Skip to main content

Towards a Global Perspective of the Marine Microbiome

  • Chapter
  • First Online:
The Marine Microbiome

Abstract

Marine microbes play fundamental roles in nutrient cycling and climate regulation at a planetary scale. The field of marine microbial ecology has experienced major breakthroughs following the application of high-throughput sequencing and culture-independent methodologies that have pushed the exploration of the marine microbiome to an unprecedented scale. This chapter overviews how the advances in gene- and genome-centric approaches as well as in culturing and single cell physiological methodologies in conjunction with global oceanographic circumnavigation expeditions and long-term time series are fueling our understanding of the biogeography, temporal dynamics, functional diversity, and evolutionary processes of microbial populations. We discuss how the joint effort of all those integrative approaches will help to boost our knowledge of the marine microbiome to reach a predictive understanding of how it is going to evolve in future scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Acinas SG, Klepac-Ceraj V, Hunt DE et al (2004) Fine-scale phylogenetic architecture of a complex bacterial community. Nature 430:551–554

    Article  CAS  PubMed  Google Scholar 

  • Acinas SG, Sánchez P, Salazar G et al (2021) Deep ocean metagenomes provide insight into the metabolic architecture of bathypelagic microbial communities. Commun Biol 4:604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agogué H, Lamy D, Neal PR et al (2011) Water mass-specificity of bacterial communities in the North Atlantic revealed by massively parallel sequencing. Mol Ecol 20:258–274

    Article  PubMed  Google Scholar 

  • Albertsen M, Hugenholtz P, Skarshewski A et al (2013) Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat Biotechnol 31:533–538

    Article  CAS  PubMed  Google Scholar 

  • Alneberg J, Bjarnason BS, De Bruijn I et al (2014) Binning metagenomic contigs by coverage and composition. Nat Methods 11:1144–1146

    Article  CAS  PubMed  Google Scholar 

  • Alonso-Sáez L, Balagué V, Sà EL et al (2007) Seasonality in bacterial diversity in north-west Mediterranean coastal waters: assessment through clone libraries, fingerprinting and FISH. FEMS Microbiol Ecol 60:98–112

    Article  PubMed  CAS  Google Scholar 

  • Alonso-Sáez L, Díaz-Pérez L, Morán XAG (2015) The hidden seasonality of the rare biosphere in coastal marine bacterioplankton. Environ Microbiol 10:3766–3780

    Article  Google Scholar 

  • Alonso-Sáez L, Sánchez O, Gasol JM (2012a) Bacterial uptake of low molecular weight organics in the subtropical Atlantic: are major phylogenetic groups functionally different? Limnol Oceanogr 57:798–808

    Article  Google Scholar 

  • Alonso-Sáez L, Waller AS, Mende DR et al (2012b) Role for urea in nitrification by polar marine archaea. Proc Natl Acad Sci 109:17989–17994

    Article  PubMed  PubMed Central  Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amaral-Zettler L, Artigas LF, Baross J et al (2010) A global census of marine microbes. Life in the world’s oceans: diversity, distribution and abundance. Wiley-Blackwell, Oxford, UK, pp 221–245

    Book  Google Scholar 

  • Amend AS, Oliver TA, Amaral-Zettler LA et al (2013) Macroecological patterns of marine bacteria on a global scale. J Biogeogr 40:800–811

    Article  Google Scholar 

  • Anantharaman K, Breier JA, Sheik CS, Dick GJ (2013) Evidence for hydrogen oxidation and metabolic plasticity in widespread deep-sea sulfur-oxidizing bacteria. Proc Natl Acad Sci 110:330–335

    Article  CAS  PubMed  Google Scholar 

  • Arevalo P, VanInsberghe D, Elsherbini J et al (2019) A reverse ecology approach based on a biological definition of microbial populations. Cell 178:820–834

    Article  CAS  PubMed  Google Scholar 

  • Auladell A, Barberán A, Logares R et al (2021) Seasonal niche differentiation among closely related marine bacteria. ISME J. https://doi.org/10.1038/s41396-021-01053-2

  • Auladell A, Sánchez P, Sánchez O et al (2019) Long-term seasonal and interannual variability of marine aerobic anoxygenic photoheterotrophic bacteria. ISME J 13:1975–1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aylward FO, Boeuf D, Mende DR et al (2017) Diel cycling and long-term persistence of viruses in the ocean’s euphotic zone. Proc Natl Acad Sci 114:11446–11451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baas Becking LGM (1934) Geobiologie of inleiding tot de milieukunde. Van Stockum WP and Zoon NV, Den Haag, The Netherlands

    Google Scholar 

  • Bagert JD, van Kessel JC, Sweredoski MJ et al (2016) Time-resolved proteomic analysis of quorum sensing in Vibrio harveyi. Chem Sci 7:1797–1806

    Article  CAS  PubMed  Google Scholar 

  • Balashov SP, Imasheva ES, Boichenko VA et al (2005) Xanthorhodopsin: a proton pump with a light-harvesting carotenoid antenna. Science 309:2061–2064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beijerinck MW (1913) De infusies en de ontdekking der bakterien. Johannes Müller

    Google Scholar 

  • Béjà O, Aravind L, Koonin EV et al (2000) Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289:1902–1906

    Article  PubMed  Google Scholar 

  • Ben-Dov E, Kramarsky-Winter E, Kushmaro A (2009) An in situ method for cultivating microorganisms using a double encapsulation technique. FEMS Microbiol Ecol 68:363–371

    Article  CAS  PubMed  Google Scholar 

  • Bergauer K, Fernandez-Guerra A, Garcia JAL et al (2018) Organic matter processing by microbial communities throughout the Atlantic water column as revealed by metaproteomics. Proc Natl Acad Sci 115:E400–E408

    Article  CAS  PubMed  Google Scholar 

  • Berry D, Mader E, Lee TK et al (2015) Tracking heavy water (D2O) incorporation for identifying and sorting active microbial cells. Proc Natl Acad Sci 112:194–203

    Google Scholar 

  • Biller SJ, Berube PM, Dooley K et al (2018) Marine microbial metagenomes sampled across space and time. Sci Data 5:180176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blainey PC (2013) The future is now: single-cell genomics of bacteria and archaea. FEMS Microbiol Rev 37:407–427

    Article  CAS  PubMed  Google Scholar 

  • Blazewicz SJ, Barnard RL, Daly RA, Firestone MK (2013) Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses. ISME J 7:2061–2068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boitard L, Cottinet D, Bremond N et al (2015) Growing microbes in millifluidic droplets. Eng Life Sci 15:318–326

    Article  CAS  Google Scholar 

  • Bowers RM, Kyrpides NC, Stepanauskas R et al (2017) Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol 35:725–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowsher AW, Kearns PJ, Shade A (2019) 16S rRNA/rRNA gene ratios and cell activity staining reveal consistent patterns of microbial activity in plant-associated soil. mSystems 4:e00003–e00019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyd PW, Claustre H, Levy M et al (2019) Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature 568:327–335

    Article  CAS  PubMed  Google Scholar 

  • Britschgi TB, Giovannoni SJ (1991) Phylogenetic analysis of a natural marine bacterioplankton population by rRNA gene cloning and sequencing. Appl Environ Microbiol 57:1707–1713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown MV, Schwalbach MS, Hewson I, Fuhrman JA (2005) Coupling 16S-ITS rDNA clone libraries and automated ribosomal intergenic spacer analysis to show marine microbial diversity: development and application to a time series. Environ Microbiol 7:1466–1479

    Article  CAS  PubMed  Google Scholar 

  • Brum JR, Ignacio-Espinoza JC, Roux S et al (2015) Patterns and ecological drivers of ocean viral communities. Science 348:1261498

    Article  PubMed  CAS  Google Scholar 

  • Bryson S, Li Z, Chavez F et al (2017) Phylogenetically conserved resource partitioning in the coastal microbial loop. ISME J 11:2781–2792

    Article  PubMed  PubMed Central  Google Scholar 

  • Bunse C, Pinhassi J (2017) Marine bacterioplankton seasonal succession dynamics. Trends Microbiol 25:494–505

    Article  CAS  PubMed  Google Scholar 

  • Buttigieg PL, Fadeev E, Bienhold C et al (2018) Marine microbes in 4D–using time series observation to assess the dynamics of the ocean microbiome and its links to ocean health. Curr Opin Microbiol 43:169–185

