Skip to main content

Attacks and Countermeasures in IoT Based Smart Healthcare Applications

  • Chapter
  • First Online:
Recent Advances in Internet of Things and Machine Learning

Abstract

The perpetual evolution of IoT continues to make cities smart beyond measure with the abundance of data transactions through expansive networks. Healthcare has been a foremost pillar of settlements and has gained particular focus in recent times owing to the pandemic and the deficiencies it has brought to light. There is an exigency to developing smart healthcare systems that make smart cities more intelligent and sustainable. Therefore, this paper aims to present a study of smart healthcare in the context of a smart city, along with recent and relevant research areas and applications. Several applications have been discussed for early disease diagnosis and emergency services with advanced health technologies. It also focuses on security and privacy issues and the challenges posed by technologies such as wearable devices and big healthcare data. This paper briefly reviews some enhanced schemes and recently proposed security mechanisms as countermeasures to various cyber-attacks. Recent references are primarily used to present smart healthcare privacy and security issues. The issues are laid out briefly based on the different architecture layers, various security attacks, and their corresponding proposed solutions along with other facets of smart health such as Wireless Body Area Network (WBAN) and healthcare data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cirillo, F., Gómez, D., Diez, L., Elicegui Maestro, I., Gilbert, T.B.J., Akhavan, R.: Smart city IoT services creation through large-scale collaboration. IEEE Internet Things J. 7(6), 5267–5275 (2020). https://doi.org/10.1109/JIOT.2020.2978770

  2. Haque, A.K., Bhushan, B., Dhiman, G.: Conceptualizing smart city applications: requirements, architecture, security issues, and emerging trends. Expert Syst. (2021). https://doi.org/10.1111/exsy.12753

    Article  Google Scholar 

  3. Laurini, R.: A primer of knowledge management for smart city governance. Land Use Policy 104832 (2020).https://doi.org/10.1016/j.landusepol.2020.104832

  4. Vaquero, M.G., Saiz-Alvarez, J.M.: Smart cities in Spain—policy, sustainability, and the national plan. In: Economic Modeling, Analysis, and Policy for Sustainability, pp. 266–283 (2016). https://doi.org/10.4018/978-1-5225-0094-0.ch014

  5. Park, B.-J., et al.: Long-term warming trends in Korea and contribution of urbanization: an updated assessment. J. Geophys. Res.: Atmos. 122(20), 10637–10654 (2017). https://doi.org/10.1002/2017jd027167

    Article  Google Scholar 

  6. Roopa, M.S., Pattar, S., Buyya, R., Venugopal, K.R., Iyengar, S.S., Patnaik, L.M.: Social Internet of Things (SIoT): foundations, thrust areas, systematic review and future directions, Comput. Commun. 139, 32–57 (2019). ISSN 0140-3664. https://doi.org/10.1016/j.comcom.2019.03.009

  7. Saxena, S., Bhushan, B., Ahad, M.A.: Blockchain based solutions to secure IoT: background, integration trends and a way forward. J. Netw. Comput. Appl. 103050 (2021).https://doi.org/10.1016/j.jnca.2021.103050

  8. Fan, Y.J., Yin, Y.H., Da Xu, L., Zeng, Y., Wu, F.: IoT-based smart rehabilitation system. IEEE Trans. Ind. Inform. 10(2), 1568–1577 (2014). https://doi.org/10.1109/tii.2014.2302583

    Article  Google Scholar 

  9. Câmara Gradim, L.C., Archanjo José, M., Marinho Cezar da Cruz, D., de Deus Lopes, R.: IoT services and applications in rehabilitation: an interdisciplinary and meta-analysis review. IEEE Trans. Neural Syst. Rehabil. Eng. 28(9), 2043–2052 (2020). https://doi.org/10.1109/TNSRE.2020.3005616

  10. Chang, S.-H., Chiang, R.-D., Wu, S.-J., Chang, W.-T.: A context-aware, interactive M-health system for diabetics. IT Prof. 18(3), 14–22 (2016). https://doi.org/10.1109/mitp.2016.48

    Article  Google Scholar 

  11. Wolgast, G., Ehrenborg, C., Israelsson, A., Helander, J., Johansson, E., Manefjord, H.: Wireless body area network for heart attack detection [education corner]. IEEE Antennas Propag. Mag. 58(5), 84–92 (2016). https://doi.org/10.1109/map.2016.2594004

