Skip to main content

Dentoalveolar Bone in Orthodontic Patients: The Periodontal Perspective

  • Chapter
  • First Online:
Surgically Facilitated Orthodontic Therapy

Abstract

Dentoalveolar bone is a living mineralized connective tissue that remodels with the periodontal complex to support dentition. The original structure of the alveolar bone is defined by the eruption and position of the teeth but later its boundary and plasticity can delineate the limitation and complications of orthodontic tooth movement. As the population ages, increased interest in orthodontic therapy by the adult population has grown significantly. The dentoalveolar bone and periodontal phenotype need accurate diagnosis and careful interdisciplinary management in this population since bone deficiency and thin periodontal tissues are common findings. This chapter will discuss the effect of aging on the volume and plasticity of dentoalveolar bone, impact of osteoporosis-related medications, and systemic factors that can alter bone metabolism and influence orthodontic treatment. Clinical scenarios and challenges such as orthodontic treatment in patients with periodontal disease or reduced periodontium as well as patients with deficient alveolar ridge and thin periodontal phenotype will be discussed. Orthodontic treatment plans may need to integrate phenotype augmentation or dentoalveolar ridge reconstruction to overcome the deficiency and enhance tissue stability. Surgically-Facilitated Orthodontic Therapy (SFOT) should be considered as part of comprehensive treatment planning and patient management to address these challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APE:

Altered passive eruption

ASE:

Active secondary eruption

BOP:

Bleeding on probing

CAL:

Clinical attachment level

CBCT:

Cone beam tomography study

CEJ:

Cemento-enamel junction

CMD:

Chronic metabolic diseases

CMT:

Congenitally missing teeth

FGG:

Free soft tissue graft

GBR:

Guided bone regeneration

GTR:

Guided Tissue Regeneration

KG:

Keratinized gingiva

MGJ:

Mucogingival junction

OTM:

Orthodontic tooth movement

PDL:

Periodontal ligament

PGs:

Prostaglandins

PhMT:

Phenotype modification therapy

PPD:

Probing pocket depth

PTH:

Parathyroid hormone

SFOT:

Surgically-Facilitated Orthodontic Therapy SFOT

SPT:

Supportive periodontal therapy

TCPC:

Beta-tricalcium phosphate ceramics

References

  1. Saffar JL, Lasfargues JJ, Cherruau M. Alveolar bone and the alveolar process: the socket that is never stable. Periodontol. 2000;1997(13):76–90.

    Google Scholar 

  2. Alvarez C, et al. Osteoimmunology of oral and maxillofacial diseases: translational applications based on biological mechanisms. Front Immunol. 2019;10:1664.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Nanci A, Bosshardt DD. Structure of periodontal tissues in health and disease. Periodontol. 2000;2006(40):11–28.

    Google Scholar 

  4. Nanci A, editor. Ten Cate’s oral histology: development, structure, and function. 9th ed. St. Louis, MO: Elsevier; 2018.

    Google Scholar 

  5. Matalová E, Lungová V, Sharpe P. Chapter 26—Development of tooth and associated structures. In: Vishwakarma A, et al., editors. Stem cell biology and tissue engineering in dental sciences. Boston, MA: Academic Press; 2015. p. 335–46.

    Chapter  Google Scholar 

  6. Pietrokovski J, Harfin J, Levy F. The influence of age and denture wear on the size of edentulous structures. Gerodontology. 2003;20(2):100–5.

    Article  PubMed  Google Scholar 

  7. Jonasson G, Skoglund I, Rythen M. The rise and fall of the alveolar process: dependency of teeth and metabolic aspects. Arch Oral Biol. 2018;96:195–200.

    Article  PubMed  Google Scholar 

  8. Yatabe M, et al. Alveolar bone morphology of maxillary central incisors near grafted alveolar clefts after orthodontic treatment. Am J Orthod Dentofac Orthop. 2017;152(4):501–508 e1.

    Article  Google Scholar 

  9. Garib D, et al. Mesial and distal alveolar bone morphology in maxillary canines moved into the grafted alveolar cleft: computed tomography evaluation. Am J Orthod Dentofac Orthop. 2017;151(5):869–77.

    Article  Google Scholar 

  10. Mandelaris GA, et al. Surgically facilitated orthodontic therapy: optimizing dentoalveolar bone and space appropriation for facially prioritized interdisciplinary dentofacial therapy. Compend Contin Educ Dent. 2018;39(3):146–56. quiz 157

    PubMed  Google Scholar 

  11. Mandelaris GA, Neiva R, Chambrone L. Cone-beam computed tomography and interdisciplinary dentofacial therapy: an American Academy of periodontology best evidence review focusing on risk assessment of the dentoalveolar bone changes influenced by tooth movement. J Periodontol. 2017;88(10):960–77.

    Article  PubMed  Google Scholar 

  12. Lindhe NPLJ. Clinical periodontology and implant dentistry. Blackwell: Wiley; 2015.

    Google Scholar 

  13. Lindskog-Stokland B, et al. Orthodontic tooth movement into edentulous ridge areas—A case series. Eur J Orthod. 2013;35(3):277–85.

    Article  PubMed  Google Scholar 

  14. Januario AL, et al. Dimension of the facial bone wall in the anterior maxilla: a cone-beam computed tomography study. Clin Oral Implants Res. 2011;22(10):1168–71.

    Article  PubMed  Google Scholar 

  15. Nowzari H, et al. Cone beam computed tomographic measurement of maxillary central incisors to determine prevalence of facial alveolar bone width >/=2 mm. Clin Implant Dent Relat Res. 2012;14(4):595–602.

    Article  PubMed  Google Scholar 

  16. Dewel BF. The labial frenum, midline diastema, and palatine papilla: a clinical analysis. Dent Clin N Am. 1966;10:175–84.

    Article  Google Scholar 

  17. Huang WJ, Creath CJ. The midline diastema: a review of its etiology and treatment. Pediatr Dent. 1995;17(3):171–9.

    PubMed  Google Scholar 

  18. Suter VG, et al. Does the maxillary midline diastema close after frenectomy? Quintessence Int. 2014;45(1):57–66.

    PubMed  Google Scholar 

  19. Engelking G, Zachrisson BU. Effects of incisor repositioning on monkey periodontium after expansion through the cortical plate. Am J Orthod. 1982;82(1):23–32.

    Article  PubMed  Google Scholar 

  20. Thilander B, et al. Bone regeneration in alveolar bone dehiscences related to orthodontic tooth movements. Eur J Orthod. 1983;5(2):105–14.

    Article  PubMed  Google Scholar 

  21. Steiner GG, Pearson JK, Ainamo J. Changes of the marginal periodontium as a result of labial tooth movement in monkeys. J Periodontol. 1981;52(6):314–20.

    Article  PubMed  Google Scholar 

  22. Ghassemian M, et al. The thickness of facial alveolar bone overlying healthy maxillary anterior teeth. J Periodontol. 2012;83(2):187–97.

    Article  PubMed  Google Scholar 

  23. Peterson AG, et al. An in vivo and cone beam computed tomography investigation of the accuracy in measuring alveolar bone height and detecting dehiscence and fenestration defects. Int J Oral Maxillofac Implants. 2018;33(6):1296–304.

    Article  PubMed  Google Scholar 

  24. Rupprecht RD, et al. Prevalence of dehiscences and fenestrations in modern American skulls. J Periodontol. 2001;72(6):722–9.