    Article  PubMed  Google Scholar 

  • Campbell BJ, Kirchman DL (2013) Bacterial diversity, community structure and potential growth rates along an estuarine salinity gradient. ISME J 7:210–220

    Article  CAS  PubMed  Google Scholar 

  • Campbell BJ, Yu L, Heidelberg JF, Kirchman DL (2011) Activity of abundant and rare bacteria in a coastal ocean. Proc Natl Acad Sci 108:12776–12781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell BJ, Yu L, Straza TR, Kirchman DL (2009) Temporal changes in bacterial rRNA and rRNA genes in Delaware (USA) coastal waters. Aquat Microb Ecol 57:123–135

    Article  Google Scholar 

  • Cao S, Zhang W, Ding W et al (2020) Structure and function of the Arctic and Antarctic marine microbiota as revealed by metagenomics. Microbiome 8:47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carini P, Steindler L, Beszteri S, Giovannoni SJ (2013) Nutrient requirements for growth of the extreme oligotroph ‘Candidatus Pelagibacter ubique’ HTCC1062 on a defined medium. ISME J 7:592–602

    Article  CAS  PubMed  Google Scholar 

  • Carini P, Van Mooy BAS, Thrash JC et al (2015) SAR11 lipid renovation in response to phosphate starvation. Proc Natl Acad Sci 112:7767–7772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carini P, White AE, Campbell EO, Giovannoni SJ (2014) Methane production by phosphate-starved SAR11 chemoheterotrophic marine bacteria. Nat Commun 5:4346

    Article  CAS  PubMed  Google Scholar 

  • Carradec Q, Pelletier E, Da Silva C et al (2018) A global ocean atlas of eukaryotic genes. Nat Commun 9:373

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Castillo YM, Mangot J, Benites LF et al (2019) Assessing the viral content of uncultured picoeukaryotes in the global-ocean by single cell genomics. Mol Ecol 28:4272–4289

    Article  CAS  PubMed  Google Scholar 

  • Chafee M, Fernàndez-Guerra A, Buttigieg PL et al (2018) Recurrent patterns of microdiversity in a temperate coastal marine environment. ISME J 12:237–252

    Article  PubMed  Google Scholar 

  • Chen LX, Anantharaman K, Shaiber A et al (2020) Accurate and complete genomes from metagenomes. Genome Res 30:315–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Murrell JC (2010) When metagenomics meets stable-isotope probing: progress and perspectives. Trends Microbiol 18:157–163

    Article  CAS  PubMed  Google Scholar 

  • Chibani CM, Roth O, Liesegang H, Wendling CC (2020) Genomic variation among closely related Vibrio alginolyticus strains is located on mobile genetic elements. BMC Genomics 21:1–14

    Article  CAS  Google Scholar 

  • Chisholm SW, Olson RJ, Zettler ER et al (1988) A novel free-living prochlorophyte abundant in the oceanic euphotic zone. Nature 334:340–343

    Article  Google Scholar 

  • Cohan FM (2001) Bacterial species and speciation. Syst Biol 50:513–524

    Article  CAS  PubMed  Google Scholar 

  • Coleman ML, Chisholm SW (2010) Ecosystem-specific selection pressures revealed through comparative population genomics. Proc Natl Acad Sci 107:18634–18639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colin PY, Kintses B, Gielen F et al (2015) Ultrahigh-throughput discovery of promiscuous enzymes by picodroplet functional metagenomics. Nat Commun 6:10008

    Article  CAS  PubMed  Google Scholar 

  • Cordero OX, Ventouras LA, DeLong EF, Polz MF (2012) Public good dynamics drive evolution of iron acquisition strategies in natural bacterioplankton populations. Proc Natl Acad Sci 109:20059–20064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cottrell MT, Kirchman DL (2000) Natural assemblages of marine proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. Appl Environ Microbiol 66:1692–1697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Couradeau E, Sasse J, Goudeau D et al (2019) Probing the active fraction of soil microbiomes using BONCAT-FACS. Nat Commun 10:2770

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Coyotzi S, Pratscher J, Murrell JC, Neufeld JD (2016) Targeted metagenomics of active microbial populations with stable-isotope probing. Curr Opin Biotechnol 41:1–8

    Article  CAS  PubMed  Google Scholar 

  • Cram JA, Chow C-ET, Sachdeva R et al (2015) Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. ISME J 9:563–580

    Article  PubMed  Google Scholar 

  • Crespo BG, Wallhead PJ, Logares R, Pedrós-Alió C (2016) Probing the rare biosphere of the North-West Mediterranean Sea: an experiment with high sequencing effort. PLoS One 11:e0159195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Vargas C, Audic S, Henry N et al (2015) Eukaryotic plankton diversity in the sunlit ocean. Science 348:1261605

    Article  PubMed  CAS  Google Scholar 

  • Del Giorgio PA, Gasol JM (2008) Physiological structure and single-cell activity in marine bacterioplankton. In: Kirchman DL (ed) Microbial ecology of the oceans, 2nd edn. John Wiley & Sons, Inc., Hoboken, NJ, USA, pp 243–298

    Chapter  Google Scholar 

  • Del Giorgio PA, Scarborough G (1995) Increase in the proportion of metabolically active bacteria along gradients of enrichment in freshwater and marine plankton: implications for estimates of bacterial growth and production rates. J Plankton Res 17:1905–1924

    Article  Google Scholar 

  • Delmont TO, Eren AM (2018) Linking pangenomes and metagenomes: the Prochlorococcus metapangenome. PeerJ 6:e4320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Delmont TO, Kiefl E, Kilinc O et al (2019) Single-amino acid variants reveal evolutionary processes that shape the biogeography of a global SAR11 subclade. elife 8:e46497

    Article  PubMed  PubMed Central  Google Scholar 

  • Delmont TO, Quince C, Shaiber A et al (2018) Nitrogen-fixing populations of Planctomycetes and Proteobacteria are abundant in surface ocean metagenomes. Nat Microbiol 3:804–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeLong EF, Béjà O (2010) The light-driven proton pump proteorhodopsin enhances bacterial survival during tough times. PLoS Biol 8:e1000359

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • DeLong EF, Preston CM, Mincer TJ et al (2006) Community genomics among stratified microbial assemblages in the ocean’s interior. Science 311:496–503

    Article  CAS  PubMed  Google Scholar 

  • Dieterich DC, Link AJ, Graumann J et al (2006) Selective identification of newly synthesized proteins in mammalian cells using bioorthogonal noncanonical amino acid tagging (BONCAT). Proc Natl Acad Sci 103:9482–9487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Díez-Vives C, Nielsen S, Sánchez P et al (2019) Delineation of ecologically distinct units of marine Bacteroidetes in the Northwestern Mediterranean Sea. Mol Ecol 28:2846–2859

    PubMed  Google Scholar 

  • Doolittle WF, Papke RT (2006) Genomics and the bacterial species problem. Genome Biol 7:116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Doud DFR, Bowers RM, Schulz F et al (2020) Function-driven single-cell genomics uncovers cellulose-degrading bacteria from the rare biosphere. ISME J 14:659–675

    Article  CAS  PubMed  Google Scholar 

  • Duarte CM (2015) Seafaring in the 21st century: the Malaspina 2010 Circumnavigation Expedition. Limnol Oceanogr Bull 24:11–14

    Article  Google Scholar 

  • Duarte CM, Ngugi DK, Alam I et al (2020) Sequencing effort dictates gene discovery in marine microbial metagenomes. Environ Microbiol 22:4589–4603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudek NK, Sun CL, Burstein D et al (2017) Novel microbial diversity and functional potential in the marine mammal oral microbiome. Curr Biol 27:3752–3762

    Article  CAS  PubMed  Google Scholar 

  • Dufresne A, Ostrowski M, Scanlan DJ et al (2008) Unravelling the genomic mosaic of a ubiquitous genus of marine cyanobacteria. Genome Biol 9:1–16

    Article  CAS  Google Scholar 

  • Dumont MG, Murrell JC (2005) Stable isotope probing–linking microbial identity to function. Nat Rev Microbiol 3:499–504

    Article  CAS  PubMed  Google Scholar 

  • Dupont CL, Rusch DB, Yooseph S et al (2012) Genomic insights to SAR86, an abundant and uncultivated marine bacterial lineage. ISME J 6:1186–1199

    Article  CAS  PubMed  Google Scholar 

  • Eiler A, Hayakawa DH, Rappé MS (2011) Non-random assembly of bacterioplankton communities in the subtropical North Pacific Ocean. Front Microbiol 2:140

    Article  PubMed  PubMed Central  Google Scholar 

  • Eren AM, Esen ÖC, Quince C et al (2015) Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ 3:e1319

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernández-Gómez B, Fernàndez-Guerra A, Casamayor EO et al (2012) Patterns and architecture of genomic islands in marine bacteria. BMC Genomics 13:347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ferrera I, Sánchez O, Kolářová E, Koblížek M, Gasol JM (2017) Light enhances the growth rates of natural populations of aerobic anoxygenic phototrophic bacteria. ISME J 11:2391–2393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrera I, Sebastian M, Acinas SG, Gasol JM (2015) Prokaryotic functional gene diversity in the sunlit ocean: stumbling in the dark. Curr Opin Microbiol 25:33–39

    Article  CAS  PubMed  Google Scholar 

  • Foster RA, Kuypers MMM, Vagner T et al (2011) Nitrogen fixation and transfer in open ocean diatom-cyanobacterial symbioses. ISME J 5:1484–1493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraser C, Hanage WP, Spratt BG (2007) Recombination and the nature of bacterial speciation. Science 315:476–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frigaard NU, Martinez A, Mincer TJ, DeLong EF (2006) Proteorhodopsin lateral gene transfer between marine planktonic bacteria and archaea. Nature 439:847–850

    Article  CAS  PubMed  Google Scholar 

  • Fuhrman JA, Campbell L (1998) Microbial microdiversity. Nature 393:410–411

    Article  CAS  Google Scholar 

  • Fuhrman JA, Cram JA, Needham DDM (2015) Marine microbial community dynamics and their ecological interpretation. Nat Rev Microbiol 13:133–146

    Article  CAS  PubMed  Google Scholar 

  • Fuhrman JA, Hewson I, Schwalbach MS et al (2006) Annually reoccurring bacterial communities are predictable from ocean conditions. Proc Natl Acad Sci 103:13104–13109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuhrman JA, McCallum K, Davis AA (1993) Phylogenetic diversity of subsurface marine microbial communities from the Atlantic and Pacific oceans. Appl Environ Microbiol 59:1294–1302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galand PE, Alonso-Sáez L, Bertilsson S, Lovejoy C, Casamayor EO (2013) Contrasting activity patterns determined by BrdU incorporation in bacterial ribotypes from the Arctic Ocean in winter. Front Microbiol 4:118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao W, Navarroli D, Naimark J et al (2013) Microbe observation and cultivation array (MOCA) for cultivating and analyzing environmental microbiota. Microbiome 1:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghiglione JF, Conan P, Pujo-Pay M (2009) Diversity of total and active free-living vs. particle-attached bacteria in the euphotic zone of the NW Mediterranean Sea. FEMS Microbiol Lett 299:9–21

    Article  CAS  PubMed  Google Scholar 

  • Ghiglione JF, Galand PE, Pommier T et al (2012) Pole-to-pole biogeography of surface and deep marine bacterial communities. Proc Natl Acad Sci 109:17633–17638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghiglione JF, Larcher M, Lebaron P (2005) Spatial and temporal scales of variation in bacterioplankton community structure in the NW Mediterranean Sea. Aquat Microb Ecol 40:229–240

    Article  Google Scholar 

  • Gilbert JA, Steele JA, Caporaso JG et al (2012) Defining seasonal marine microbial community dynamics. ISME J 6:298–308

    Article  CAS  PubMed  Google Scholar 

  • Giner CR, Balagué V, Krabberød AK et al (2019) Quantifying long-term recurrence in planktonic microbial eukaryotes. Mol Ecol 28:923–935

    Article  PubMed  Google Scholar 

  • Giovannoni S (2004) Oceans of bacteria. Nature 430:515–516

    Article  CAS  PubMed  Google Scholar 

  • Giovannoni S, Stingl U (2007) The importance of culturing bacterioplankton in the ‘omics’ age. Nat Rev Microbiol 5:820–826

    Article  CAS  PubMed  Google Scholar 

  • Giovannoni SJ, Britschgi TB, Moyer CL, Field KG (1990) Genetic diversity in Sargasso Sea bacterioplankton. Nature 345:60–63

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Consarnau L, Akram N, Lindell K et al (2010) Proteorhodopsin phototrophy promotes survival of marine bacteria during starvation. PLoS Biol 8:e1000358

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gómez-Consarnau L, González JM, Coll-Lladó M et al (2007) Light stimulates growth of proteorhodopsin-containing marine Flavobacteria. Nature 445:210–213

    Article  PubMed  CAS  Google Scholar 

  • González JM, Fernández-Gómez B, Fernàndez-Guerra A et al (2008) Genome analysis of the proteorhodopsin-containing marine bacterium Polaribacter sp. MED152 (Flavobacteria). Proc Natl Acad Sci 105:8724–8729

    Article  PubMed  PubMed Central  Google Scholar 

  • Good BH, McDonald MJ, Barrick JE et al (2017) The dynamics of molecular evolution over 60,000 generations. Nature 551:45–50

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gordon DA, Giovannoni SJ (1996) Detection of stratified microbial populations related to Chlorobium and Fibrobacter species in the Atlantic and Pacific oceans. Appl Environ Microbiol 62:1171–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham ED, Heidelberg JF, Tully BJ (2018) Potential for primary productivity in a globally-distributed bacterial phototroph. ISME J 12:1861–1866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregory AC, Zayed AA, Conceição-Neto N et al (2019) Marine DNA viral macro-and microdiversity from pole to pole. Cell 177:1109–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grob C, Taubert M, Howat AM et al (2015) Combining metagenomics with metaproteomics and stable isotope probing reveals metabolic pathways used by a naturally occurring marine methylotroph. Environ Microbiol 17:4007–4018

    Article  CAS  PubMed  Google Scholar 

  • Grote J, Thrash JC, Huggett MJ et al (2012) Streamlining and core genome conservation among highly divergent members of the SAR11 clade. MBio 3:e00252–e00212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guidi L, Chaffron S, Bittner L et al (2016) Plankton networks driving carbon export in the oligotrophic ocean. Nature 532:465–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutleben J, Chaib M, Mares D et al (2017) The multi-omics promise in context: from sequence to microbial isolate. Crit Rev Microbiol 44:212–219

    Article  PubMed  Google Scholar 

  • Hall EK, Singer GA, Pölzl M et al (2011) Looking inside the box: using Raman microspectroscopy to deconstruct microbial biomass stoichiometry one cell at a time. ISME J 5:196–208

    Article  PubMed  Google Scholar 

  • Haro-Moreno JM, Rodriguez-Valera F, Rosselli R et al (2020) Ecogenomics of the SAR11 clade. Environ Microbiol 22:1748–1763

    Article  CAS  PubMed  Google Scholar 

  • Hatzenpichler R, Connon SA, Goudeau D et al (2016) Visualizing in situ translational activity for identifying and sorting slow-growing archaeal−bacterial consortia. Proc Natl Acad Sci 113:E4069–E4078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatzenpichler R, Krukenberg V, Spietz RL, Jay ZJ (2020) Next-generation physiology approaches to study microbiome function at single cell level. Nat Rev Microbiol 18:241–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatzenpichler R, Scheller S, Tavormina PL et al (2014) In situ visualization of newly synthesized proteins in environmental microbes using amino acid tagging and click chemistry. Environ Microbiol 16:2568–2590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hauruseu D, Koblížek M (2012) Influence of light on carbon utilization in aerobic anoxygenic phototrophs. Appl Environ Microbiol 78:7414–7419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He P, Xie L, Zhang X et al (2020) Microbial diversity and metabolic potential in the stratified Sansha Yongle blue hole in the South China Sea. Sci Rep 10:5949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henson MW, Lanclos VC, Pitre DM et al (2020) Expanding the diversity of bacterioplankton isolates and modeling isolation efficacy with large-scale dilution-to-extinction cultivation. Appl Environ Microbiol 86:1–23

    Article  Google Scholar 

  • Hesselman MC, Odoni DI, Ryback BM et al (2012) A multi-platform flow device for microbial (co-) cultivation and microscopic analysis. PLoS One 7:e36982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoarfrost A, Nayfach S, Ladau J et al (2020) Global ecotypes in the ubiquitous marine clade SAR86. ISME J 14:178–188

    Article  CAS  PubMed  Google Scholar 

  • Hoppe HG (1976) Determination and properties of actively metabolizing heterotrophic bacteria in the sea, investigated by means of micro-autoradiography. Mar Biol 36:291–302

    Article  Google Scholar 

  • Huang WE, Stoecker K, Griffiths R et al (2007) Raman-FISH: combining stable-isotope Raman spectroscopy and fluorescence in situ hybridization for the single cell analysis of identity and function. Environ Microbiol 9:1878–1889

    Article  CAS  PubMed  Google Scholar 

  • Hug LA, Baker BJ, Anantharaman K et al (2016) A new view of the tree of life. Nat Microbiol 1:16048

    Article  CAS  PubMed  Google Scholar 

  • Hugoni M, Taib N, Debroas D et al (2013) Structure of the rare archaeal biosphere and seasonal dynamics of active ecotypes in surface coastal waters. Proc Natl Acad Sci 110:6004–6009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunt DE, Lin Y, Church MJ et al (2013) Relationship between abundance and specific activity of bacterioplankton in open ocean surface waters. Appl Environ Microbiol 79:177–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibarbalz FM, Henry N, Brandão MC et al (2019) Global trends in marine plankton diversity across kingdoms of life. Cell 179:1084–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imdahl F, Vafadarnejad E, Homberger C et al (2020) Single-cell RNA-sequencing reports growth-condition-specific global transcriptomes of individual bacteria. Nat Microbiol 5:1202–1206

    Article  CAS  PubMed  Google Scholar 

  • Ingham CJ, Sprenkels A, Bomer J et al (2007) The micro-petri dish, a million-well growth chip for the culture and high-throughput screening of microorganisms. Proc Natl Acad Sci 104:18217–18222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jannasch HW, Jones GE (1959) Bacterial populations in sea water as determined by different methods of enumeration. Limnol Oceanogr 4:128–139

    Article  Google Scholar 

  • Johnson PW, Sieburth JMN (1979) Chroococcoid cyanobacteria in the sea: a ubiquitous and diverse phototrophic biomass. Limnol Oceanogr 24:928–935

    Article  Google Scholar 

  • Jones SE, Lennon JT (2010) Dormancy contributes to the maintenance of microbial diversity. Proc Natl Acad Sci 107:5881–5886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karl DM, Church MJ (2014) Microbial oceanography and the Hawaii Ocean time-series programme. Nat Rev Microbiol 12:699–713

    Article  CAS  PubMed  Google Scholar 

  • Karsenti E, Acinas SG, Bork P et al (2011) A holistic approach to marine eco-systems biology. PLoS Biol 9:e1001177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kashtan N, Roggensack SE, Rodrigue S et al (2014) Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus. Science 344:416–420

    Article  CAS  PubMed  Google Scholar 

  • Kearns PJ, Angell JH, Howard EM et al (2016) Nutrient enrichment induces dormancy and decreases diversity of active bacteria in salt marsh sediments. Nat Commun 7:12881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kettler GC, Martiny AC, Huang K et al (2007) Patterns and implications of gene gain and loss in the evolution of Prochlorococcus. PLoS Genet 3:2515–2528

    Article  CAS  Google Scholar 

  • Kirchman DL (2016) Growth rates of microbes in the oceans. Annu Rev Mar Sci 8:285–309

    Article  Google Scholar 

  • Kirchman DL, Hanson TE (2013) Bioenergetics of photoheterotrophic bacteria in the oceans. Environ Microbiol Rep 5:188–199

    Article  CAS  PubMed  Google Scholar 

  • Kitzinger K, Marchant HK, Bristow LA et al (2020) Single cell analyses reveal contrasting life strategies of the two main nitrifiers in the ocean. Nat Commun 11:767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitzinger K, Padilla CC, Marchant HK et al (2019) Cyanate and urea are substrates for nitrification by Thaumarchaeota in the marine environment. Nat Microbiol 4:234–243

    Article  CAS  PubMed  Google Scholar 

  • Koblížek M (2015) Ecology of aerobic anoxygenic phototrophs in aquatic environments. FEMS Microbiol Rev 39:854–870

    Article  PubMed  CAS  Google Scholar 

  • Kolber ZS, Van Dover CL, Niederman RA, Falkowski PG (2000) Bacterial photosynthesis in surface waters of the open ocean. Nature 407:177–179

    Article  CAS  PubMed  Google Scholar 

  • Kolody BC, McCrow JP, Allen LZ et al (2019) Diel transcriptional response of a California current plankton microbiome to light, low iron, and enduring viral infection. ISME J 13:2817–2833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Könneke M, Bernhard AE, de la Torre JR et al (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543–546

    Article  PubMed  CAS  Google Scholar 

  • Konstantinidis KT, DeLong EF (2008) Genomic patterns of recombination clonal divergence and environment in marine microbial populations. ISME J 2:1052–1065

    Article  CAS  PubMed  Google Scholar 

  • Konstantinidis KT, Rosselló-Móra R, Amann R (2017) Uncultivated microbes in need of their own taxonomy. ISME J 11:2399–2406

    Article  PubMed  PubMed Central  Google Scholar 

  • Konstantinidis KT, Serres MH, Romine MF et al (2009) Comparative systems biology across an evolutionary gradient within the Shewanella genus. Proc Natl Acad Sci 106:15909–15914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kopf A, Bicak M, Kottmann R et al (2015) The ocean sampling day consortium. Gigascience 4:27

    Article  PubMed  PubMed Central  Google Scholar 

  • Ku C, Sheyn U, Sebé-Pedrós A et al (2020) A single-cell view on alga-virus interactions reveals sequential transcriptional programs and infection states. Sci Adv 6:eaba4137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Labonté JM, Swan BK, Poulos B et al (2015) Single-cell genomics-based analysis of virus-host interactions in marine surface bacterioplankton. ISME J 9:2386–2399

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lagier JC, Armougom F, Million M et al (2012) Microbial culturomics: paradigm shift in the human gut microbiome study. Clin Microbiol Infect 18:1185–1193

    Article  CAS  PubMed  Google Scholar 

  • Lambert S, Tragin M, Lozano JC et al (2019) Rhythmicity of coastal marine picoeukaryotes, bacteria and archaea despite irregular environmental perturbations. ISME J 13:388–401

    Article  PubMed  Google Scholar 

  • Landry Z, Swa BK, Herndl GJ et al (2017) SAR202 genomes from the dark ocean predict pathways for the oxidation of recalcitrant dissolved organic matter. mBio 8:e00413–e00417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lannes R, Olsson-Francis K, Lopez P, Bapteste E (2019) Carbon fixation by marine ultrasmall prokaryotes. Genome Biol Evol 11:1166–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larkin AA, Garcia CA, Garcia N et al (2021) High spatial resolution global ocean metagenomes from Bio-GO-SHIP repeat hydrography transects. Sci Data 8:107

    Article  PubMed  PubMed Central  Google Scholar 

  • Lebaron P, Servais P, Agogué H, Courties C, Joux F (2001) Does the high nucleic acid content of individual bacterial cells allow us to discriminate between active cells and inactive cells in aquatic systems? Appl Environ Microbiol 67:1775–1782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KS, Palatinszky M, Pereira FC et al (2019) An automated Raman-based platform for the sorting of live cells by functional properties. Nat Microbiol 4:1035–1048

    Article  CAS  PubMed  Google Scholar 

  • Leizeaga A, Estrany M, Forn I, Sebastián M (2017) Using click-chemistry for visualizing in situ changes of translational activity in planktonic marine bacteria. Front Microbiol 8:2360

    Article  PubMed  PubMed Central  Google Scholar 

  • Lekunberri I, Gasol JM, Acinas SG et al (2014) The phylogenetic and ecological context of cultured and whole genome-sequenced planktonic bacteria from the coastal NW Mediterranean Sea. Syst Appl Microbiol 37:216–228

    Article  PubMed  Google Scholar 

  • Lennon JT, Jones SE (2011) Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat Rev Microbiol 9:119–130

    Article  CAS  PubMed  Google Scholar 

  • Li WKW, Rao DVS, Harrison WG et al (1983) Autotrophic picoplankton in the tropical ocean. Science 219:292–295

    Article  CAS  PubMed  Google Scholar 

  • Li M, Jain S, Baker BJ et al (2014) Novel hydrocarbon monooxygenase genes in the metatranscriptome of a natural deep-sea hydrocarbon plume. Environ Microbiol 16:60–71

    Article  PubMed  CAS  Google Scholar 

  • Li WKW, Jellett JF, Dickie PM (1995) DNA distributions in planktonic bacteria stained with TOTO or TO-PRO. Limnol Oceanogr 40:1485–1495

    Article  CAS  Google Scholar 

  • Lima-Mendez G, Faust K, Henry N et al (2015) Determinants of community structure in the global plankton interactome. Science 348:1262073

    Article  PubMed  CAS  Google Scholar 

  • Locey KJ, Lennon JT (2016) Scaling laws predict global microbial diversity. Proc Natl Acad Sci 113:5970–5975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Longnecker K, Lomas MW, Van Mooy BA (2010) Abundance and diversity of heterotrophic bacterial cells assimilating phosphate in the subtropical North Atlantic Ocean. Environ Microbiol 12:2773–2782

    CAS  PubMed  Google Scholar 

  • Longnecker K, Sherr BF, Sherr EB (2005) Activity and phylogenetic diversity of bacterial cells with high and low nucleic acid content and electron transport system activity in an upwelling ecosystem. Appl Environ Microbiol 71:7737–7749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-Pérez M, Rodriguez-Valera F (2016) Pangenome evolution in the marine bacterium Alteromonas. Genome Biol Evol 8:1556–1570

    Article  PubMed  PubMed Central  Google Scholar 

  • Lorenz B, Wichmann C, Stöckel S, Rösch P, Popp J (2017) Cultivation-free Raman spectroscopic investigations of bacteria. Trends Microbiol 25:413–424

    Article  CAS  PubMed  Google Scholar 

  • Luna GM (2015) Biotechnological potential of marine microbes. In: Kim S (ed) Springer handbook of marine biotechnology. Springer, Berlin, Heidelberg, pp 651–661

    Chapter  Google Scholar 

  • Ma L, Kim J, Hatzenpichler R et al (2014) Gene-targeted microfluidic cultivation validated by isolation of a gut bacterium listed in human microbiome Project’s Most wanted taxa. Proc Natl Acad Sci 111:9768–9773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maistrenko OM, Mende DR, Luetge M et al (2020) Disentangling the impact of environmental and phylogenetic constraints on prokaryotic within-species diversity. ISME J 14:1247–1259

    Article  PubMed  PubMed Central  Google Scholar 

  • Martens-Habbena W, Berube PM, Urakawa H et al (2009) Ammonia oxidation kinetics determine niche separation of nitrifying archaea and bacteria. Nature 461:976–979

    Article  CAS  PubMed  Google Scholar 

  • Martín HG, Ivanova N, Kunin V et al (2006) Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities. Nat Biotechnol 24:1263–1269

    Article  CAS  Google Scholar 

  • Martin-Cuadrado AB, Ghai R, Gonzaga A, Rodriguez-Valera F (2009) CO dehydrogenase genes found in metagenomic fosmid clones from the deep Mediterranean Sea. Appl Environ Microbiol 75:7436–7444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin-Platero AM, Cleary B, Kauffman K et al (2018) High resolution time series reveals cohesive but short-lived communities in coastal plankton. Nat Commun 9:266

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martinez-Garcia M, Brazel DM, Swan BK et al (2012) Capturing single cell genomes of active polysaccharide degraders: an unexpected contribution of Verrucomicrobia. PLoS One 7:e35314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Garcia M, Santos F, Moreno-Paz M et al (2014) Unveiling viral–host interactions within the ‘microbial dark matter’. Nat Commun 5:4542

    Article  CAS  PubMed  Google Scholar 

  • Mattes TE, Nunn BL, Marshall KT et al (2013) Sulfur oxidizers dominate carbon fixation at a biogeochemical hot spot in the dark ocean. ISME J 7:2349–2360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayali X (2020) NanoSIMS: microscale quantification of biogeochemical activity with large-scale impacts. Annu Rev Mar Sci 12:449–467

    Article  Google Scholar 

  • Mayali X, Weber PK, Brodie EL et al (2012) High-throughput isotopic analysis of RNA microarrays to quantify microbial resource use. ISME J 6:1210–1221

    Article  CAS  PubMed  Google Scholar 

  • McCarren J, Becker JW, Repeta DJ et al (2010) Microbial community transcriptomes reveal microbes and metabolic pathways associated with dissolved organic matter turnover in the sea. Proc Natl Acad Sci 107:16420–16427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medini D, Donati C, Tettelin H et al (2005) The microbial pan-genome. Curr Opin Genet Dev 15:589–594

    Article  CAS  PubMed  Google Scholar 

  • Mehrshad M, Rodriguez-Valera F, Amoozegar MA et al (2018) The enigmatic SAR202 cluster up close: shedding light on a globally distributed dark ocean lineage involved in sulfur cycling. ISME J 12:655–668

    Article  CAS  PubMed  Google Scholar 

  • Mestre M, Ruiz-González C, Logares R et al (2018) Sinking particles promote vertical connectivity in the ocean microbiome. Proc Natl Acad Sci 115:E6799–E6807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mira A, Martín-Cuadrado AB, D’Auria G, Rodríguez-Valera F (2010) The bacterial pan-genome: a new paradigm in microbiology. Int Microbiol 13:45–57

    CAS  PubMed  Google Scholar 

  • Moran MA, Satinsky B, Gifford SM et al (2013) Sizing up metatranscriptomics. ISME J 7:237–243

    Article  CAS  PubMed  Google Scholar 

  • Morris RM, Nunn BL, Frazar C et al (2010) Comparative metaproteomics reveals ocean-scale shifts in microbial nutrient utilization and energy transduction. ISME J 4:673–685

    Article  CAS  PubMed  Google Scholar 

  • Morris RM, Rappé MS, Connon SA et al (2002) SAR11 clade dominates ocean surface bacterioplankton communities. Nature 420:806–810

    Article  CAS  PubMed  Google Scholar 

  • Mou X, Sun S, Edwards RA, Hodson RE, Moran MA (2008) Bacterial carbon processing by generalist species in the coastal ocean. Nature 451:708–711

    Article  CAS  PubMed  Google Scholar 

  • Mou X, Vila-Costa M, Sun et al (2011) Metatranscriptomic signature of exogenous polyamine utilization by coastal bacterioplankton. Environ Microbiol Rep 3:798–806

    Article  CAS  PubMed  Google Scholar 

  • Muller EEL, Glaab E, May P et al (2013) Condensing the omics fog of microbial communities. Trends Microbiol 21:325–333

    Article  CAS  PubMed  Google Scholar 

  • Murray AE, Freudenstein J, Gribaldo S et al (2020) Roadmap for naming uncultivated archaea and bacteria. Nat Microbiol 5:987–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Musat N, Foster R, Vagner T et al (2012) Detecting metabolic activities in single cells, with emphasis on nanoSIMS. FEMS Microbiol Rev 36:486–511

    Article  CAS  PubMed  Google Scholar 

  • Nayfach S, Roux S, Seshadri R et al (2021) A genomic catalog of Earth’s microbiomes. Nat Biotechnol 39:499–509

    Article  CAS  PubMed  Google Scholar 

  • Needham DM, Fuhrman JA (2016) Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nat Microbiol 1:16005

    Article  CAS  PubMed  Google Scholar 

  • Needham DM, Yoshizawa S, Hosaka T et al (2019) A distinct lineage of giant viruses brings a rhodopsin photosystem to unicellular marine predators. Proc Natl Acad Sci 116:20574–20583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neely CJ, Graham ED, Tully BJ (2020) MetaSanity: an integrated microbial genome evaluation and annotation pipeline. Bioinformatics 36:4341–4344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson CE, Carlson CA (2012) Tracking differential incorporation of dissolved organic carbon types among diverse lineages of Sargasso Sea bacterioplankton. Environ Microbiol 14:1500–1516

    Article  CAS  PubMed  Google Scholar 

  • Orsi WD, Smith JM, Liu S et al (2016) Diverse, uncultivated bacteria and archaea underlying the cycling of dissolved protein in the ocean. ISME J 10:2158–2173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ottesen EA, Young CR, Eppley JM et al (2013) Pattern and synchrony of gene expression among sympatric marine microbial populations. Proc Natl Acad Sci 110:E488–E497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ottesen EA, Young CR, Gifford SM et al (2014) Multispecies diel transcriptional oscillations in open ocean heterotrophic bacterial assemblages. Science 345:207–212

    Article  CAS  PubMed  Google Scholar 

  • Pachiadaki MG, Brown JM, Brown J et al (2019) Charting the complexity of the marine microbiome through single-cell genomics. Cell 179:1623–1635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pachiadaki MG, Sintes E, Bergauer K et al (2017) Major role of nitrite-oxidizing bacteria in dark ocean carbon fixation. Science 358:1046–1051

    Article  CAS  PubMed  Google Scholar 

  • Palatinszky M, Herbold C, Jehmlich N et al (2015) Cyanate as an energy source for nitrifiers. Nature 524:105–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papke RT, Zhaxybayeva O, Feil EJ et al (2007) Searching for species in haloarchaea. Proc Natl Acad Sci 104:14092–14097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parada AE, Fuhrman JA (2017) Marine archaeal dynamics and interactions with the microbial community over 5 years from surface to seafloor. ISME J 11:2510–2525

    Article  PubMed  PubMed Central  Google Scholar 

  • Park J, Kerner A, Burns MA, Lin XN (2011) Microdroplet-enabled highly parallel co-cultivation of microbial communities. PLoS One 6:e17019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parker CT, Tindall BJ, Garrity GM (2019) International code of nomenclature of prokaryotes. Int J Syst Evol Microbiol 69:S1–S111

    Article  Google Scholar 

  • Parks DH, Imelfort M, Skennerton CT et al (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parks DH, Rinke C, Chuvochina M et al (2017) Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol 2:1533–1542

    Article  CAS  PubMed  Google Scholar 

  • Pedrós-Alió C (2012) The rare bacterial biosphere. Annu Rev Mar Sci 4:449–466

    Article  Google Scholar 

  • Pernice MC, Forn I, Gomes A et al (2015) Global abundance of planktonic heterotrophic protists in the deep ocean. ISME J 9:782–792

    Article  CAS  PubMed  Google Scholar 

  • Pernthaler A, Pernthaler J, Schattenhofer M, Amann R (2002) Identification of DNA-synthesizing bacterial cells in coastal North Sea plankton. Appl Environ Microbiol 68:5728–5736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pesant S, Not F, Picheral M et al (2015) Open science resources for the discovery and analysis of Tara oceans data. Sci Data 2:150023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pham VD, Konstantinidis KT, Palden T, DeLong EF (2008) Phylogenetic analyses of ribosomal DNA-containing bacterioplankton genome fragments from a 4000 m vertical profile in the North Pacific subtropical gyre. Environ Microbiol 10:2313–2330

    Article  CAS  PubMed  Google Scholar 

  • Pinhassi J, DeLong EF, Béjà O, González JM, Pedrós-Alió C (2016) Marine bacterial and archaeal ion-pumping rhodopsins: genetic diversity, physiology, and ecology. Microbiol Mol Biol Rev 80:929–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pommier T, Neal P, Gasol J et al (2010) Spatial patterns of bacterial richness and evenness in the NW Mediterranean Sea explored by pyrosequencing of the 16S rRNA. Aquat Microb Ecol 61:221–233

    Article  Google Scholar 

  • Pushkarev A, Inoue K, Larom S et al (2018) A distinct abundant group of microbial rhodopsins discovered using functional metagenomics. Nature 558:595–599

    Article  CAS  PubMed  Google Scholar 

  • Rappé MS, Connon SA, Vergin KL, Giovannoni SJ (2002) Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418:630–633

    Article  PubMed  CAS  Google Scholar 

  • Rappé MS, Giovannoni SJ (2003) The uncultured microbial majority. Annu Rev Microbiol 57:369–394

    Article  PubMed  CAS  Google Scholar 

  • Reichart NJ, Jay ZJ, Krukenberg V et al (2020) Activity-based cell sorting reveals responses of uncultured archaea and bacteria to substrate amendment. ISME J 14:2851–2861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinthaler T, van Aken HM, Herndl GJ (2010) Major contribution of autotrophy to microbial carbon cycling in the deep North Atlantic’s interior. Deep Sea Res Part II Top Stud Oceanogr 57:1572–1580

    Article  CAS  Google Scholar 

  • Resplandy L, Lévy M, McGillicuddy DJ (2019) Effects of eddy-driven subduction on ocean biological carbon pump. Global Biogeochem Cycles 33:1071–1084

    Article  CAS  Google Scholar 

  • Rinke C, Schwientek P, Sczyrba A et al (2013) Insights into the phylogeny and coding potential of microbial dark matter. Nature 499:431–437

    Article  CAS  PubMed  Google Scholar 

  • Robertson BR, Button DK (1989) Characterizing aquatic bacteria according to population, cell size, and apparent DNA content by flow cytometry. Cytometry 10:70–76

    Article  CAS  PubMed  Google Scholar 

  • Rosenzweig RF, Sharp RR, Treves DS, Adams J (1994) Microbial evolution in a simple unstructured environment: genetic differentiation in Escherichia coli. Genetics 137:903–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roux S, Hawley AK, Torres Beltran M et al (2014) Ecology and evolution of viruses infecting uncultivated SUP05 bacteria as revealed by single-cell- and meta-genomics. elife 3:e03125

    Article  PubMed  PubMed Central  Google Scholar 

  • Royo-Llonch M, Sánchez P, González JM et al (2020) Ecological and functional capabilities of an uncultured Kordia sp. Syst Appl Microbiol 43:126045

    Article  CAS  PubMed  Google Scholar 

  • Royo-Llonch M, Sánchez P, Ruiz-González C et al (2021) Compendium of 530 metagenome-assembled bacterial and archaeal genomes from the polar Arctic Ocean. Nat Microbiol. https://doi.org/10.1038/s41564-021-00979-9

  • Ruiz-González C, Logares R, Sebastián M et al (2019) Higher contribution of globally rare bacterial taxa reflects environmental transitions across the surface ocean. Mol Ecol 28:1930–1945

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-González C, Mestre M, Estrada M et al (2020) Major imprint of surface plankton on deep ocean prokaryotic structure and activity. Mol Ecol 29:1820–1838

    Article  PubMed  CAS  Google Scholar 

  • Rusch DB, Halpern AL, Sutton G et al (2007) The Sorcerer II Global Ocean Sampling Expedition: Northwest Atlantic through eastern tropical Pacific. PLoS Biol 5:e77

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saito MA, Bertrand EM, Duffy ME et al (2019) Progress and challenges in ocean metaproteomics and proposed best practices for data sharing. J Proteome Res 18:1461–1476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito MA, McIlvin MR, Moran DM et al (2014) Multiple nutrient stresses at intersecting Pacific Ocean biomes detected by protein biomarkers. Science 345:1173–1177

    Article  CAS  PubMed  Google Scholar 

  • Salazar G, Cornejo-Castillo FM, Benítez-Barrios V et al (2016) Global diversity and biogeography of deep-sea pelagic prokaryotes. ISME J 10:596–608

    Article  PubMed  Google Scholar 

  • Salazar G, Cornejo-Castillo FM, Borrull E et al (2015) Particle-association lifestyle is a phylogenetically conserved trait in bathypelagic prokaryotes. Mol Ecol 24:5692–5706

    Article  PubMed  Google Scholar 

  • Salazar G, Paoli L, Alberti A et al (2019) Gene expression changes and community turnover differentially shape the global ocean metatranscriptome. Cell 179:1068–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salter I, Galand PE, Fagervold SK et al (2015) Seasonal dynamics of active SAR11 ecotypes in the oligotrophic Northwest Mediterranean Sea. ISME J 9:347–360

    Article  CAS  PubMed  Google Scholar 

  • Samo TJ, Smriga S, Malfatti F, Sherwood BP, Azam F (2014) Broad distribution and high proportion of protein synthesis active marine bacteria revealed by click chemistry at the single cell level. Front Mar Sci 1:48

    Google Scholar 

  • Sánchez-Andrea I, Guedes IA, Hornung B et al (2020) The reductive glycine pathway allows autotrophic growth of Desulfovibrio desulfuricans. Nat Commun 11:5090

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanz-Sáez I, Salazar G, Sánchez P et al (2020) Diversity and distribution of marine heterotrophic bacteria from a large culture collection. BMC Microbiol 20:1–16

    Article  CAS  Google Scholar 

  • Saw JHW, Nunoura T, Hirai M et al (2020) Pangenomics analysis reveals diversification of enzyme families and niche specialization in globally abundant SAR202 bacteria. MBio 11:e02975–e02919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scholin C, Birch J, Jensen S et al (2017) The quest to develop ecogenomic sensors: a 25-year history of the environmental sample processor (ESP) as a case study. Oceanography 30:100–113

    Article  Google Scholar 

  • Sebastián M, Estrany M, Ruiz-González C et al (2019) High growth potential of long-term starved deep ocean opportunistic heterotrophic bacteria. Front Microbiol 10:760

    Article  PubMed  PubMed Central  Google Scholar 

  • Sebastián M, Gasol JM (2019) Visualization is crucial for understanding microbial processes in the ocean. Philos Trans R Soc B Biol Sci 374:20190083

    Article  CAS  Google Scholar 

  • Sebastián M, Smith AF, González JM et al (2016) Lipid remodelling is a widespread strategy in marine heterotrophic bacteria upon phosphorus deficiency. ISME J 10:968–978

    Article  PubMed  CAS  Google Scholar 

  • Servais P, Casamayor EO, Courties C et al (2003) Activity and diversity of bacterial cells with high and low nucleic acid content. Aq Microb Ecol 33:41–51

    Article  Google Scholar 

  • Shapiro BJ, Friedman J, Cordero OX et al (2012) Population genomics of early events in the ecological differentiation of bacteria. Science 336:48–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shapiro BJ, Polz MF (2015) Microbial Speciation. Cold Spring Harb Perspect Biol 7:a018143

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharon I, Banfield JF (2013) Genomes from metagenomics. Science 342:1057–1058

    Article  CAS  PubMed  Google Scholar 

  • Sheik CS, Jain S, Dick GJ (2014) Metabolic flexibility of enigmatic SAR324 revealed through metagenomics and metatranscriptomics. Environ Microbiol 16:304–317

    Article  CAS  PubMed  Google Scholar 

  • Sherr EB, Sherr BF, Longnecker K (2006) Distribution of bacterial abundance and cell-specific nucleic acid content in the Northeast Pacific Ocean. Deep Sea Res Part I Oceanogr Res Pap 53:713–725

    Article  CAS  Google Scholar 

  • Shi Y, Tyson GW, Eppley JM, DeLong EF (2011) Integrated metatranscriptomic and metagenomic analyses of stratified microbial assemblages in the open ocean. ISME J 5:999–1013

    Article  CAS  PubMed  Google Scholar 

  • Singer E, Wagner M, Woyke T (2017) Capturing the genetic makeup of the active microbiome in situ. ISME J 11:1949–1963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sintes E, Herndl GJ (2006) Quantifying substrate uptake by individual cells of marine bacterioplankton by catalyzed reporter deposition fluorescence in situ hybridization combined with microautoradiography. Appl Environ Microbiol 72:7022–7028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sogin ML, Morrison HG, Huber JA et al (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci 103:12115–12120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sosa OA, Repeta DJ, DeLong EF et al (2019) Phosphate-limited ocean regions select for bacterial populations enriched in the carbon–phosphorus lyase pathway for phosphonate degradation. Environ Microbiol 21:2402–2414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sowell SM, Wilhelm LJ, Norbeck AD et al (2009) Transport functions dominate the SAR11 metaproteome at low-nutrient extremes in the Sargasso Sea. ISME J 3:93–105

    Article  CAS  PubMed  Google Scholar 

  • Staley JT, Konopka A (1985) Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Ann Rev Microbiol 39:321–346

    Article  CAS  Google Scholar 

  • Steinberg DK, Carlson CA, Bates NR et al (2001) Overview of the US JGOFS Bermuda Atlantic time-series study (BATS): a decade-scale look at ocean biology and biogeochemistry. Deep Sea Res Part II Top Stud Oceanogr 48:1405–1447

    Article  CAS  Google Scholar 

  • Steindler L, Schwalbach MS, Smith DP et al (2011) Energy starved Candidatus Pelagibacter ubique substitutes light-mediated ATP production for endogenous carbon respiration. PLoS One 6:e19725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stepanauskas R (2012) Single cell genomics: an individual look at microbes. Curr Opin Microbiol 15:613–620

    Article  CAS  PubMed  Google Scholar 

  • Stepanauskas R, Fergusson EA, Brown J et al (2017) Improved genome recovery and integrated cell-size analyses of individual uncultured microbial cells and viral particles. Nat Commun 8:84

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stepanauskas R, Sieracki ME (2007) Matching phylogeny and metabolism in the uncultured marine bacteria, one cell at a time. Proc Natl Acad Sci 104:9052–9057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steven B, Hesse C, Soghigian J, Dunbar J (2017) Simulated rRNA/DNA ratios show potential to misclassify active populations as dormant. Appl Environ Microbiol 83:AEM.00696–AEM.00617

    Article  Google Scholar 

  • Stomp M, Huisman J, de Jongh F et al (2004) Adaptive divergence in pigment composition promotes phytoplankton biodiversity. Nature 432:104–107

    Article  CAS  PubMed  Google Scholar 

  • Stomp M, van Dijk MA, van Overzee HMJ et al (2008) The timescale of phenotypic plasticity and its impact on competition in fluctuating environments. Am Nat 172:E169–E185

    Article  Google Scholar 

  • Sul WJ, Oliver TA, Ducklow HW et al (2013) Marine bacteria exhibit a bipolar distribution. Proc Natl Acad Sci 110:2342–2347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunagawa S, Acinas SG, Bork P et al (2020) Tara Oceans: towards global ocean ecosystems biology. Nat Rev Microbiol 18:428–445

    Article  CAS  PubMed  Google Scholar 

  • Sunagawa S, Coelho LP, Chaffron S et al (2015) Structure and function of the global ocean microbiome. Science 348:1261359

    Article  PubMed  CAS  Google Scholar 

  • Swan BK, Martinez-Garcia M, Preston CM et al (2011) Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean. Science 333:1296–1300

    Article  CAS  PubMed  Google Scholar 

  • Swan BK, Tupper B, Sczyrba A et al (2013) Prevalent genome streamlining and latitudinal divergence of planktonic bacteria in the surface ocean. Proc Natl Acad Sci 110:11463–11468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang K, Yang Y, Lin D et al (2016) Genomic, physiologic, and proteomic insights into metabolic versatility in Roseobacter clade bacteria isolated from deep-sea water. Sci Rep 6:35528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taubert M, Grob C, Howat AM et al (2017) Methylamine as a nitrogen source for microorganisms from a coastal marine environment. Environ Microbiol 19:2246–2257

    Article  CAS  PubMed  Google Scholar 

  • Tettelin H, Masignani V, Cieslewicz MJ et al (2005) Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc Natl Acad Sci 102:13950–13955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tettelin H, Riley D, Cattuto C, Medini D (2008) Comparative genomics: the bacterial pan-genome. Curr Opin Microbiol 11:472–477

    Article  CAS  PubMed  Google Scholar 

  • Thompson AW, Foster RA, Krupke A et al (2012) Unicellular cyanobacterium symbiotic with a single-celled eukaryotic alga. Science 337:1546–1550

    Article  CAS  PubMed  Google Scholar 

  • Thompson LR, Haroon MF, Shibl AA et al (2019) Red Sea SAR11 and Prochlorococcus single-cell genomes reflect globally distributed pangenomes. Appl Environ Microbiol 85:1–18

    Article  Google Scholar 

  • Thrash JC, Seitz KW, Baker BJ et al (2017) Metabolic roles of uncultivated bacterioplankton lineages in the northern Gulf of Mexico “dead zone”. mBio 8:e01017–e01017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thrash JC, Temperton B, Swan BK et al (2014) Single-cell enabled comparative genomics of a deep ocean SAR11 bathytype. ISME J 8:1440–1451

    Article  PubMed  CAS  Google Scholar 

  • Tragin M, Vaulot D (2018) Green microalgae in marine coastal waters: the ocean sampling day (OSD) dataset. Sci Rep 8:14020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tripp HJ (2013) The unique metabolism of SAR11 aquatic bacteria. J Microbiol 51:147–153

    Article  CAS  PubMed  Google Scholar 

  • Tripp HJ, Kitner JB, Schwalbach MS et al (2008) SAR11 marine bacteria require exogenous reduced Sulphur for growth. Nature 452:741–744

    Article  CAS  PubMed  Google Scholar 

  • Tsementzi D, Wu J, Deutsch S et al (2016) SAR11 bacteria linked to ocean anoxia and nitrogen loss. Nature 536:179–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tully BJ (2019) Metabolic diversity within the globally abundant marine group II Euryarchaea offers insight into ecological patterns. Nat Commun 10:271

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tully BJ, Graham ED, Heidelberg JF (2018) The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans. Sci Data 5:170203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tully BJ, Sachdeva R, Graham ED, Heidelberg JF (2017) 290 metagenome-assembled genomes from the Mediterranean Sea: a resource for marine microbiology. PeerJ 5:e3558

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tyson GW, Chapman J, Hugenholtz P et al (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428:37–43

    Article  CAS  PubMed  Google Scholar 

  • Van Mooy BAS, Fredricks HF, Pedler BE et al (2009) Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature 458:69–72

    Article  PubMed  CAS  Google Scholar 

  • VanInsberghe D, Arevalo P, Chien D, Polz MF (2020) How can microbial population genomics inform community ecology? Philos Trans R Soc B Biol Sci 375:20190253

    Article  Google Scholar 

  • Vanni C, Schechter MS, Acinas SG et al. (2020) Light into the darkness: unifying the known and unknown coding sequence space in microbiome analyses. bioRxiv 2020.06.30.180448

    Google Scholar 

  • Venter JC, Remington K, Heidelberg JF et al (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74

    Article  CAS  PubMed  Google Scholar 

  • Vergin KL, Beszteri B, Monier A et al (2013) High-resolution SAR11 ecotype dynamics at the Bermuda Atlantic time-series study site by phylogenetic placement of pyrosequences. ISME J 7:1322–1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vila-Costa M, Rinta-Kanto JM, Sun S et al (2010) Transcriptomic analysis of a marine bacterial community enriched with dimethylsulfoniopropionate. ISME J 4:1410–1420

    Article  CAS  PubMed  Google Scholar 

  • Vila-Costa M, Gasol JM, Sharma S, Moran MA (2012) Community analysis of high- and low-nucleic acid-containing bacteria in NW Mediterranean coastal waters using 16S rDNA pyrosequencing. Environ Microbiol 14:1390–1402

    Article  CAS  PubMed  Google Scholar 

  • Villarino E, Watson JR, Jönsson B et al (2018) Large-Scale Ocean connectivity and planktonic body size. Nat Commun 9:142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Villarreal-Chiu JF, Quinn JP, McGrath JW (2012) The genes and enzymes of phosphonate metabolism by bacteria, and their distribution in the marine environment. Front Microbiol 3:19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Ji Y, Wharfe ES et al (2013) Raman activated cell ejection for isolation of single cells. Anal Chem 85:10697–10701

    Article  CAS  PubMed  Google Scholar 

  • Whitaker RJ, Grogan DW, Taylor JW (2005) Recombination shapes the natural population structure of the hyperthermophilic archaeon Sulfolobus islandicus. Mol Biol Evol 22:2354–2361

    Article  CAS  PubMed  Google Scholar 

  • Williams PJL (1970) Heterotrophic utilization of dissolved organic compounds in the sea I. Size distribution of population and relationship between respiration and incorporation of growth substrates. J Mar Biol Assoc United Kingdom 50:859–870

    Article  CAS  Google Scholar 

  • Williams PJL (1981) Microbial contribution to overall marine plankton metabolism: direct measurements of respiration. Oceanol Acta 4:359–364

    Google Scholar 

  • Woyke T, Xie G, Copeland A et al (2009) Assembling the marine metagenome, one cell at a time. PLoS One 4:e5299

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wright JJ, Mewis K, Hanson NW et al (2014) Genomic properties of marine group a bacteria indicate a role in the marine sulfur cycle. ISME J 8:455–468

    Article  CAS  PubMed  Google Scholar 

  • Wrighton KC, Thomas BC, Sharon I et al (2012) Fermentation, hydrogen, and sulfur metabolism in multiple uncultivated bacterial phyla. Science 337:1661–1665

    Article  CAS  PubMed  Google Scholar 

  • Wuchter C, Abbas B, Coolen MJL et al (2006) Archaeal nitrification in the ocean. Proc Natl Acad Sci 103:12317–12322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yakimov MM, La Cono V, Smedile F et al (2011) Contribution of crenarchaeal autotrophic ammonia oxidizers to the dark primary production in Tyrrhenian deep waters (Central Mediterranean Sea). ISME J 5:945–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yilmaz P, Yarza P, Rapp JZ, Glöckner FO (2016) Expanding the world of marine bacterial and archaeal clades. Front Microbiol 6:1524

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoon HS, Price DC, Stepanauskas R et al (2011) Single-cell genomics reveals organismal interactions in uncultivated marine protists. Science 332:714–717

    Article  CAS  PubMed  Google Scholar 

  • Yu FB, Blainey PC, Schulz F et al (2017) Microfluidic-based mini-metagenomics enables discovery of novel microbial lineages from complex environmental samples. elife 6:e26580

    Article  PubMed  PubMed Central  Google Scholar 

  • Zavaleta-Pastor M, Sohlenkamp C, Gao JL et al (2010) Sinorhizobium meliloti phospholipase C required for lipid remodeling during phosphorus limitation. Proc Natl Acad Sci 107:302–307

    Article  CAS  PubMed  Google Scholar 

  • Zeng Y, Chen X, Madsen AM et al (2020) Potential rhodopsin-and bacteriochlorophyll-based dual phototrophy in a high Arctic glacier. MBio 11:e02641–e02620

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Zhang P, Gou H et al (2015) Towards high-throughput microfluidic Raman-activated cell sorting. Analyst 140:6163–6174

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zhao Z, Dai M, Jiao N, Herndl GJ (2014) Drivers shaping the diversity and biogeography of total and active bacterial communities in the South China Sea. Mol Ecol 23:2260–2274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zinger L, Amaral-Zettler LA, Fuhrman JA et al (2011) Global patterns of bacterial beta-diversity in seafloor and seawater ecosystems. PLoS One 6:e24570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors have received funding from projects MAGGY (CTM2017-87736-R) from the Spanish Ministry of Economy and Competitiveness and AtlantECO from the European Union’s Horizon 2020 Research and Innovation program under grant agreement No 862923 to SGA, and projects ECLIPSE (PID2019-110128RB-I00) to IF and MIAU (RTI2018-101025-B-I00) to MS, both from the Spanish Ministry of Science and Innovation. SGA and MS have had the institutional support of the “Severo Ochoa Centre of Excellence” accreditation (CEX2019-000928-S) and IF received the support of the Fundación BBVA through the “Becas Leonardo a Investigadores y Creadores Culturales” 2019 Program. This publication reflects the views of only the authors, and neither the European Union nor the Fundación BBVA can be held responsible for any use which may be made of the information contained therein. We would like to thank Dr. Marta Royo-Llonch and Dr. Isabel Sanz-Sáez for useful discussions on genome-centric and culturing studies, to Adrià Auladell for sharing his data and for discussions on time series, and to SHOOK Studio for the illustration of some of the figures of the present chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia G. Acinas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Acinas, S.G., Sebastián, M., Ferrera, I. (2022). Towards a Global Perspective of the Marine Microbiome. In: Stal, L.J., Cretoiu, M.S. (eds) The Marine Microbiome. The Microbiomes of Humans, Animals, Plants, and the Environment, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-030-90383-1_8

Download citation

Publish with us

Policies and ethics