    Article  Google Scholar 

  12. Hall, R.E., Bowerman, B., Braverman, J., Taylor, J., Todosow, H., Von Wimmersperg, U.: The vision of a smart city, Brookhaven National Laboratory, Upton, NY (US), BNL-67902; 04042, Sept 2000

    Google Scholar 

  13. Harrison, C.: Roads to smarter cities. In: Concept-Oriented Research and Development in Information Technology, pp. 55–69 (2014). https://doi.org/10.1002/9781118753972.ch4

  14. Giffinger, R., Fertner, C., Kramar, H., Kalasek, R., Pichler-Milanovic, N., Meijers, E.: Smart cities: ranking of European medium-sized cities, Vienna UT, Jan 2007

    Google Scholar 

  15. Eger, J.M.: Smart growth, smart cities, and the crisis at the pump a worldwide phenomenon. I-WAYS Dig. Electron. Commer. Policy Regul. 32(1), 47–53 (2009). https://doi.org/10.3233/iwa-2009-0164

    Article  Google Scholar 

  16. U. N. D. of E. A. S. Affairs and United Nations Department of Economic and Social Affairs: World Urbanization Prospects: The 2018 Revision (2019). https://doi.org/10.18356/b9e995fe-en

  17. Chen, M.: Towards smart city: M2M communications with software agent intelligence. Multimed. Tools Appl. 67(1), 167–178 (2013). https://doi.org/10.1007/s11042-012-1013-4

    Article  Google Scholar 

  18. Aujla, G.S., Singh, M., Bose, A., Kumar, N., Han, G., Buyya, R.: BlockSDN: blockchain-as-a-service for software defined networking in smart city applications. IEEE Netw. 34(2), 83–91 (2020). https://doi.org/10.1109/MNET.001.1900151

    Article  Google Scholar 

  19. Silva, B.N., Khan, M., Han, K.: Towards sustainable smart cities: a review of trends, architectures, components, and open challenges in smart cities. Sustain. Cities Soc. 38, 697–713 (2018). https://doi.org/10.1016/j.scs.2018.01.053

    Article  Google Scholar 

  20. Haque, A.B., Bhushan, B.: Security attacks and countermeasures in wireless sensor networks. In: Integration of WSNs into Internet of Things, pp. 17–43 (2021).https://doi.org/10.1201/9781003107521-2

  21. Kandris, D., Nakas, C., Vomvas, D., Koulouras, G.: Applications of wireless sensor networks: an up-to-date survey. Appl. Syst. Innov. 3(1), 14 (2020). https://doi.org/10.3390/asi3010014

    Article  Google Scholar 

  22. Wazid, M., Das, A.K., Hussain, R., Succi, G., Joel, J.P.: Authentication in cloud-driven IoT-based big data environment: survey and outlook. J. Syst. Archit. 97, 185–196 (2019). https://doi.org/10.1016/j.sysarc.2018.12.005

  23. Gretzel, U., Werthner, H., Koo, C., Lamsfus, C.: Conceptual foundations for understanding smart tourism ecosystems. Comput. Hum. Behav. 50, 558–563 (2015). https://doi.org/10.1016/j.chb.2015.03.043

    Article  Google Scholar 

  24. Kirimtat, A., Krejcar, O., Kertesz, A., Fatih Tasgetiren, M.: Future trends and current state of smart city concepts: a survey. IEEE Access 8, 86448–86467 (2020). https://doi.org/10.1109/access.2020.2992441

  25. Bedogni, L., Bononi, L., Di Felice, M., D’Elia, A., Cinotti, T.S.: A route planner service with recharging reservation: electric itinerary with a click. IEEE Intell. Transp. Syst. Mag. 8(3), 75–84 (2016). https://doi.org/10.1109/mits.2016.2573418

    Article  Google Scholar 

  26. Page, A., et al.: Support systems for health monitoring using internet-of-things driven data acquisition. Serv. Trans. Serv. Comput. 4(4), 18–34 (2016). https://doi.org/10.29268/stsc.2016.4.4.2

    Article  Google Scholar 

  27. Dhar, J., Ranganathan, A.: Machine learning capabilities in medical diagnosis applications: computational results for hepatitis disease. Int. J. Biomed. Eng. Technol. 17(4), 330 (2015). https://doi.org/10.1504/ijbet.2015.069398

    Article  Google Scholar 

  28. Esteva, A., et al.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639), 115–118 (2017). https://doi.org/10.1038/nature21056

    Article  Google Scholar 

  29. Jindal, M., Gupta, J., Bhushan, B.: Machine learning methods for IoT and their future applications. In: 2019 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS) (2019). https://doi.org/10.1109/icccis48478.2019.8974551

  30. Tian, S., Yang, W., Le Grange, J.M., Wang, P., Huang, W., Ye, Z.: Smart healthcare: making medical care more intelligent. Glob. Health J. 3(3), 62–65 (2019). https://doi.org/10.1016/j.glohj.2019.07.001

    Article  Google Scholar 

  31. Toğaçar, M., Özkurt, K.B., Ergen, B., Cömert, Z.: BreastNet: a novel convolutional neural network model through histopathological images for the diagnosis of breast cancer. Phys. A 545, 123592 (2020). https://doi.org/10.1016/j.physa.2019.123592

    Article  Google Scholar 

  32. Peters, B.S., Armijo, P.R., Krause, C., Choudhury, S.A., Oleynikov, D.: Review of emerging surgical robotic technology. Surg. Endosc. 32(4), 1636–1655 (2018). https://doi.org/10.1007/s00464-018-6079-2

    Article  Google Scholar 

  33. Cook, D.J., Duncan, G., Sprint, G., Fritz, R.: Using smart city technology to make healthcare smarter. Proc. IEEE Inst. Electr. Electron. Eng. 106(4), 708–722 (2018). https://doi.org/10.1109/JPROC.2017.2787688

    Article  Google Scholar 

  34. Lucisano, J.Y., Routh, T.L., Lin, J.T., Gough, D.A.: Glucose monitoring in individuals with diabetes using a long-term implanted sensor/telemetry system and model. IEEE Trans. Biomed. Eng. 64(9), 1982–1993 (2017). https://doi.org/10.1109/TBME.2016.2619333

    Article  Google Scholar 

  35. Akmandor, A.O., Jha, N.K.: Keep the stress away with SoDA: stress detection and alleviation system. IEEE Trans. Multi-Scale Comput. Syst. 3(4), 269–282 (2017). https://doi.org/10.1109/tmscs.2017.2703613

    Article  Google Scholar 

  36. Redfern, J.: Smart health and innovation: facilitating health-related behaviour change. Proc. Nutr. Soc. 76(3), 328–332 (2017). https://doi.org/10.1017/s0029665117001094

    Article  Google Scholar 

  37. Oncologists partner with Watson on genomics. Cancer Discov. 5(8), 788–788 (2015). https://doi.org/10.1158/2159-8290.cd-nb2015-090. Epub 2015 Jun 16. PMID: 26080837

  38. Zhong, F., et al.: Artificial intelligence in drug design. Sci. China Life Sci. 61(10), 1191–1204 (2018). https://doi.org/10.1007/s11427-018-9342-2

    Article  Google Scholar 

  39. Kumar, S.P., Samson, V.R.R., Sai, U.B., Rao, P.L.S.D.M., Eswar, K.K.: Smart health monitoring system of patient through IoT. In: 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam, Tamilnadu, India, pp. 551–556, Feb 2017. https://doi.org/10.1109/I-SMAC.2017.8058240

  40. Mshali, H., Lemlouma, T., Magoni, D.: Adaptive monitoring system for e-health smart homes. Pervasive Mob. Comput. 43, 1–19 (2018). https://doi.org/10.1016/j.pmcj.2017.11.001

    Article  Google Scholar 

  41. Wan, J., et al.: Wearable IoT enabled real-time health monitoring system. EURASIP J. Wirel. Commun. Netw. 2018(1), 59 (2018). https://doi.org/10.1186/s13638-018-1308-x

    Article  Google Scholar 

  42. Mshali, H., Lemlouma, T., Moloney, M., Magoni, D.: A survey on health monitoring systems for health smart homes. Int. J. Ind. Ergon. 66, 26–56 (2018). https://doi.org/10.1016/j.ergon.2018.02.002

    Article  Google Scholar 

  43. Kang, M., Park, E., Cho, B.H., Lee, K.-S.: Recent patient health monitoring platforms incorporating internet of things-enabled smart devices. Int. Neurourol. J. 22(Suppl 2), S76-82 (2018). https://doi.org/10.5213/inj.1820corr.001

    Article  Google Scholar 

  44. Kharel, J., Reda, H.T., Shin, S.Y.: Fog computing-based smart health monitoring system deploying LoRa wireless communication. IETE Tech. Rev. 36(1), 69–82 (2018). https://doi.org/10.1080/02564602.2017.1406828

    Article  Google Scholar 

  45. Kajornkasirat, S., Chanapai, N., Hnusuwan, B.: Smart health monitoring system with IoT. In: 2018 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE), Penang, pp. 206–211, Apr 2018. https://doi.org/10.1109/ISCAIE.2018.8405471

  46. Albahri, A.S., et al.: Based multiple heterogeneous wearable sensors: a smart real-time health monitoring structured for hospitals distributor. IEEE Access 7, 37269–37323 (2019). https://doi.org/10.1109/ACCESS.2019.2898214

    Article  Google Scholar 

  47. Puntambekar, V., Agarwal, S., Mahalakshmi, P.: Dynamic monitoring of health using smart health band: SocProS 2018, Volume 2. In: Soft Computing for Problem Solving, vol. 1057, pp. 453–462. Springer Singapore (2020).https://doi.org/10.1007/978-981-15-0184-5_39

  48. Li, J., Ma, Q., Chan, A.H., Man, S.S.: Health monitoring through wearable technologies for older adults: smart wearables acceptance model. Appl. Ergon. 75, 162–169 (2019). https://doi.org/10.1016/j.apergo.2018.10.006

    Article  Google Scholar 

  49. Islam, A., Shin, S.Y.: BHMUS: blockchain based secure outdoor health monitoring scheme using UAV in smart city. In: 2019 7th International Conference on Information and Communication Technology (ICoICT), Kuala Lumpur, Malaysia, pp. 1–6, July 2019. https://doi.org/10.1109/ICoICT.2019.8835373

  50. Hartmann, M., Hashmi, U.S., Imran, A.: Edge computing in smart health care systems: review, challenges, and research directions. Trans. Emerg. Telecommun. Technol. 71, 503 (2019). https://doi.org/10.1002/ett.3710

    Article  Google Scholar 

  51. Gahlot, S., Reddy, S.R.N., Kumar, D.: Review of smart health monitoring approaches with survey analysis and proposed framework. IEEE Internet Things J. 6(2), 2116–2127 (2019). https://doi.org/10.1109/JIOT.2018.2872389

    Article  Google Scholar 

  52. Rajamohanan, D., Hariharan, B., Unnikrishna Menon, K.A.: Survey on smart health management using BLE and BLE beacons. In: 2019 9th International Symposium on Embedded Computing and System Design (ISED), Kollam, India, pp. 1–5, Dec 2019. https://doi.org/10.1109/ISED48680.2019.9096227

  53. Rayan, Z., Alfonse, M., Salem, A.-B.M.: Machine learning approaches in smart health. Procedia Comput. Sci. 154, 361–368 (2019). https://doi.org/10.1016/j.procs.2019.06.052

    Article  Google Scholar 

  54. Abdellatif, A.A., Al-Marridi, A.Z., Mohamed, A., Erbad, A., Chiasserini, C.F., Refaey, A.: ssHealth: toward secure, blockchain-enabled healthcare systems. IEEE Netw. 34(4), 312–319 (2020). https://doi.org/10.1109/MNET.011.1900553

    Article  Google Scholar 

  55. Allam, Z., Jones, D.S.: On the coronavirus (COVID-19) outbreak and the smart city network: universal data sharing standards coupled with Artificial Intelligence (AI) to benefit urban health monitoring and management. Healthcare (Basel) 8(1) (2020). https://doi.org/10.3390/healthcare8010046

  56. Zghaibeh, M., Farooq, U., Hasan, N.U., Baig, I.: SHealth: a blockchain-based health system with smart contracts capabilities. IEEE Access 8, 70030–70043 (2020). https://doi.org/10.1109/access.2020.2986789

    Article  Google Scholar 

  57. Meng, K., et al.: A wireless textile-based sensor system for self-powered personalized health care. Matter 2(4), 896–907 (2020). https://doi.org/10.1016/j.matt.2019.12.025

    Article  Google Scholar 

  58. Chen, B., et al.: A security awareness and protection system for 5G smart healthcare based on zero-trust architecture. IEEE Internet Things J. 1–1 (2020). https://doi.org/10.1109/jiot.2020.3041042

  59. Ahmadi-Assalemi, G., et al.: Digital twins for precision healthcare. In: Advanced Sciences and Technologies for Security Applications, pp. 133–158 (2020). https://doi.org/10.1007/978-3-030-35746-7_8

  60. Wang, Z., Luo, N., Zhou, P.: GuardHealth: blockchain empowered secure data management and Graph Convolutional Network enabled anomaly detection in smart healthcare. J. Parallel Distrib. Comput. 142, 1–12 (2020). https://doi.org/10.1016/j.jpdc.2020.03.004

    Article  Google Scholar 

  61. Tanwar, S., Parekh, K., Evans, R.: Blockchain-based electronic healthcare record system for healthcare 4.0 applications. J. Inf. Secur. Appl. 50, 102407 (2020). https://doi.org/10.1016/j.jisa.2019.102407

    Article  Google Scholar 

  62. Zhong, H., Zhou, Y., Zhang, Q., Xu, Y., Cui, J.: An efficient and outsourcing-supported attribute-based access control scheme for edge-enabled smart healthcare. Future Gener. Comput. Syst. 115, 486–496 (2021). https://doi.org/10.1016/j.future.2020.09.021

    Article  Google Scholar 

  63. Wu, F., Qiu, C., Wu, T., Yuce, M.R.: Edge-based hybrid system implementation for long-range safety and healthcare IoT applications. IEEE Internet Things J. 1–1 (2021). https://doi.org/10.1109/jiot.2021.3050445

  64. Yang, Z., Liang, B., Ji, W.: An intelligent end-edge-cloud architecture for visual IoT assisted healthcare systems. IEEE Internet Things J. https://doi.org/10.1109/JIOT.2021.3052778

  65. Alzubi, J.A.: Blockchain-based Lamport Merkle Digital Signature: authentication tool in IoT healthcare. Comput. Commun. (2021). https://doi.org/10.1016/j.comcom.2021.02.002

    Article  Google Scholar 

  66. Butt, S.A., Diaz-Martinez, J.L., Jamal, T., Ali, A., De-La-Hoz-Franco, E., Shoaib, M.: IoT smart health security threats. In: 2019 19th International Conference on Computational Science and Its Applications (ICCSA) (2019). https://doi.org/10.1109/iccsa.2019.000-8

  67. Hassija, V., Chamola, V., Bajpai, B.C., Zeadally, S.: Security issues in implantable medical devices: fact or fiction? Sustain. Cities Soc. 102552 (2020).https://doi.org/10.1016/j.scs.2020.102552

  68. Alam, S., De, D.: Analysis of security threats in wireless sensor network. Int. J. Wirel. Mob. Netw. 6(2), 35–46 (2014). https://doi.org/10.5121/ijwmn.2014.6204

    Article  Google Scholar 

  69. Habibzadeh, H., Soyata, T.: Toward uniform smart healthcare ecosystems: a survey on prospects, security, and privacy considerations. In: Connected Health in Smart Cities, pp. 75–112 (2020). https://doi.org/10.1007/978-3-030-27844-1_5

  70. Kumar, P., Lee, H.-J.: Security issues in healthcare applications using wireless medical sensor networks: a survey. Sensors 12(1), 55–91 (2012). https://doi.org/10.3390/s120100055

    Article  Google Scholar 

  71. Ahmed, I., Mousa, A.: Security and privacy issues in Ehealthcare systems: towards trusted services. Int. J. Adv. Comput. Sci. Appl. 7(9) (2016). https://doi.org/10.14569/ijacsa.2016.070933

  72. Sharma, M.K., Joshi, B.K.: Detection & prevention of vampire attack in wireless sensor networks. In: 2017 International Conference on Information, Communication, Instrumentation and Control (ICICIC), Indore, pp. 1–5, Aug 2017. https://doi.org/10.1109/ICOMICON.2017.8279174

  73. Tseng, F.-H., Chou, L.-D., Chao, H.-C.: A survey of black hole attacks in wireless mobile ad hoc networks. Hum. Centric Comput. Inf. Sci. 1(1), 4 (2011). https://doi.org/10.1186/2192-1962-1-4

    Article  Google Scholar 

  74. Latif, R., Abbas, H., Assar, S.: Distributed denial of service (DDoS) attack in cloud-assisted wireless body area networks: a systematic literature review. J. Med. Syst. 38(11), 128 (2014). https://doi.org/10.1007/s10916-014-0128-8

    Article  Google Scholar 

  75. Kumar, P.M., Gandhi, U.D.: Enhanced DTLS with CoAP-based authentication scheme for the internet of things in healthcare application. J. Supercomput. 76(6), 3963–3983 (2020). https://doi.org/10.1007/s11227-017-2169-5

    Article  Google Scholar 

  76. Vishwakarma, R., Jain, A.K.: A survey of DDoS attacking techniques and defence mechanisms in the IoT network. Telecommun. Syst. 73(1), 3–25 (2020). https://doi.org/10.1007/s11235-019-00599-z

    Article  Google Scholar 

  77. Javaid, U., Siang, A.K., Aman, M.N., Sikdar, B.: Mitigating loT device based DDoS attacks using blockchain. In: Proceedings of the 1st Workshop on Cryptocurrencies and Blockchains for Distributed Systems—CryBlock’18 (2018). https://doi.org/10.1145/3211933.3211946

  78. Ul, S., Manickam, S.: Improved mechanism to prevent denial of service attack in IPv6 duplicate address detection process. Int. J. Adv. Comput. Sci. Appl. 8(2) (2017). https://doi.org/10.14569/ijacsa.2017.080209

  79. Biswal, A., Bhushan, B.: Blockchain for internet of things: architecture, consensus advancements, challenges and application areas. In: 2019 5th International Conference On Computing, Communication, Control And Automation (ICCUBEA), Pune, India, pp. 1–6, Sept 2019. https://doi.org/10.1109/ICCUBEA47591.2019.9129181

  80. Arora, D., Gautham, S., Gupta, H., Bhushan, B.: Blockchain-based security solutions to preserve data privacy and integrity. In: 2019 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS), Greater Noida, India, pp. 468–472, Oct 2019. https://doi.org/10.1109/ICCCIS48478.2019.8974503.

  81. Yaacoub, J.P.A., Noura, M., Noura, H.N., Salman, O., Yaacoub, E.,Couturier, R., Chehab, A.: Securing internet of medical things systems: limitations, issues and recommendations. Future Gener. Comput. Syst. 105, 581–606 (2020). ISSN 0167-739X.  https://doi.org/10.1016/j.future.2019.12.028

  82. Shakeel, P.M., Mohamed Shakeel, P., Baskar, S., Sarma Dhulipala, V.R., Mishra, S., Jaber, M.M.: Maintaining security and privacy in health care system using learning based deep-Q-networks. J. Med. Syst. 42(10) (2018). https://doi.org/10.1007/s10916-018-1045-z

  83. Podder, P., Mondal, M.R.H., Bharati, S., Paul, P.K.: Review on the security threats of internet of things. IJCAI 176(41), 37–45 (2020). https://doi.org/10.5120/ijca2020920548

    Article  Google Scholar 

  84. Mohammad, A.H.: Ransomware evolution, growth and recommendation for detection. Mod. Appl. Sci. 14(3), 68 (2020). https://doi.org/10.5539/mas.v14n3p68

    Article  Google Scholar 

  85. Chakkaravarthy, S.S., Sibi Chakkaravarthy, S., Sangeetha, D., Cruz, M.V., Vaidehi, V., Raman, B.: Design of intrusion detection honeypot using social leopard algorithm to detect IoT ransomware attacks. IEEE Access 8, 169944–169956 (2020). https://doi.org/10.1109/access.2020.3023764

  86. Xu, Z., Xu, C., Liang, W., Xu, J., Chen, H.: A lightweight mutual authentication and key agreement scheme for medical internet of things. IEEE Access 7, 53922–53931 (2019). https://doi.org/10.1109/access.2019.2912870

    Article  Google Scholar 

  87. Papaioannou, M., et al.: A survey on security threats and countermeasures in Internet of Medical Things (IoMT). Trans. Emerg. Telecommun. Technol. (2020). https://doi.org/10.1002/ett.4049

    Article  Google Scholar 

  88. Huang, P., Guo, L., Li, M., Fang, Y.: Practical privacy-preserving ECG-based authentication for IoT-based healthcare. IEEE Internet Things J. 6(5), 9200–9210 (2019). https://doi.org/10.1109/jiot.2019.2929087

    Article  Google Scholar 

  89. Shuwandy, M.L., et al.: mHealth authentication approach based 3D touchscreen and microphone sensors for real-time remote healthcare monitoring system: comprehensive review, open issues and methodological aspects. Comput. Sci. Rev. 38, 100300 (2020). https://doi.org/10.1016/j.cosrev.2020.100300

  90. Shakil, K.A., Zareen, F.J., Alam, M., Jabin, S.: BAMHealthCloud: a biometric authentication and data management system for healthcare data in cloud. J. King Saud Univ. Comput. Inf. Sci. 32(1), 57–64 (2020). https://doi.org/10.1016/j.jksuci.2017.07.001

    Article  Google Scholar 

  91. Deogirikar, J., Vidhate, A.: Security attacks in IoT: a survey. In: 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam, pp. 32–37 (2017). https://doi.org/10.1109/I-SMAC.2017.8058363

  92. Zhang, M., Raghunathan, A., Jha, N.K.: Trustworthiness of medical devices and body area networks. Proc. IEEE 102(8), 1174–1188 (2014). https://doi.org/10.1109/JPROC.2014.2322103

  93. Maiti, A., Jadliwala, M., He, J., Bilogrevic, I.: (Smart)watch your taps. In: Proceedings of the 2015 ACM International Symposium on Wearable Computers—ISWC ’15 (2015). https://doi.org/10.1145/2802083.2808397

  94. Al-Janabi, S., Al-Shourbaji, I., Shojafar, M., Shamshirband, S.: Survey of main challenges (security and privacy) in wireless body area networks for healthcare applications. Egypt. Inform. J. 18(2), 113–122 (2017). https://doi.org/10.1016/j.eij.2016.11.001

    Article  Google Scholar 

  95. Goyal, S., Sharma, N., Bhushan, B., Shankar, A., Sagayam, M.: IoT enabled technology in secured healthcare: applications, challenges and future directions. In: Cognitive Internet of Medical Things for Smart Healthcare, pp. 25–48 (2020). https://doi.org/10.1007/978-3-030-55833-8_2

  96. Solanas, A., et al.: Smart health: a context-aware health paradigm within smart cities. IEEE Commun. Mag. 52(8), 74–81 (2014). https://doi.org/10.1109/mcom.2014.6871673

    Article  Google Scholar 

  97. Jovanov, E., Milenkovic, A.: Body Area Networks for ubiquitous healthcare applications: opportunities and challenges. J. Med. Syst. 35(5), 1245–1254 (2011). https://doi.org/10.1007/s10916-011-9661-x

    Article  Google Scholar 

  98. Selvaraj, S., Sundaravaradhan, S.: Challenges and opportunities in IoT healthcare systems: a systematic review. SN Appl. Sci. 2(1) (2020). https://doi.org/10.1007/s42452-019-1925-y

  99. Baker, S.B., Xiang, W., Atkinson, I.: Internet of things for smart healthcare: technologies, challenges, and opportunities. IEEE Access 5, 26521–26544 (2017). https://doi.org/10.1109/access.2017.2775180

    Article  Google Scholar 

  100. Rizwan, A., et al.: A review on the role of nano-communication in future healthcare systems: a big data analytics perspective. IEEE Access 6, 41903–41920 (2018). https://doi.org/10.1109/access.2018.2859340

    Article  Google Scholar 

  101. Sagner, M., et al.: The P4 health spectrum—a predictive, preventive, personalized and participatory continuum for promoting healthspan. Prog. Prev. Med. 2(1), e0002 (2017). https://doi.org/10.1097/pp9.0000000000000002

    Article  Google Scholar 

  102. Varshney, U., Chang, C.K.: Smart health and well-being. Computer 49(11), 11–13 (2016). https://doi.org/10.1145/2555810.2555811

    Article  Google Scholar 

  103. Bhushan, B., Sahoo, C., Sinha, P., Khamparia, A.: Unification of Blockchain and Internet of Things (BIoT): requirements, working model, challenges and future directions. Wirel. Netw. (2020). https://doi.org/10.1007/s11276-020-02445-6

    Article  Google Scholar 

  104. Bhushan, B., Khamparia, A., Martin Sagayam, K., Sharma, S.K., Ahad, M.A., Debnath, N.C.: Blockchain for smart cities: a review of architectures, integration trends and future research directions. Sustain. Cities Soc. 61, 102360 (2020). https://doi.org/10.1016/j.scs.2020.102360

  105. Chen, M., Li, Y., Luo, X., Wang, W., Wang, L., Zhao, W.: A novel human activity recognition scheme for smart health using multilayer extreme learning machine. In: Cyber-Enabled Intelligence, pp. 239–258 (2019). https://doi.org/10.1201/9780429196621-12

  106. Goyal, S., Sharma, N., Bhushan, B., Shankar, A., Sagayam, M.: IoT enabled technology in secured healthcare: applications, challenges and future directions. In: Cognitive Internet of Medical Things for Smart Healthcare Studies in Systems, Decision and Control, pp. 25–48 (2020).https://doi.org/10.1007/978-3-030-55833-8_2

  107. Gljušćić, P., Zelenika, S., Blažević, D., Kamenar, E.: Kinetic energy harvesting for wearable medical sensors. Sensors 19(22) (2019). https://doi.org/10.3390/s19224922

  108. Nozariasbmarz, A., et al.: Review of wearable thermoelectric energy harvesting: from body temperature to electronic systems. Appl. Energy 258, 114069 (2020). https://doi.org/10.1016/j.apenergy.2019.114069

  109. Bahk, J.-H., Fang, H., Yazawa, K., Shakouri, A.: Flexible thermoelectric materials and device optimization for wearable energy harvesting. J. Mater. Chem. C 3(40), 10362–10374 (2015). https://doi.org/10.1039/c5tc01644d

    Article  Google Scholar 

  110. Tuncel, Y., Bandyopadhyay, S., Kulshrestha, S.V., Mendez, A., Ogras, U.Y.: Towards wearable piezoelectric energy harvesting. In: Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design (2020).https://doi.org/10.1145/3370748.3406578

  111. Yan, C., et al.: A linear-to-rotary hybrid nanogenerator for high-performance wearable biomechanical energy harvesting. Nano Energy 67, 104235 (2020). https://doi.org/10.1016/j.nanoen.2019.104235

  112. Zou, Y., Raveendran, V., Chen, J.: Wearable triboelectric nanogenerators for biomechanical energy harvesting. Nano Energy 77, 105303 (2020). https://doi.org/10.1016/j.nanoen.2020.105303

  113. Borges, L.M., Chávez-Santiago, R., Barroca, N., Velez, F.J., Balasingham, I.: Radio-frequency energy harvesting for wearable sensors. Healthc. Technol. Lett. 2(1), 22–27 (2015). https://doi.org/10.1049/htl.2014.0096

    Article  Google Scholar 

  114. Dohr, A., Modre-Opsrian, R., Drobics, M., Hayn, D., Schreier, G.: The internet of things for ambient assisted living. In: 2010 Seventh International Conference on Information Technology: New Generations (2010). https://doi.org/10.1109/itng.2010.104

  115. Faezipour, M., Faezipour, M.: System dynamics modeling for smartphone-based healthcare tools: case study on ECG monitoring. IEEE Syst. J. 1–10 (2020). https://doi.org/10.1109/jsyst.2020.3009187

  116. Faezipour, M., Faezipour, M.: Sustainable smartphone-based healthcare systems: a systems engineering approach to assess the efficacy of respiratory monitoring apps. Sustainability 12(12), 5061 (2020). https://doi.org/10.3390/su12125061

    Article  Google Scholar 

  117. Veeralingam, S., Sahatiya, P., Kadu, A., Mattela, V., Badhulika, S.: Direct, one-step growth of NiSe2 on cellulose paper: a low-cost, flexible, and wearable with smartphone enabled multifunctional sensing platform for customized noninvasive personal healthcare monitoring. ACS Appl. Electron. Mater. 1(4), 558–568 (2019). https://doi.org/10.1021/acsaelm.9b00022

    Article  Google Scholar 

  118. Torous, J., Nicholas, J., Larsen, M.E., Firth, J., Christensen, H.: Clinical review of user engagement with mental health smartphone apps: evidence, theory and improvements. Evid. Based Ment. Health 21(3), 116–119 (2018). https://doi.org/10.1136/eb-2018-102891

    Article  Google Scholar 

  119. Sharma, N., Kaushik, I., Bhushan, B., Gautam, S., Khamparia, A.: Applicability of WSN and biometric models in the field of healthcare. In: Deep Learning Strategies for Security Enhancement in Wireless Sensor Networks Advances in Information Security, Privacy, and Ethics, pp. 304–329 (2020).https://doi.org/10.4018/978-1-7998-5068-7.ch016

  120. Haque, A.B., Muniat, A., Ullah, P.R., Mushsharat, S.: An automated approach towards smart healthcare with blockchain and smart contracts. In: 2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS), pp. 250–255 (2021). https://doi.org/10.1109/ICCCIS51004.2021.9397158

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bahalul Haque, A.K.M., Bhushan, B., Nawar, A., Talha, K.R., Ayesha, S.J. (2022). Attacks and Countermeasures in IoT Based Smart Healthcare Applications. In: Balas, V.E., Solanki, V.K., Kumar, R. (eds) Recent Advances in Internet of Things and Machine Learning. Intelligent Systems Reference Library, vol 215. Springer, Cham. https://doi.org/10.1007/978-3-030-90119-6_6

Download citation

Publish with us

Policies and ethics