    Article  PubMed  Google Scholar 

  25. Evangelista K, et al. Dehiscence and fenestration in patients with class I and class II division 1 malocclusion assessed with cone-beam computed tomography. Am J Orthod Dentofac Orthop. 2010;138(2):133 e1-7; discussion 133-5

    Article  Google Scholar 

  26. Grimoud AM, Gibbon VE, Ribot I. Predictive factors for alveolar fenestration and dehiscence. Homo. 2017;68(3):167–75.

    Article  PubMed  Google Scholar 

  27. Fuhrmann R. Three-dimensional interpretation of labiolingual bone width of the lower incisors. Part II. J Orofac Orthop. 1996;57(3):168–85.

    Article  PubMed  Google Scholar 

  28. Fuhrmann R. Three-dimensional interpretation of alveolar bone dehiscences. An anatomical-radiological study—Part I. J Orofac Orthop. 1996;57(2):62–74.

    Article  PubMed  Google Scholar 

  29. von Bohl M, Kuijpers-Jagtman AM. Hyalinization during orthodontic tooth movement: a systematic review on tissue reactions. Eur J Orthod. 2009;31(1):30–6.

    Article  Google Scholar 

  30. Chapter 1—Normal skeletal structure and development. In: Orthopaedic pathology (5th Edition). Bullough PG, Editor. Philadelphia, PA: Mosby; 2010, p. 1–39.

    Google Scholar 

  31. Wise GE, King GJ. Mechanisms of tooth eruption and orthodontic tooth movement. J Dent Res. 2008;87(5):414–34.

    Article  PubMed  Google Scholar 

  32. Proffit WR. Equilibrium theory revisited: factors influencing position of the teeth. Angle Orthod. 1978;48(3):175–86.

    PubMed  Google Scholar 

  33. Cahill DR, Marks SC Jr. Tooth eruption: evidence for the central role of the dental follicle. J Oral Pathol. 1980;9(4):189–200.

    Article  PubMed  Google Scholar 

  34. Marks SC Jr, Cahill DR. Experimental study in the dog of the non-active role of the tooth in the eruptive process. Arch Oral Biol. 1984;29(4):311–22.

    Article  PubMed  Google Scholar 

  35. Cahill DR. Eruption pathway formation in the presence of experimental tooth impaction in puppies. Anat Rec. 1969;164(1):67–77.

    Article  PubMed  Google Scholar 

  36. Varella AM, Revankar AV, Patil AK. Low-level laser therapy increases interleukin-1beta in gingival crevicular fluid and enhances the rate of orthodontic tooth movement. Am J Orthod Dentofac Orthop. 2018;154(4):535–544 e5.

    Article  Google Scholar 

  37. Goldman HM, Cohen W. Periodontal therapy. St Louis, MO: Mosby Company; 1968.

    Google Scholar 

  38. Volchansky A, Cleaton-Jones PE. Delayed passive eruption. A predisposing factor to Vincent’s infection? J Dent Assoc S Afr. 1974;29:291–4.

    Google Scholar 

  39. Coslet JG, Vanarsdall R, Weisgold A. Diagnosis and classification of delayed passive eruption of the dentogingival junction in the adult. Alpha Omegan. 1977;70(3):24–8. PMID: 276255.

    Google Scholar 

  40. Ahmad I. Altered passive eruption (APE) and active secondary eruption (ASE): differential diagnosis and management. Int J Esthet Dent. 2017;12(3):352–76.

    PubMed  Google Scholar 

  41. Rossi R, et al. Altered passive eruption and familial trait: a preliminary investigation. Int J Dent. 2014;2014:874092.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bjork A, Skieller V. Facial development and tooth eruption. An implant study at the age of puberty. Am J Orthod. 1972;62(4):339–83.

    Article  PubMed  Google Scholar 

  43. Blom S, Holmstrup P, Dabelsteen E. The effect of insulin-like growth factor-I and human growth hormone on periodontal ligament fibroblast morphology, growth pattern, DNA synthesis, and receptor binding. J Periodontol. 1992;63(12):960–8.

    Article  PubMed  Google Scholar 

  44. Nart J, et al. Prevalence of altered passive eruption in orthodontically treated and untreated patients. J Periodontol. 2014;85(11):e348–53.

    Article  PubMed  Google Scholar 

  45. Compagnon D, Woda A. Supraeruption of the unopposed maxillary first molar. J Prosthet Dent. 1991;66(1):29–34.

    Article  PubMed  Google Scholar 

  46. Lam WY, Ho EH, Pow EH. Rehabilitation of molar-incisor hypomineralization (MIH) complicated with localized tooth surface loss: a case report. Quintessence Int. 2014;45(5):377–9.

    PubMed  Google Scholar 

  47. Gunduz K, Muglali M, Inal S. Total impaction of deciduous maxillary molars: two case reports. J Contemp Dent Pract. 2007;8(6):64–71.

    Article  PubMed  Google Scholar 

  48. Kwon SO, Lee S, Lee N. Treatment of combined primary impaction of primary second molars and permanent first molars. Pediatr Dent. 2016;38(7):143–7.

    PubMed  Google Scholar 

  49. Chu FC, et al. Prevalence of impacted teeth and associated pathologies—A radiographic study of the Hong Kong Chinese population. Hong Kong Med J. 2003;9(3):158–63.

    PubMed  Google Scholar 

  50. Hattab FN, Rawashdeh MA, Fahmy MS. Impaction status of third molars in Jordanian students. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1995;79(1):24–9.

    Article  PubMed  Google Scholar 

  51. Wise GE, et al. Requirement of alveolar bone formation for eruption of rat molars. Eur J Oral Sci. 2011;119(5):333–8.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Yao S, et al. TNF-alpha upregulates expression of BMP-2 and BMP-3 genes in the rat dental follicle—Implications for tooth eruption. Connect Tissue Res. 2010;51(1):59–66.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Tadinada A, et al. Evaluation of alveolar bone dimensions in unilateral palatally impacted canine: a cone-beam computed tomographic analyses. Eur J Orthod. 2015;37(6):596–602.

    Article  PubMed  Google Scholar 

  54. Dachi SF, Howell FV. A survey of 3,874 routine full-mouth radiographs. I. A study of retained roots and teeth. Oral Surg Oral Med Oral Pathol. 1961;14:916–24.

    Article  PubMed  Google Scholar 

  55. Grover PS, Lorton L. The incidence of unerupted permanent teeth and related clinical cases. Oral Surg Oral Med Oral Pathol. 1985;59(4):420–5.

    Article  PubMed  Google Scholar 

  56. Johnston WD. Treatment of palatally impacted canine teeth. Am J Orthod. 1969;56(6):589–96.

    Article  PubMed  Google Scholar 

  57. Becker A, Smith P, Behar R. The incidence of anomalous maxillary lateral incisors in relation to palatally-displaced cuspids. Angle Orthod. 1981;51(1):24–9.

    PubMed  Google Scholar 

  58. Sacerdoti R, Baccetti T. Dentoskeletal features associated with unilateral or bilateral palatal displacement of maxillary canines. Angle Orthod. 2004;74(6):725–32.

    PubMed  Google Scholar 

  59. Dalessandri D, et al. Impacted and transmigrant mandibular canines incidence, aetiology, and treatment: a systematic review. Eur J Orthod. 2017;39(2):161–9.

    Article  PubMed  Google Scholar 

  60. Becker A, Chaushu S. Etiology of maxillary canine impaction: a review. Am J Orthod Dentofac Orthop. 2015;148(4):557–67.

    Article  Google Scholar 

  61. Brin I, Becker A, Shalhav M. Position of the maxillary permanent canine in relation to anomalous or missing lateral incisors: a population study. Eur J Orthod. 1986;8(1):12–6.

    Article  PubMed  Google Scholar 

  62. Kaczor-Urbanowicz K, Zadurska M, Czochrowska E. Impacted teeth: an interdisciplinary perspective. Adv Clin Exp Med. 2016;25(3):575–85.

    Article  PubMed  Google Scholar 

  63. Lee JY, et al. Labially impacted maxillary canines after the closed eruption technique and orthodontic traction: a split-mouth comparison of periodontal recession. J Periodontol. 2019;90(1):35–43.

    Article  PubMed  Google Scholar 

  64. Nowzari H, Rodriguez AE. Impacted teeth: closed flap surgery. J Esthet Restor Dent. 2019;31(3):233–9.

    Article  PubMed  Google Scholar 

  65. Vermette ME, Kokich VG, Kennedy DB. Uncovering labially impacted teeth: apically positioned flap and closed-eruption techniques. Angle Orthod. 1995;65(1):23–32; discussion 33

    PubMed  Google Scholar 

  66. Incerti-Parenti S, et al. Periodontal status after surgical-orthodontic treatment of labially impacted canines with different surgical techniques: a systematic review. Am J Orthod Dentofac Orthop. 2016;149(4):463–72.

    Article  Google Scholar 

  67. Chaushu S, et al. Buccal ectopia of maxillary canines with no crowding. Am J Orthod Dentofac Orthop. 2009;136(2):218–23.

    Article  Google Scholar 

  68. Ferreira JB, Silveira GS, Mucha JN. A simple approach to correct ectopic eruption of maxillary canines. Am J Orthod Dentofac Orthop. 2019;155(6):871–80.

    Article  Google Scholar 

  69. Agudio G, et al. Mucogingival interceptive therapy. Int J Periodontics Restorative Dent. 1985;5(5):48–59.

    PubMed  Google Scholar 

  70. Becker A, Kohavi D, Zilberman Y. Periodontal status following the alignment of palatally impacted canine teeth. Am J Orthod. 1983;84(4):332–6.

    Article  PubMed  Google Scholar 

  71. Kohavi D, Zilberman Y, Becker A. Periodontal status following the alignment of buccally ectopic maxillary canine teeth. Am J Orthod. 1984;85(1):78–82.

    Article  PubMed  Google Scholar 

  72. Prato GP, Clauser C, Cortellini P. Periodontal plastic and mucogingival surgery. Periodontol. 2000;1995(9):90–105.

    Google Scholar 

  73. Pini Prato G, et al. Mucogingival interceptive surgery of buccally-erupted premolars in patients scheduled for orthodontic treatment. II. Surgically treated versus nonsurgically treated cases. J Periodontol. 2000;71(2):182–7.

    Article  PubMed  Google Scholar 

  74. Pini Prato G, et al. Mucogingival interceptive surgery of buccally-erupted premolars in patients scheduled for orthodontic treatment. I. A 7-year longitudinal study. J Periodontol. 2000;71(2):172–81.

    Article  PubMed  Google Scholar 

  75. Rakhshan V. Congenitally missing teeth (hypodontia): a review of the literature concerning the etiology, prevalence, risk factors, patterns and treatment. Dent Res J (Isfahan). 2015;12(1):1–13.

    Article  PubMed  Google Scholar 

  76. Urban IA, et al. Effectiveness of vertical ridge augmentation interventions: a systematic review and meta-analysis. J Clin Periodontol. 2019;46(Suppl 21):319–39.

    Article  PubMed  Google Scholar 

  77. Wang CW, et al. Simultaneous ridge augmentation and accelerated molar uprighting for implant site development: two case reports with a Split-mouth design. Int J Periodontics Restorative Dent. 2017;37(3):423–30.

    Article  PubMed  Google Scholar 

  78. Oksayan R, et al. Effects of edentulism on mandibular morphology: evaluation of panoramic radiographs. ScientificWorldJournal. 2014;2014:254932.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Mosekilde L, Mosekilde L, Danielsen CC. Biomechanical competence of vertebral trabecular bone in relation to ash density and age in normal individuals. Bone. 1987;8(2):79–85.

    Article  PubMed  Google Scholar 

  80. McCalden RW, McGeough JA, Court-Brown CM. Age-related changes in the compressive strength of cancellous bone. The relative importance of changes in density and trabecular architecture. J Bone Joint Surg Am. 1997;79(3):421–7.

    Article  PubMed  Google Scholar 

  81. Jager A. Histomorphometric study of age-related changes in remodelling activity of human desmodontal bone. J Anat. 1996;189(Pt 2):257–64.

    PubMed  PubMed Central  Google Scholar 

  82. Cei S, et al. Bone marrow stromal cells of young and adult rats respond similarly to platelet-released supernatant and bone morphogenetic protein-6 in vitro. J Periodontol. 2006;77(4):699–706.

    Article  PubMed  Google Scholar 

  83. Schubert A, et al. Age effect on orthodontic tooth movement rate and the composition of gingival crevicular fluid : a literature review. J Orofac Orthop. 2020;81(2):113–25.

    Article  PubMed  Google Scholar 

  84. Tan WL, et al. A systematic review of post-extractional alveolar hard and soft tissue dimensional changes in humans. Clin Oral Implants Res. 2012;23(Suppl 5):1–21.

    Article  PubMed  Google Scholar 

  85. Okamoto A, et al. Reduction of orthodontic tooth movement by experimentally induced periodontal inflammation in mice. Eur J Oral Sci. 2009;117(3):238–47.

    Article  PubMed  Google Scholar 

  86. Alikhani M, et al. Saturation of the biological response to orthodontic forces and its effect on the rate of tooth movement. Orthod Craniofac Res. 2015;18(Suppl 1):8–17.

    Article  PubMed  Google Scholar 

  87. Meyer-Marcotty P, et al. The adult orthodontic patient over 40 years of age: association between periodontal bone loss, incisor irregularity, and increased orthodontic treatment need. Clin Oral Investig. 2021;25(11):6357–64. https://doi.org/10.1007/s00784-021-03936-2. Epub 2021 Apr 22. PMID: 33884503; PMCID: PMC8531047.

  88. Tanne K, et al. An evaluation of the biomechanical response of the tooth and periodontium to orthodontic forces in adolescent and adult subjects. Br J Orthod. 1998;25(2):109–15.

    Article  PubMed  Google Scholar 

  89. Roberts W. In: Vanarsdall RL, Graber TM, Vig KW, editors. Bone physiology, metabolism, and biomechanics in orthodontic practice, in orthodontics: current principles and techniques. St Louis: Elsevier Mosby; 2005. p. 221–92.

    Google Scholar 

  90. Bridges T, King G, Mohammed A. The effect of age on tooth movement and mineral density in the alveolar tissues of the rat. Am J Orthod Dentofac Orthop. 1988;93(3):245–50.

    Article  Google Scholar 

  91. Kyomen S, Tanne K. Influences of aging changes in proliferative rate of PDL cells during experimental tooth movement in rats. Angle Orthod. 1997;67(1):67–72.

    PubMed  Google Scholar 

  92. Ren Y, et al. Age effect on orthodontic tooth movement in rats. J Dent Res. 2003;82(1):38–42.

    Article  PubMed  Google Scholar 

  93. Ren Y, Kuijpers-Jagtman AM, Maltha JC. Immunohistochemical evaluation of osteoclast recruitment during experimental tooth movement in young and adult rats. Arch Oral Biol. 2005;50(12):1032–9.

    Article  PubMed  Google Scholar 

  94. Alikhani M, et al. Age-dependent biologic response to orthodontic forces. Am J Orthod Dentofac Orthop. 2018;153(5):632–44.

    Article  Google Scholar 

  95. Billings M, et al. Age-dependent distribution of periodontitis in two countries: findings from NHANES 2009 to 2014 and SHIP-TREND 2008 to 2012. J Clin Periodontol. 2018;45(Suppl 20):S130–48.

    Article  PubMed  Google Scholar 

  96. Kawasaki K, et al. Effects of aging on RANKL and OPG levels in gingival crevicular fluid during orthodontic tooth movement. Orthod Craniofac Res. 2006;9(3):137–42.

    Article  PubMed  Google Scholar 

  97. Nickel JC, et al. Effects of mechanical stress and growth on the velocity of tooth movement. Am J Orthod Dentofac Orthop. 2014;145(4 Suppl):S74–81.

    Article  Google Scholar 

  98. Dudic A, Giannopoulou C, Kiliaridis S. Factors related to the rate of orthodontically induced tooth movement. Am J Orthod Dentofac Orthop. 2013;143(5):616–21.

    Article  Google Scholar 

  99. Iwasaki LR, et al. Tooth movement and cytokines in gingival crevicular fluid and whole blood in growing and adult subjects. Am J Orthod Dentofac Orthop. 2005;128(4):483–91.

    Article  Google Scholar 

  100. Moss ML, Young RW. A functional approach to craniology. Am J Phys Anthropol. 1960;18(4):281–92.

    Article  PubMed  Google Scholar 

  101. Moss ML, Salentijn L. The primary role of functional matrices in facial growth. Am J Orthod. 1969;55(6):566–77.

    Article  PubMed  Google Scholar 

  102. Moss ML. The functional matrix hypothesis revisited. 4. The epigenetic antithesis and the resolving synthesis. Am J Orthod Dentofac Orthop. 1997;112(4):410–7.

    Article  Google Scholar 

  103. Moss ML. The functional matrix hypothesis revisited. 3. The genomic thesis. Am J Orthod Dentofac Orthop. 1997;112(3):338–42.

    Article  Google Scholar 

  104. Enlow DH, et al. A procedure for the analysis of intrinsic facial form and growth. An equivalent-balance concept. Am J Orthod. 1969;56(1):6–23.

    Article  PubMed  Google Scholar 

  105. Enlow DH, Hans MG. Essentials of facial growth. WS Saunders Co., Philadelphia, 1996;1–240.

    Google Scholar 

  106. Moss ML. The functional matrix hypothesis revisited. 2. The role of an osseous connected cellular network. Am J Orthod Dentofac Orthop. 1997;112(2):221–6.

    Article  Google Scholar 

  107. Moss ML. The functional matrix hypothesis revisited. 1. The role of mechanotransduction. Am J Orthod Dentofac Orthop. 1997;112(1):8–11.

    Article  Google Scholar 

  108. Moss ML, Rankow RM. The role of the functional matrix in mandibular growth. Angle Orthod. 1968;38(2):95–103.

    PubMed  Google Scholar 

  109. Ulm CW, et al. The edentulous maxillary alveolar process in the region of the maxillary sinus—A study of physical dimension. Int J Oral Maxillofac Surg. 1995;24(4):279–82.

    Article  PubMed  Google Scholar 

  110. Hamrick MW, McNeil PL, Patterson SL. Role of muscle-derived growth factors in bone formation. J Musculoskelet Neuronal Interact. 2010;10(1):64–70.

    PubMed  Google Scholar 

  111. Rabey KN, et al. Locomotor activity influences muscle architecture and bone growth but not muscle attachment site morphology. J Hum Evol. 2015;78:91–102.

    Article  PubMed  Google Scholar 

  112. Pearson OM, Lieberman DE. The aging of Wolff’s “law”: ontogeny and responses to mechanical loading in cortical bone. Am J Phys Anthropol. 2004;Suppl 39:63–99.

    Article  PubMed  Google Scholar 

  113. Benjamin M, et al. The skeletal attachment of tendons—tendon “entheses”. Comp Biochem Physiol A Mol Integr Physiol. 2002;133(4):931–45.

    Article  PubMed  Google Scholar 

  114. Potgieter PJ, Monteith BD, Kemp PL. The determination of free-way space in edentulous patients: a cephalometric approach. J Oral Rehabil. 1983;10(4):283–93.

    Article  PubMed  Google Scholar 

  115. Xie QF, Ainamo A. Correlation of gonial angle size with cortical thickness, height of the mandibular residual body, and duration of edentulism. J Prosthet Dent. 2004;91(5):477–82.

    Article  PubMed  Google Scholar 

  116. Kiliaridis S. Masticatory muscle influence on craniofacial growth. Acta Odontol Scand. 1995;53(3):196–202.

    Article  PubMed  Google Scholar 

  117. Woods MG. The mandibular muscles in contemporary orthodontic practice: a review. Aust Dent J. 2017;62(Suppl 1):78–85.

    Article  PubMed  Google Scholar 

  118. Proffit WR, Fields HW, Nixon WL. Occlusal forces in normal- and long-face adults. J Dent Res. 1983;62(5):566–70.

    Article  PubMed  Google Scholar 

  119. Proffit WR, Fields HW. Occlusal forces in normal- and long-face children. J Dent Res. 1983;62(5):571–4.

    Article  PubMed  Google Scholar 

  120. Fitzpatrick B, et al. The effects of denervation and formoterol administration on facial growth. Aust Orthod J. 2014;30(2):161–8.

    PubMed  Google Scholar 

  121. Mayne RJ, et al. Skeletal effects of the alteration of masseter muscle function. Aust Orthod J. 2015;31(2):184–94.

    PubMed  Google Scholar 

  122. Lane NE. Epidemiology, etiology, and diagnosis of osteoporosis. Am J Obstet Gynecol. 2006;194(2 Suppl):S3–11.

    Article  PubMed  Google Scholar 

  123. Hudec SM, Camacho PM. Secondary causes of osteoporosis. Endocr Pract. 2013;19(1):120–8.

    Article  PubMed  Google Scholar 

  124. Ajwa N. The role of bisphosphonates in orthodontic tooth movement-A review. J Family Med Prim Care. 2019;8(12):3783–8.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Ruggiero SL, et al. American Association of Oral and Maxillofacial Surgeons position paper on bisphosphonate-related osteonecrosis of the jaw - 2009 update. Aust Endod J. 2009;35(3):119–30.

    Article  PubMed  Google Scholar 

  126. Miyajima K, Nagahara K, Iizuka T. Orthodontic treatment for a patient after menopause. Angle Orthod. 1996;66(3):173–8; discussion 179-80.

    PubMed  Google Scholar 

  127. Tyrovola JB, Spyropoulos MN. Effects of drugs and systemic factors on orthodontic treatment. Quintessence Int. 2001;32(5):365–71.

    PubMed  Google Scholar 

  128. Soma S, et al. Local and chronic application of PTH accelerates tooth movement in rats. J Dent Res. 2000;79(9):1717–24.

    Article  PubMed  Google Scholar 

  129. Souza-Silva BN, et al. The influence of teriparatide in induced tooth movement: a systematic review. J Clin Exp Dent. 2016;8(5):e615–21.

    PubMed  PubMed Central  Google Scholar 

  130. Collins MK, Sinclair PM. The local use of vitamin D to increase the rate of orthodontic tooth movement. Am J Orthod Dentofac Orthop. 1988;94(4):278–84.

    Article  Google Scholar 

  131. Kale S, et al. Comparison of the effects of 1,25 dihydroxycholecalciferol and prostaglandin E2 on orthodontic tooth movement. Am J Orthod Dentofac Orthop. 2004;125(5):607–14.

    Article  Google Scholar 

  132. Kawakami M, Takano-Yamamoto T. Local injection of 1,25-dihydroxyvitamin D3 enhanced bone formation for tooth stabilization after experimental tooth movement in rats. J Bone Miner Metab. 2004;22(6):541–6.

    Article  PubMed  Google Scholar 

  133. Brezniak N, Wasserstein A. Orthodontically induced inflammatory root resorption. Part I: the basic science aspects. Angle Orthod. 2002;72(2):175–9.

    PubMed  Google Scholar 

  134. Krishnan V, Davidovitch Z. The effect of drugs on orthodontic tooth movement. Orthod Craniofac Res. 2006;9(4):163–71.

    Article  PubMed  Google Scholar 

  135. de Araujo CM, et al. The effects of binge-pattern alcohol consumption on orthodontic tooth movement. Dental Press J Orthod. 2014;19(6):93–8.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Zorlu FY, Darici H, Turkkahraman H. Histomorphometric and histopathologic evaluation of the effects of systemic fluoride intake on orthodontic tooth movement. Eur J Dent. 2019;13(3):361–9.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Shirazi M, Dehpour AR, Jafari F. The effect of thyroid hormone on orthodontic tooth movement in rats. J Clin Pediatr Dent. 1999;23(3):259–64.

    PubMed  Google Scholar 

  138. Kalia S, Melsen B, Verna C. Tissue reaction to orthodontic tooth movement in acute and chronic corticosteroid treatment. Orthod Craniofac Res. 2004;7(1):26–34.

    Article  PubMed  Google Scholar 

  139. Knop LA, et al. Non-steroidal and steroidal anti-inflammatory use in the context of orthodontic movement. Eur J Orthod. 2012;34(5):531–5.

    Article  PubMed  Google Scholar 

  140. Yasuda H, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A. 1998;95(7):3597–602.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Diravidamani K, Sivalingam SK, Agarwal V. Drugs influencing orthodontic tooth movement: an overall review. J Pharm Bioallied Sci. 2012;4(Suppl 2):S299–303.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Gulati N, Raza M, Shetty D. Modulation of various biomarkers under the effect of various drugs during orthodontic tooth movement. Int J Adv Res. 2019;7(12):537–41. https://doi.org/10.21474/IJAR01/10179.

  143. Diravidamani K, Sivalingam SK, Agarwal V. Drugs influencing orthodontic tooth movement: An overall review. J Pharm Bioallied Sci. 2012;4(Suppl 2):S299–303. https://doi.org/10.4103/0975-7406.100278. PMID: 23066275; PMCID: PMC3467877.

  144. Karsten J, Hellsing E. Effect of phenytoin on periodontal tissues exposed to orthodontic force--an experimental study in rats. Br J Orthod. 1997;24(3):209–15.

    Article  PubMed  Google Scholar 

  145. Makrygiannakis MA, Kaklamanos EG, Athanasiou AE. Does common prescription medication affect the rate of orthodontic tooth movement? A systematic review. Eur J Orthod. 2018;40(6):649–59.

    Article  PubMed  Google Scholar 

  146. Li X, et al. Sclerostin antibody treatment increases bone formation, bone mass, and bone strength in a rat model of postmenopausal osteoporosis. J Bone Miner Res. 2009;24(4):578–88.

    Article  PubMed  Google Scholar 

  147. Li X, et al. Inhibition of sclerostin by monoclonal antibody increases bone formation, bone mass, and bone strength in aged male rats. J Bone Miner Res. 2010;25(12):2647–56.

    Article  PubMed  Google Scholar 

  148. Ominsky MS, et al. Inhibition of sclerostin by monoclonal antibody enhances bone healing and improves bone density and strength of nonfractured bones. J Bone Miner Res. 2011;26(5):1012–21.

    Article  PubMed  Google Scholar 

  149. Ke HZ, et al. Sclerostin and Dickkopf-1 as therapeutic targets in bone diseases. Endocr Rev. 2012;33(5):747–83.

    Article  PubMed  Google Scholar 

  150. McDonald MM, et al. Inhibition of sclerostin by systemic treatment with sclerostin antibody enhances healing of proximal tibial defects in ovariectomized rats. J Orthop Res. 2012;30(10):1541–8.

    Article  PubMed  Google Scholar 

  151. Lewiecki EM. Role of sclerostin in bone and cartilage and its potential as a therapeutic target in bone diseases. Ther Adv Musculoskelet Dis. 2014;6(2):48–57.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Sinder BP, et al. Rapidly growing Brtl/+ mouse model of osteogenesis imperfecta improves bone mass and strength with sclerostin antibody treatment. Bone. 2015;71:115–23.

    Article  PubMed  Google Scholar 

  153. Sinder BP, et al. Sclerostin antibody improves skeletal parameters in a Brtl/+ mouse model of osteogenesis imperfecta. J Bone Miner Res. 2013;28(1):73–80.

    Article  PubMed  Google Scholar 

  154. Boyd RL, Baumrind S. Periodontal considerations in the use of bonds or bands on molars in adolescents and adults. Angle Orthod. 1992;62(2):117–26.

    PubMed  Google Scholar 

  155. Naranjo AA, et al. Changes in the subgingival microbiota and periodontal parameters before and 3 months after bracket placement. Am J Orthod Dentofac Orthop. 2006;130(3):275 e17-22.

    Article  Google Scholar 

  156. van Gastel J, et al. Longitudinal changes in microbiology and clinical periodontal variables after placement of fixed orthodontic appliances. J Periodontol. 2008;79(11):2078–86.

    Article  PubMed  Google Scholar 

  157. Ericsson I, et al. The effect of orthodontic tilting movements on the periodontal tissues of infected and non-infected dentitions in dogs. J Clin Periodontol. 1977;4(4):278–93.

    Article  PubMed  Google Scholar 

  158. Diedrich PR. Guided tissue regeneration associated with orthodontic therapy. Semin Orthod. 1996;2(1):39–45.

    Article  PubMed  Google Scholar 

  159. Melsen B. Tissue reaction to orthodontic tooth movement--a new paradigm. Eur J Orthod. 2001;23(6):671–81.

    Article  PubMed  Google Scholar 

  160. Polson AM, Reed BE. Long-term effect of orthodontic treatment on crestal alveolar bone levels. J Periodontol. 1984;55(1):28–34.

    Article  PubMed  Google Scholar 

  161. Boyd RL, et al. Periodontal implications of orthodontic treatment in adults with reduced or normal periodontal tissues versus those of adolescents. Am J Orthod Dentofac Orthop. 1989;96(3):191–8.

    Article  Google Scholar 

  162. Re S, et al. Orthodontic treatment in periodontally compromised patients: 12-year report. Int J Periodontics Restorative Dent. 2000;20(1):31–9.

    PubMed  Google Scholar 

  163. Zasciurinskiene E, et al. Orthodontic treatment simultaneous to or after periodontal cause-related treatment in periodontitis susceptible patients. Part I: clinical outcome. A randomized clinical trial. J Clin Periodontol. 2018;45(2):213–24.

    Article  PubMed  Google Scholar 

  164. Chapple ILC, et al. Periodontal health and gingival diseases and conditions on an intact and a reduced periodontium: consensus report of workgroup 1 of the 2017 world workshop on the classification of periodontal and peri-implant diseases and conditions. J Periodontol. 2018;89(Suppl 1):S74–84.

    Article  PubMed  Google Scholar 

  165. Eliasson LA, et al. The effects of orthodontic treatment on periodontal tissues in patients with reduced periodontal support. Eur J Orthod. 1982;4(1):1–9.

    Article  PubMed  Google Scholar 

  166. Artun J, Urbye KS. The effect of orthodontic treatment on periodontal bone support in patients with advanced loss of marginal periodontium. Am J Orthod Dentofac Orthop. 1988;93(2):143–8.

    Article  Google Scholar 

  167. Nagy P, et al. Histologic evaluation of human intrabony periodontal defects treated with deproteinized bovine bone mineral in combination with orthodontic tooth movement: a case series. Int J Periodontics Restorative Dent. 2019;40(3):321–30.

    Article  PubMed  Google Scholar 

  168. Geraci TF, et al. Reattachment of the periodontium after tooth movement into an osseous defect in a monkey. 1. Int J Periodontics Restorative Dent. 1990;10(3):184–97.

    PubMed  Google Scholar 

  169. Nevins M, Wise RJ. Use of orthodontic therapy to alter infrabony pockets. 2. Int J Periodontics Restorative Dent. 1990;10(3):198–207.

    PubMed  Google Scholar 

  170. Polson A, et al. Periodontal response after tooth movement into intrabony defects. J Periodontol. 1984;55(4):197–202.

    Article  PubMed  Google Scholar 

  171. Caton J, Zander HA. Osseous repair of an infrabony pocket without new attachment of connective tissue. J Clin Periodontol. 1976;3(1):54–8.

    Article  PubMed  Google Scholar 

  172. Wennstrom JL, et al. Periodontal tissue response to orthodontic movement of teeth with infrabony pockets. Am J Orthod Dentofac Orthop. 1993;103(4):313–9.

    Article  Google Scholar 

  173. Vardimon AD, Nemcovsky CE, Dre E. Orthodontic tooth movement enhances bone healing of surgical bony defects in rats. J Periodontol. 2001;72(7):858–64.

    Article  PubMed  Google Scholar 

  174. Corrente G, et al. Orthodontic movement into infrabony defects in patients with advanced periodontal disease: a clinical and radiological study. J Periodontol. 2003;74(8):1104–9.

    Article  PubMed  Google Scholar 

  175. Antoun JS, et al. Effect of orthodontic treatment on the periodontal tissues. Periodontology 2000. 2017;74(1):140–57.

    Article  PubMed  Google Scholar 

  176. Melsen B, Agerbaek N. Orthodontics as an adjunct to rehabilitation. Periodontol. 2000;1994(4):148–59.

    Google Scholar 

  177. Ingber JS. Forced eruption. I. A method of treating isolated one and two wall infrabony osseous defects-rationale and case report. J Periodontol. 1974;45(4):199–206.

    Article  PubMed  Google Scholar 

  178. Graber TM, Vanarsdall RL. Orthodontics: current principles and techniques. 3rd ed. St Louis: Mosby; 2000.

    Google Scholar 

  179. Mantzikos T, Shamus I. Forced eruption and implant site development: soft tissue response. Am J Orthod Dentofac Orthop. 1997;112(6):596–606.

    Article  Google Scholar 

  180. Brindis MA, Block MS. Orthodontic tooth extrusion to enhance soft tissue implant esthetics. J Oral Maxillofac Surg. 2009;67(11 Suppl):49–59.

    Article  PubMed  Google Scholar 

  181. Batenhorst KF, Bowers GM, Williams JE Jr. Tissue changes resulting from facial tipping and extrusion of incisors in monkeys. J Periodontol. 1974;45(9):660–8.

    Article  PubMed  Google Scholar 

  182. Amato F, et al. Implant site development by orthodontic forced extraction: a preliminary study. Int J Oral Maxillofac Implants. 2012;27(2):411–20.

    PubMed  Google Scholar 

  183. Bondevik O. Tissue changes in the rat molar periodontium following application of intrusive forces. Eur J Orthod. 1980;2(1):41–9.

    Article  PubMed  Google Scholar 

  184. Melsen B. Tissue reaction following application of extrusive and intrusive forces to teeth in adult monkeys. Am J Orthod. 1986;89(6):469–75.

    Article  PubMed  Google Scholar 

  185. Melsen B, Agerbaek N, Markenstam G. Intrusion of incisors in adult patients with marginal bone loss. Am J Orthod Dentofac Orthop. 1989;96(3):232–41.

    Article  Google Scholar 

  186. Zasciurinskiene E, et al. Outcome of orthodontic treatment in subjects with periodontal disease. Part III: a CBCT study of external apical root resorption. Eur J Orthod. 2019;41(6):575–82.

    Article  PubMed  Google Scholar 

  187. Petsos H, et al. Infrabony defects 20 years after open flap debridement and guided tissue regeneration. J Clin Periodontol. 2019;46(5):552–63.

    Article  PubMed  Google Scholar 

  188. Cortellini P, et al. Periodontal regeneration compared with access flap surgery in human intra-bony defects 20-year follow-up of a randomized clinical trial: tooth retention, periodontitis recurrence and costs. J Clin Periodontol. 2017;44(1):58–66.

    Article  PubMed  Google Scholar 

  189. Jepsen S, et al. Regeneration Of Alveolar Ridge Defects. Consensus report of group 4 of the 15th European Workshop on Periodontology on Bone Regeneration. J Clin Periodontol. 2019;46(Suppl 21):277–86.

    PubMed  Google Scholar 

  190. Naenni N, et al. Efficacy of lateral bone augmentation prior to implant placement: a systematic review and meta-analysis. J Clin Periodontol. 2019;46(Suppl 21):287–306.

    Article  PubMed  Google Scholar 

  191. Fu JH, et al. A randomized clinical trial evaluating the efficacy of the sandwich bone augmentation technique in increasing buccal bone thickness during implant placement surgery: I. Clinical and radiographic parameters. Clin Oral Implants Res. 2014;25(4):458–67.

    Article  PubMed  Google Scholar 

  192. Diedrich P, Wehrbein H, Schneider B. Zur Problematik der orthodontischen Intrusion parodontal erkrankter Zfihne. Parodontologie 1992;2:87–102.

    Google Scholar 

  193. Cardaropoli D, et al. Bio-Oss collagen and orthodontic movement for the treatment of infrabony defects in the esthetic zone. Int J Periodontics Restorative Dent. 2006;26(6):553–9.

    PubMed  Google Scholar 

  194. Ghezzi C, et al. Orthodontic treatment of periodontally involved teeth after tissue regeneration. Int J Periodontics Restorative Dent. 2008;28(6):559–67.

    PubMed  Google Scholar 

  195. Roccuzzo M, et al. Periodontal regeneration and orthodontic treatment of severely periodontally compromised teeth: 10-year results of a prospective study. Int J Periodontics Restorative Dent. 2018;38(6):801–9.

    Article  PubMed  Google Scholar 

  196. Pini Prato GP, Chambrone L. Orthodontic treatment in periodontal patients: the use of periodontal gold standards to overcome the “grey zone”. J Periodontol. 2020;91(4):437–41.

    Article  PubMed  Google Scholar 

  197. Fuhrmann RA, et al. Assessment of the dentate alveolar process with high resolution computed tomography. Dentomaxillofac Radiol. 1995;24(1):50–4.

    Article  PubMed  Google Scholar 

  198. Fuhrmann RA, Bucker A, Diedrich PR. Assessment of alveolar bone loss with high resolution computed tomography. J Periodontal Res. 1995;30(4):258–63.

    Article  PubMed  Google Scholar 

  199. Wehrbein H, Fuhrmann RA, Diedrich PR. Human histologic tissue response after long-term orthodontic tooth movement. Am J Orthod Dentofac Orthop. 1995;107(4):360–71.

    Article  Google Scholar 

  200. Hossain MZ, Kyomen S, Tanne K. Biologic responses of autogenous bone and beta-tricalcium phosphate ceramics transplanted into bone defects to orthodontic forces. Cleft Palate Craniofac J. 1996;33(4):277–83.

    Article  PubMed  Google Scholar 

  201. Boyne PJ, Sands NR. Combined orthodontic-surgical management of residual palato-alveolar cleft defects. Am J Orthod. 1976;70(1):20–37. https://doi.org/10.1016/0002-9416(76)90258-x. PMID: 782258.

  202. El Deeb M, et al. Canine eruption into grafted bone in maxillary alveolar cleft defects. Cleft Palate J. 1982;19(1):9–16. PMID: 7035010.

    Google Scholar 

  203. Turvey TA, Vig K, Moriarty J, Hoke J. Delayed bone grafting in the cleft maxilla and palate: a retrospective multidisciplinary analysis. Am J Orthod. 1984;86(3):244–56. https://doi.org/10.1016/0002-9416(84)90376-2. PMID: 6383059.

  204. Sheats RD, Strauss RA, Rubenstein LK. Effect of a resorbable bone graft material on orthodontic tooth movement through surgical defects in the cat mandible. J Oral Maxillofac Surg. 1991;49(12):1299–303. discussion 1304

    Article  PubMed  Google Scholar 

  205. Ru N, et al. BoneCeramic graft regenerates alveolar defects but slows orthodontic tooth movement with less root resorption. Am J Orthod Dentofac Orthop. 2016;149(4):523–32.

    Article  Google Scholar 

  206. Horch HH, et al. Synthetic, pure-phase beta-tricalcium phosphate ceramic granules (Cerasorb) for bone regeneration in the reconstructive surgery of the jaws. Int J Oral Maxillofac Surg. 2006;35(8):708–13.

    Article  PubMed  Google Scholar 

  207. Weijs WL, et al. Early secondary closure of alveolar clefts with mandibular symphyseal bone grafts and beta-tri calcium phosphate (beta-TCP). Int J Oral Maxillofac Surg. 2010;39(5):424–9.

    Article  PubMed  Google Scholar 

  208. Klein Y, et al. The impact of alloplast and allograft on bone homeostasis: orthodontic tooth movement into regenerated bone. J Periodontol. 2019;91(8):1067–75.

    Article  Google Scholar 

  209. Araujo MG, et al. Orthodontic movement in bone defects augmented with Bio-Oss. An experimental study in dogs. J Clin Periodontol. 2001;28(1):73–80.

    Article  PubMed  Google Scholar 

  210. Oltramari PV, et al. Orthodontic movement in bone defects filled with xenogenic graft: an experimental study in minipigs. Am J Orthod Dentofac Orthop. 2007;131(3):302 e10-7.

    Article  Google Scholar 

  211. Klein Y, et al. Bone regeneration with bovine bone impairs orthodontic tooth movement despite proper osseous wound healing in a novel mouse model. J Periodontol. 2019;90(2):189–99.

    Article  PubMed  Google Scholar 

  212. Demetter RS, Calahan BG, Mealey BL. Histologic evaluation of wound healing after ridge preservation with cortical, cancellous, and combined cortico-cancellous freeze-dried bone allograft: a randomized controlled clinical trial. J Periodontol. 2017;88(9):860–8.

    Article  PubMed  Google Scholar 

  213. Walker CJ, et al. Evaluation of healing at molar extraction sites with and without ridge preservation: a randomized controlled clinical trial. J Periodontol. 2017;88(3):241–9.

    Article  PubMed  Google Scholar 

  214. Muller HP, Eger T. Masticatory mucosa and periodontal phenotype: a review. Int J Periodontics Restorative Dent. 2002;22(2):172–83.

    PubMed  Google Scholar 

  215. Avila-Ortiz G, et al. The peri-implant phenotype. J Periodontol. 2020;91(3):283–8.

    Article  PubMed  Google Scholar 

  216. Claffey N, Shanley D. Relationship of gingival thickness and bleeding to loss of probing attachment in shallow sites following nonsurgical periodontal therapy. J Clin Periodontol. 1986;13(7):654–7.

    Article  PubMed  Google Scholar 

  217. Agudio G, et al. Periodontal conditions of sites treated with gingival augmentation surgery compared with untreated contralateral homologous sites: an 18- to 35-year long-term study. J Periodontol. 2016;87(12):1371–8.

    Article  PubMed  Google Scholar 

  218. Baldi C, et al. Coronally advanced flap procedure for root coverage. Is flap thickness a relevant predictor to achieve root coverage? A 19-case series. J Periodontol. 1999;70(9):1077–84.

    Article  PubMed  Google Scholar 

  219. Hwang D, Wang HL. Flap thickness as a predictor of root coverage: a systematic review. J Periodontol. 2006;77(10):1625–34.

    Article  PubMed  Google Scholar 

  220. Tavelli L, et al. The effect of time on root coverage outcomes: a network meta-analysis. J Dent Res. 2019;98(11):1195–203.

    Article  PubMed  Google Scholar 

  221. Studer SP, et al. The thickness of masticatory mucosa in the human hard palate and tuberosity as potential donor sites for ridge augmentation procedures. J Periodontol. 1997;68(2):145–51.

    Article  PubMed  Google Scholar 

  222. Lang NP, Loe H. The relationship between the width of keratinized gingiva and gingival health. J Periodontol. 1972;43(10):623–7.

    Article  PubMed  Google Scholar 

  223. Kennedy JE, et al. A longitudinal evaluation of varying widths of attached gingiva. J Clin Periodontol. 1985;12(8):667–75.

    Article  PubMed  Google Scholar 

  224. Wennstrom JL. Lack of association between width of attached gingiva and development of soft tissue recession. A 5-year longitudinal study. J Clin Periodontol. 1987;14(3):181–4.

    Article  PubMed  Google Scholar 

  225. Frost NA, et al. Periodontal biotype: gingival thickness as it relates to probe visibility and buccal plate thickness. J Periodontol. 2015;86(10):1141–9.

    Article  PubMed  Google Scholar 

  226. Delatola C, et al. At least three phenotypes exist among periodontitis patients. J Clin Periodontol. 2017;44(11):1068–76.

    Article  PubMed  Google Scholar 

  227. Jepsen S, et al. Periodontal manifestations of systemic diseases and developmental and acquired conditions: consensus report of workgroup 3 of the 2017 world workshop on the classification of periodontal and peri-implant diseases and conditions. J Periodontol. 2018;89(Suppl 1):S237–48.

    Article  PubMed  Google Scholar 

  228. Maynard JG Jr, Ochsenbein C. Mucogingival problems, prevalence and therapy in children. J Periodontol. 1975;46(9):543–52.

    Article  PubMed  Google Scholar 

  229. Wennstrom JL, et al. Some periodontal tissue reactions to orthodontic tooth movement in monkeys. J Clin Periodontol. 1987;14(3):121–9.

    Article  PubMed  Google Scholar 

  230. Keim RG, et al. 2013 JCO orthodontic practice study. Part 1: trends. J Clin Orthod. 2013;47(11):661–80.

    PubMed  Google Scholar 

  231. Hirschfeld J, et al. Interest in orthodontic tooth alignment in adult patients affected by periodontitis: a questionnaire-based cross-sectional pilot study. J Periodontol. 2019;90(9):957–65.

    Article  PubMed  Google Scholar 

  232. Braut V, et al. Thickness of the anterior maxillary facial bone wall-a retrospective radiographic study using cone beam computed tomography. Int J Periodontics Restorative Dent. 2011;31(2):125–31.

    PubMed  Google Scholar 

  233. Vera C, et al. Evaluation of buccal alveolar bone dimension of maxillary anterior and premolar teeth: a cone beam computed tomography investigation. Int J Oral Maxillofac Implants. 2012;27(6):1514–9.

    PubMed  Google Scholar 

  234. Foushee DG, Moriarty JD, Simpson DM. Effects of mandibular orthognathic treatment on mucogingival tissues. J Periodontol. 1985;56(12):727–33.

    Article  PubMed  Google Scholar 

  235. Ericsson I, Lindhe J. Recession in sites with inadequate width of the keratinized gingiva. An experimental study in the dog. J Clin Periodontol. 1984;11(2):95–103.

    Article  PubMed  Google Scholar 

  236. Ruf S, Hansen K, Pancherz H. Does orthodontic proclination of lower incisors in children and adolescents cause gingival recession? Am J Orthod Dentofac Orthop. 1998;114(1):100–6.

    Article  Google Scholar 

  237. Renkema AM, et al. Development of labial gingival recessions in orthodontically treated patients. Am J Orthod Dentofac Orthop. 2013;143(2):206–12.

    Article  Google Scholar 

  238. Kim DM, Neiva R. Periodontal soft tissue non-root coverage procedures: a systematic review from the AAP regeneration workshop. J Periodontol. 2015;86(2 Suppl):S56–72.

    Article  PubMed  Google Scholar 

  239. Dorfman HS. Mucogingival changes resulting from mandibular incisor tooth movement. Am J Orthod. 1978;74(3):286–97.

    Article  PubMed  Google Scholar 

  240. Horner K, et al. Guidelines for clinical use of CBCT: a review. Dentomaxillofac Radiol. 2015;44(1):20140225.

    Article  PubMed  Google Scholar 

  241. Jacobs R, et al. CBCT vs other imaging modalities to assess peri-implant bone and diagnose complications: a systematic review. Eur J Oral Implantol. 2018;11(Suppl 1):77–92.

    PubMed  Google Scholar 

  242. Chan HL, Misch K, Wang HL. Dental imaging in implant treatment planning. Implant Dent. 2010;19(4):288–98.

    Article  PubMed  Google Scholar 

  243. Barootchi S, et al. Ultrasonographic characterization of lingual structures pertinent to oral, periodontal, and implant surgery. Clin Oral Implants Res. 2020;31(4):352–9.

    Article  PubMed  PubMed Central  Google Scholar 

  244. Tattan M, et al. Ultrasonography for chairside evaluation of periodontal structures: a pilot study. J Periodontol. 2020;91(7):890–9.

    Article  PubMed  Google Scholar 

  245. Chan HL, et al. Ultrasonography for noninvasive and real-time evaluation of peri-implant tissue dimensions. J Clin Periodontol. 2018;45(8):986–95.

    Article  PubMed  Google Scholar 

  246. Kao RT, et al. American Academy of Periodontology best evidence consensus statement on modifying periodontal phenotype in preparation for orthodontic and restorative treatment. J Periodontol. 2020;91(3):289–98.

    Article  PubMed  Google Scholar 

  247. Wang CW, et al. Is periodontal phenotype modification therapy beneficial for patients receiving orthodontic treatment? An American Academy of Periodontology best evidence review. J Periodontol. 2020;91(3):299–310.

    Article  PubMed  Google Scholar 

  248. Brugnami F, Caiazzo A, Mehra P. Can corticotomy (with or without bone grafting) expand the limits of safe orthodontic therapy? J Oral Biol Craniofac Res. 2018;8(1):1–6.

    Article  PubMed  Google Scholar 

  249. Makki L, et al. Mandibular irregularity index stability following alveolar corticotomy and grafting: a 10-year preliminary study. Angle Orthod. 2015;85(5):743–9.

    Article  PubMed  Google Scholar 

  250. Wang Y, et al. Macrophages mediate corticotomy-accelerated orthodontic tooth movement. Sci Rep. 2018;8(1):16788.

    Article  PubMed  PubMed Central  Google Scholar 

  251. Bahammam MA. Effectiveness of bovine-derived xenograft versus bioactive glass with periodontally accelerated osteogenic orthodontics in adults: a randomized, controlled clinical trial. BMC Oral Health. 2016;16(1):126.

    Article  PubMed  PubMed Central  Google Scholar 

  252. Shoreibah EA, et al. Clinical and radiographic evaluation of bone grafting in corticotomy-facilitated orthodontics in adults. J Int Acad Periodontol. 2012;14(4):105–13.

    PubMed  Google Scholar 

  253. Ngan PW, Burch JG, Wei SH. Grafted and ungrafted labial gingival recession in pediatric orthodontic patients: effects of retraction and inflammation. Quintessence Int. 1991;22(2):103–11.

    PubMed  Google Scholar 

  254. Tavelli L, et al. Acellular dermal matrix and coronally advanced flap or tunnel technique in the treatment of multiple adjacent gingival recessions. A 12-year follow-up from a randomized clinical trial. J Clin Periodontol. 2019;46(9):937–48.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeff CW. Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Siqueira, R., Fernandes, G., Di Gianfilippo, R., Wang, J.C. (2023). Dentoalveolar Bone in Orthodontic Patients: The Periodontal Perspective. In: Mandelaris, G.A., Vence, B.S. (eds) Surgically Facilitated Orthodontic Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-90099-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90099-1_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90098-4

  • Online ISBN: 978-3-030-90099-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics