcium due to hemoconcentration. Acidemia increases serum ionized calcium, and alkalemia decreases ionized calcium, without affecting total calcium levels. Circulating citrate or phosphate decreases serum total calcium, whereas monoclonal proteins may increase serum total calcium. Because variations in intravascular volume and calcium-binding proteins affect serum total calcium, ionized calcium should preferentially be measured in complex clinical situations associated with changes in volume status, albumin concentration, and/or blood pH. Under normal circumstances, serum total calcium corrected for serum albumin should be adequate.

Hypocalcemia is present when serum total calcium, albumin-corrected total calcium, or ionized calcium is below the lower limit of normal. Serum total calcium below 8.5 mg/dL (2.13 mmol/L), or ionized calcium below 4.80 mg/dL (1.20 mmol/L), is considered below normal in most assays. Before launching into an exhaustive investigation of hypocalcemia, calculation of albumin-corrected serum calcium should be performed, and serum ionized calcium should be checked, if possible, to verify that it is decreased. Situations in which serum total or albumin-corrected calcium are decreased, but ionized calcium is normal, are often due to the presence of binding protein abnormalities.

This chapter reviews key points to the diagnosis of hypocalcemia, signs and symptoms, the differential diagnosis, laboratory tests and interpretation, and present and future therapies of hypocalcemia. Three clinical cases will illustrate issues in the assessment and management of hypocalcemia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shoback D. Clinical practice. Hypoparathyroidism. N Engl J Med. 2008;359:391–403.

    Article  CAS  PubMed  Google Scholar 

  2. Shafer AL, Shoback D. Hypocalcemia: definition, etiology, pathogenesis, diagnosis, and management. In: Rosen CJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. 8th ed. Washington, D.C.: American Society for Bone and Mineral Research; 2013. p. 572–8.

    Chapter  Google Scholar 

  3. Mundy GR, Guise TA. Hormonal control of calcium homeostasis. Clin Chem. 1999;45:1347–52.

    Article  CAS  PubMed  Google Scholar 

  4. Kantham L, Quinn SJ, Egbuna OI, et al. The calcium-sensing receptor (CaSR) defends against hypercalcemia independently of its regulation of parathyroid hormone secretion. Am J Physiol Endocrinol Metab. 2009;297:E915–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. McGreal GT, Kelly JL, Hehir DJ, Brady MP. Incidence of false positive Chvostek’s sign in hospitalised patients. Ir J Med Sci. 1995;164:56.

    Article  CAS  PubMed  Google Scholar 

  6. Rehman HU, Wunder S. Trousseau sign in hypocalcemia. CMAJ. 2011;183:E498.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Grant CS, Stulak JM, Thompson GB, et al. Risks and adequacy of an optimized surgical approach to the primary surgical management of papillary thyroid carcinoma treated during 1999–2006. World J Surg. 2010;34:1239–46.

    Article  PubMed  Google Scholar 

  8. Lee YS, Nam KH, Chung WY, et al. Postoperative complications of thyroid cancer in a single center experience. J Korean Med Sci. 2010;25:541–5.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Edafe O, Antakia R, Laskar N, et al. Systematic review and meta-analysis of predictors of post-thyroidectomy hypocalcaemia. Br J Surg. 2014;101:307–20.

    Article  CAS  PubMed  Google Scholar 

  10. Noordzij JP, Lee SL, Bernet VJ, et al. Early prediction of hypocalcemia after thyroidectomy using parathyroid hormone: an analysis of pooled individual patient data from nine observational studies. J Am Coll Surg. 2007;205:748–54.

    Article  PubMed  Google Scholar 

  11. Rude RK, Oldham SB, Singer FR. Functional hypoparathyroidism and parathyroid hormone end-organ resistance in human magnesium deficiency. Clin Endocrinol. 1976;5:209–24.

    Article  CAS  Google Scholar 

  12. Cholst IN, Steinberg SF, Tropper PJ, et al. The influence of hypermagnesemia on serum calcium and parathyroid hormone levels in human subjects. N Engl J Med. 1984;310:1221–5.

    Article  CAS  PubMed  Google Scholar 

  13. Wong ET, Rude RK, Singer FR, et al. A high prevalence of hypomagnesemia and hypermagnesemia in hospitalized patients. Am J Clin Pathol. 1983;79:348–52.

    Article  CAS  PubMed  Google Scholar 

  14. Rude RK. Magnesium deficiency: a heterogeneous cause of disease in humans. J Bone Miner Res. 1997;13:749–58.

    Article  Google Scholar 

  15. Rude RK. Magnesium depletion and hypermagnesemia. In: Rosen CJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. 7th ed. Washington, D.C.: American Society for Bone and Mineral Research; 2009. p. 325–8.

    Google Scholar 

  16. Schlingmann KP, Sassen MC, Weber S, et al. Novel TRPM6 mutations in 21 families with primary hypomagnesemia and secondary hypocalcemia. J Am Soc Nephrol. 2005;16:3061–9.

    Article  PubMed  Google Scholar 

  17. Voets T, Nilius B, Hoefs S, et al. TRPM6 forms the Mg2+ influx channel involved in intestinal and renal Mg2+ absorption. J Biol Chem. 2004;279:19–25.

    Article  CAS  PubMed  Google Scholar 

  18. Toumba M, Sergis A, Kanaris C, et al. Endocrine complications in patients with thalassemia major. Pediatr Endocrinol Rev. 2007;5:642–8.

    PubMed  Google Scholar 

  19. Carpenter TO, Carnes DL Jr, Anast CS. Hypoparathyroidism in Wilson’s disease. N Engl J Med. 1983;309:873–7.

    Article  CAS  PubMed  Google Scholar 

  20. Goddard CJ. Symptomatic hypocalcaemia associated with metastatic invasion of the parathyroid glands. Br J Hosp Med. 1990;43:72.

    CAS  PubMed  Google Scholar 

  21. Pauwels EK, Smit JW, Slats A, Bourguignon M, Overbeek F. Health effects of therapeutic use of 131I in hyperthyroidism. Q J Nucl Med. 2000;44:333–9.

    CAS  PubMed  Google Scholar 

  22. Egbuna OI, Brown EM. Hypercalcaemic and hypocalcaemic conditions due to calcium-sensing receptor mutations. Best Pract Res Clin Rheumatol. 2008;22:129–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lienhardt A, Bai M, Lagarde J-P, et al. Activating mutations of the calcium-sensing receptor: management of hypocalcemia. J Clin Endocrinol Metab. 2001;86:5313–23.

    Article  CAS  PubMed  Google Scholar 

  24. Vargas-Poussou R, Huang C, Hulin P, et al. Functional characterization of a calcium-sensing receptor mutation in severe autosomal dominant hypocalcemia with a Bartter-like syndrome. J Am Soc Nephrol. 2002;13:2259–66.

    Article  CAS  PubMed  Google Scholar 

  25. Michels AW, Gottlieb PA. Autoimmune polyglandular syndromes. Nat Rev Endocrinol. 2010;6:270–7.

    Article  CAS  PubMed  Google Scholar 

  26. Shikama N, Nusspaumer G, Hollander GA. Clearing the AIRE: on the pathophysiological basis of the autoimmune polyendocrinopathy syndrome type-1. Endocrinol Metab Clin N Am. 2009;38:273–88.

    Article  CAS  Google Scholar 

  27. Blizzard RM, Chee D, Davis W. The incidence of parathyroid and other antibodies in the sera of patients with idiopathic hypoparathyroidism. Clin Exp Immunol. 1966;1:119–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Li Y, Song YH, Rais N, et al. Autoantibodies to the extracellular domain of the calcium sensing receptor in patients with acquired hypoparathyroidism. J Clin Invest. 1996;97:910–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Brown EM. Anti-parathyroid and anti-calcium sensing receptor antibodies in autoimmune hypoparathyroidism. Endocrinol Metab Clin N Am. 2009;38:437–45.

    Article  CAS  Google Scholar 

  30. Goldmuntz E. DiGeorge syndrome: new insights. Clin Perinatol. 2005;32:963–78.

    Article  PubMed  Google Scholar 

  31. McDonald-McGinn DM, Sullivan KE. Chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome). Medicine (Baltimore). 2011;90:1–18.

    Article  Google Scholar 

  32. Bassett AS, Chow EW, Husted J, et al. Clinical features of 78 adults with 22q11 deletion syndrome. Am J Med Genet A. 2005;138:307–13.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Parkinson DB, Thakker RV. A donor splice site mutation in the parathyroid hormone gene is associated with autosomal recessive hypoparathyroidism. Nat Genet. 1992;1:149–52.

    Article  CAS  PubMed  Google Scholar 

  34. Arnold A, Horst SA, Gardella TJ, et al. Mutation of the signal peptide-encoding region of the preproparathyroid hormone gene in familial isolated hypoparathyroidism. J Clin Invest. 1990;86:1084–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Thomée C, Schubert SW, Parma J, et al. GCMB mutation in familial isolated hypoparathyroidism with residual secretion of parathyroid hormone. J Clin Endocrinol Metab. 2005;90:2487–92.

    Article  PubMed  Google Scholar 

  36. Baumber L, Tufarelli C, Patel S, et al. Identification of a novel mutation disrupting the DNA binding activity of GCM2 in autosomal recessive familial isolated hypoparathyroidism. J Med Genet. 2005;42:443–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Van Esch H, Groenen P, Nesbit MA, et al. GATA3 haplo-insufficiency causes human HDR syndrome. Nature. 2000;406:419–22.

    Article  PubMed  Google Scholar 

  38. Ali A, Christie PT, Grigorieva IV, et al. Functional characterization of GATA3 mutations causing the hypoparathyroidism-deafness-renal (HDR) dysplasia syndrome: insight into mechanisms of DNA binding by the GATA3 transcription factor. Hum Mol Genet. 2007;16:265–75.

    Article  CAS  PubMed  Google Scholar 

  39. Bowl MR, Nesbit MA, Harding B, et al. An interstitial deletion-insertion involving chromosomes 2p25.3 and Xq27.1, near SOX3, causes X-linked recessive hypoparathyroidism. J Clin Invest. 2005;115:2822–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Parvari R, Hershkovitz E, Grossman N, et al. Mutation of TBCE causes hypoparathyroidism-retardation-dysmorphism and autosomal recessive Kenny-Caffey syndrome. Nat Genet. 2002;32:448–52.

    Article  CAS  PubMed  Google Scholar 

  41. Cassandrini D, Savasta S, Bozzola M, et al. Mitochondrial DNA deletion in a child with mitochondrial encephalomyopathy, growth hormone deficiency, and hypoparathyroidism. J Child Neurol. 2006;21:983–5.

    Article  PubMed  Google Scholar 

  42. Labarthe E, Benoist JF, Brivet M, et al. Partial hypoparathyroidism associated with mitochondrial trifunctional protein deficiency. Eur J Pediatr. 2006;165:389–91.

    Article  PubMed  Google Scholar 

  43. Rubin M, Levine MA. Hypoparathyroidism and pseudohypoparathyroidism. In: Rosen CJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. 7th ed. Washington, D.C.: American Society for Bone and Mineral Research; 2009. p. 354–61.

    Google Scholar 

  44. Levine MA. Pseudohypoparathyroidism: from bedside to bench and back. J Bone Miner Res. 1999;14:1255–60.

    Article  CAS  PubMed  Google Scholar 

  45. Lui J, Litman D, Rosenberg MJ, Yu S, Biesecker LG, Weinstein LS. A GNAS1 imprinting defect in pseudohypoparathyroidism type 1B. J Clin Invest. 2000;106:1167–74.

    Article  Google Scholar 

  46. Brandi ML. Genetics of hypoparathyroidism and pseudohypoparathyroidism. J Endocrinol Investig. 2011;34(7 Suppl):27–34.

    CAS  Google Scholar 

  47. Mantovani G. Clinical review: Pseudohypoparathyroidism: diagnosis and treatment. J Clin Endocrinol Metab. 2011;96:3020–30.

    Article  CAS  PubMed  Google Scholar 

  48. Thacher T, Clarke BL. Vitamin D deficiency. Mayo Clin Proc. 2011;86:50–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Leboff MS, Kohlmeier L, Franklin J, et al. Occult vitamin D deficiency in postmenopausal U.S. women with acute hip fracture. JAMA. 1999;281:1505–11.

    Article  CAS  PubMed  Google Scholar 

  50. Lieben L, Carmeliet G, Masuyama R. Calcemic actions of vitamin D: effects on the intestine, kidney and bone. Best Pract Res Clin Endocrinol Metab. 2011;25:561–72.

    Article  CAS  PubMed  Google Scholar 

  51. van Schoor NM, Lips P. Worldwide vitamin D status. Best Pract Res Clin Endocrinol Metab. 2011;25:671–80.

    Article  PubMed  Google Scholar 

  52. Thomas MK, Lloyd-Jones DM, Thadani RI, et al. Hypovitaminosis D in medical inpatients. N Engl J Med. 1998;338:777–83.

    Article  CAS  PubMed  Google Scholar 

  53. Priemel M, von Domarus C, Klatte TO, et al. Bone mineralization defects and vitamin D deficiency: histomorphometric analysis of iliac crest bone biopsies and circulating 25-hydroxyvitmain D in 675 patients. J Bone Miner Res. 2010;25:305–12.

    Article  CAS  PubMed  Google Scholar 

  54. Institute of Medicine. Dietary reference intakes for calcium and vitamin D. Washington, D.C.: National Academies Press; 2011.

    Google Scholar 

  55. Liamis G, Milionis HJ, Elisaf M. A review of drug-induced hypocalcemia. J Bone Miner Metab. 2009;27:635–42.

    Article  CAS  PubMed  Google Scholar 

  56. St Arnaud R, Messerlian S, Moir JM, et al. The 25-hydroxyvitamin D 1-alpha-hydroxylase gene maps to the pseudovitamin D-deficiency rickets (PDDR) disease locus. J Bone Miner Res. 1997;12:1552–9.

    Article  CAS  PubMed  Google Scholar 

  57. Kitanaka S, Takeyama K, Murayama A, et al. Inactivating mutations in the 25-hydroxyvitamin D3 1-alpha-hydroxylase gene in patients with pseudovitamin D-deficiency rickets. N Engl J Med. 1998;338:653–61.

    Article  CAS  PubMed  Google Scholar 

  58. Brooks MH, Bell NH, Love L, et al. Vitamin D-dependent rickets type II. Resistance of target organs to 1,25-dihydroxyvitamin D. N Engl J Med. 1978;298:996–9.

    Article  CAS  PubMed  Google Scholar 

  59. Malloy PJ, Hochber Z, Tiosano D, et al. The molecular basis of hereditary 1,25-dihydroxyvitamin D3 resistant rickets in seven related families. J Clin Invest. 1990;86:2071–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Brasier AR, Nussbaum SR. Hungry bone syndrome: clinical and biochemical predictors of its occurrence after parathyroid surgery. Am J Med. 1988;84:654–60.

    Article  CAS  PubMed  Google Scholar 

  61. Vivien B, Langeron O, Morell E, et al. Early hypocalcemia in severe trauma. Crit Care Med. 2005;33:1946–52.

    Article  CAS  PubMed  Google Scholar 

  62. Prince MR, Erel HE, Lent RW, et al. Gadodiamide administration causes spurious hypocalcemia. Radiology. 2003;227:639–46.

    Article  PubMed  Google Scholar 

  63. Rosen CJ, Brown S. Severe hypocalcemia after intravenous bisphosphonate therapy in occult vitamin D deficiency. N Engl J Med. 2003;348:1503–4.

    Article  PubMed  Google Scholar 

  64. Bilezikian JP, Khan A, Potts JT Jr, et al. Hypoparathyroidism: epidemiology, diagnosis, pathophysiology, target organ involvement, treatment, and challenges for future research. J Bone Miner Res. 2011;26:2317–37.

    Article  CAS  PubMed  Google Scholar 

  65. Winer KK, Yanovski JA, Cutler GB Jr. Synthetic human parathyroid hormone 1-34 vs calcitriol and calcium in the treatment of hypoparathyroidism. JAMA. 1996;276:631–6.

    Article  CAS  PubMed  Google Scholar 

  66. Winer KK, Yanovski JA, Sarani B, Cutler GB. A randomized, cross-over trial of once-daily versus twice-daily parathyroid hormone 1-34 in treatment of hypoparathyroidism. J Clin Endocrinol Metab. 1998;83:3480–6.

    CAS  PubMed  Google Scholar 

  67. Mannstadt M, Clarke BL, Vokes T, et al. Efficacy and safety of recombinant human parathyroid hormone (1-84) in hypoparathyroidism (REPLACE): a double-blind, placebo-controlled, randomised, phase 3 study. Lancet Diabetes Endocrinol. 2013;1:275–83.

    Article  CAS  PubMed  Google Scholar 

  68. Brandi ML, Bilezikian JP, Shoback D, et al. Management of hypoparathyroidism: summary statement and guidelines. J Clin Endocrinol Metab. 2016;101:2273–83.

    Article  CAS  PubMed  Google Scholar 

  69. Bollerslev J, Rejnmark L, Marcocci C, et al. European Society of Endocrinology Clinical Guideline: treatment of chronic hypoparathyroidism in adults. Eur J Endocrinol. 2015;173:G1–20.

    Article  CAS  PubMed  Google Scholar 

  70. Hasse C, Klock G, Schlosser A, Zimmermann UZ, Rothmund M. Parathyroid allotransplantation without immunosuppression. Lancet. 1997;350:1296–7.

    Article  CAS  PubMed  Google Scholar 

  71. Tolloczko T, Wozniewicz B, Gorski A, et al. Cultured parathyroid cells allotransplantation without immunosuppression for treatment of intractable hypoparathyroidism. Ann Transplant. 1996;1:51–3.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bart L. Clarke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lim, V., Clarke, B.L. (2022). Hypocalcemia. In: Bandeira, F., Gharib, H., Griz, L., Faria, M. (eds) Endocrinology and Diabetes. Springer, Cham. https://doi.org/10.1007/978-3-030-90684-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90684-9_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90683-2

  • Online ISBN: 978-3-030-90684-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics