Skip to main content

Abstract

Increasing global industrialization and modern agricultural practices has resulted in a rise in the incidences of soil pollutants like hydrocarbons, pesticides and heavy metals; all of which are linked to adverse health issues. Remediation of contaminated soil is essential not only for restoration of ecosystem but also for urban development. Physical, chemical and biological methods have been applied for soil remediation. Bioremediation or processes involving biological processes are fast picking up as effective treatment technologies not only because of their efficiency but also because of their environmental friendliness and cost effectiveness. The process is capable of degrading diverse types of pollutants including the persistent aromatic hydrocarbons; hence, bioremediation is a viable and effective technology for mitigation of soil pollutants. Choice of appropriate and feasible bioremediation technology for example phytoremediation, mycoremediation, bioventing, biopiles, composting etc. depends on the environmental conditions, type of pollutant, composition of soil, incurring treatment costs and available treatment time. Thus, detailed characterization and analysis of the contaminated site is a vital step toward successful bioremediation. More recently, use of surfactants/biosurfactants, nanomaterials along with genetically engineered biocatalysts has helped in enhancing the rate of removal/degradation of contaminants in the contaminated site. Use of more than one remediation technology has been preferred for remediation of complex sites. The aim of this chapter is to address the source, type and toxicity effects of soil contaminants followed by a detailed discussion on the different types of in situ and ex situ remediation processes applied till date along with their advantages and disadvantages. In addition, current scenario of new technologies vis-a-vis soil bioremediation is detailed. The objective of the chapter is to provide an updated information on the fundamentals, classification of bioremediation as a treatment technology along with affecting factors for the reclamation of contaminated soil, which will aid readers in selection of the appropriate technology. Future and current research prospects are addressed to assist researchers and scientists for the ongoing work in related field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Achten C, Hofmann T (2009) Native polycyclic aromatic hydrocarbons (PAH) in coals—a hardly recognized source of environmental contamination. Sci Total Environ 407:2461–3247

    Article  CAS  PubMed  Google Scholar 

  • Aislabie J, Saul DJ, Foght JM (2006) Bioremediation of hydrocarbon-contaminated polar soils. Extremophiles 10(3):171–179

    Article  CAS  PubMed  Google Scholar 

  • Awasthi N, Kumar A, Makkar R, Cameotra SS (1999) Biodegradation of soil-applied endosulfan in the presence of a biosurfactant. J Environ Sci Health B 34(5):793–803

    Article  Google Scholar 

  • Azubuike CC, Chikere CB, Okpokwasili GC (2016) Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol 32:1–18

    Article  CAS  Google Scholar 

  • Bandowe BAM, Bigalke M, Boamah L, Nyarko E, Saalia FK, Wilcke W (2014) Polycyclic aromatic compounds (PAHs and oxygenated PAHs) and trace metals in fish species from Ghana (West Africa): bioaccumulation and health risk assessment. Environ Int 65:135–146

    Article  CAS  PubMed  Google Scholar 

  • Barr D, Finnamore JR, Bardos RP, Weeks JM, Nathanail CP (2002) Biological methods for assessment and remediation of contaminated land: case studies. Construction Industry Research and Information Association, London

    Google Scholar 

  • Bohac M, Nagata Y, Prokop Z, Prokop M, Monincová M, Tsuda M, Koča J, Damborský J (2002) Halide-stabilizing residues of haloalkane dehalogenases studied by quantum mechanics calculations and site directed mutagenesis. Biochemistry 41:14272–14280

    Article  CAS  PubMed  Google Scholar 

  • Briggs GG, Bromilow RH, Evans AA (1983) Relationships between lipophilicity and the distribution of non-ionised chemicals in barley shoots following uptake by the roots. Pestic Sci 14:492–500

    Article  CAS  Google Scholar 

  • Brito EM, De la Cruz BM, Caretta CA, Goñi-Urriza M, Andrade LH, Cuevas-Rodríguez G, Malm O, Torres JP, Simon M, Guyoneaud R (2015) Impact of hydrocarbons, PCBs and heavy metals on bacterial communities in Lerma River, Salamanca, Mexico: investigation of hydrocarbon degradation potential. Sci Total Environ 521:1–10

    Article  PubMed  Google Scholar 

  • Caliman FA, Gavrilescu M (2009) Pharmaceuticals, personal care products and endocrine disrupting agents in the environment—A Review. Clean – Soil Air Water 37:277–303

    Google Scholar 

  • Cassidy DP, Srivastava VJ, Dombrowski FJ, Lingle JW (2015) Combining in situ chemical oxidation, stabilization, and anaerobic bioremediation in a single application to reduce contaminant mass and leachability in soil. J Hazard Mater 297:347–355

    Article  CAS  PubMed  Google Scholar 

  • Cecchin I, Reddy KR, Thomé A, Tessaro EF, Schnaid F (2017) Nano-bioremediation: Integration of nanoparticles and bioremediation for sustainable remediation of chlorinated organic contaminants in soils. Int Biodeterior Biodegradation 119:419–428

    Article  CAS  Google Scholar 

  • Chaloupková R, Sýkorová J, Prokop Z, Jesenská A, Monincová M, Pavlová M, Tsuda M, Nagata Y, Damborský J (2003) Modification of activity and specificity of haloalkane dehalogenase from Sphingomonas paucimobilis UT26 by engineering of its entrance tunnel. J Biol Chem 278:52622–52628

    Article  PubMed  Google Scholar 

  • Chemlal R, Abdi N, Lounici H, Drouiche N, Pauss A, Mameri N (2013) Modeling and qualitative study of diesel biodegradation using biopile process in sandy soil. Int Biodeterior Biodegradation 78:43–48

    Article  CAS  Google Scholar 

  • Chikere CB, Chikere BO, Okpokwasili GC (2012) Bioreactor-based bioremediation of hydrocarbon-polluted Niger Delta marine sediment. Nigeria Biotech 2(1):53–66

    Google Scholar 

  • Christman RF, Pfaender FK (2006) Molecular implications of hydrophobic organic partitioning theory. Acta Hydrochim Hydrobiol 34:367–374

    Article  CAS  Google Scholar 

  • Clarke BO, Smith SR (2011) Review of emerging organic contaminants in biosolids and assessment of international research priorities for the agricultural use of biosolids. Environ Int 37:226

    Article  CAS  PubMed  Google Scholar 

  • Coulon F, Al Awadi M, Cowie W, Mardlin D, Pollard S, Cunningham C, Risdon G, Arthur P, Semple KT, Paton GI (2010) When is a soil remediated? Comparison of biopiled and windrowed soils contaminated with bunker-fuel in a full-scale trial. Environ Pollut 158(10):3032–3040

    Article  CAS  PubMed  Google Scholar 

  • Crawford RL, Crawford DL (1996) Bioremediation: principles and applications. Cambridge University Press, Cambridge, United Kingdom

    Book  Google Scholar 

  • Dadrasnia A, Agamuthu P (2013) Diesel fuel degradation from contaminated soil by Dracaena reflexa using organic waste supplementation. J Jpn Petrol Inst 56:236–243

    Article  Google Scholar 

  • Delille D, Duval A, Pelletier E (2008) Highly efficient pilot biopiles for on-site fertilization treatment of diesel oil-contaminated sub-antarctic soil. Cold Reg Sci Technol 54:7–18

    Article  Google Scholar 

  • Dias RL, Ruberto L, Calabró A, Balbo AL, Del Panno MT, Mac Cormack WP (2015) Hydrocarbon removal and bacterial community structure in on-site biostimulated biopile systems designed for bioremediation of diesel-contaminated Antarctic soil. Polar Biol 38:677–687

    Article  Google Scholar 

  • Dibble JT, Bartha R (1979) Rehabilitation of oil-inundated agricultural land: a case history. Soil Sci 128:56–60

    Article  CAS  Google Scholar 

  • Duarte RMBO, Matos JTV, Senesi N (2018) Organic Pollutants in Soils. Soil Pollution 103–126

    Google Scholar 

  • Frutos FJG, Escolano O, García S, Mar Babín M, Fernández MD (2010) Bioventing remediation and ecotoxicity evaluation of phenanthrene-contaminated soil. J Hazard Mater 183:806–813

    Article  CAS  Google Scholar 

  • Fuller ME, Kruczek J, Schuster RL, Sheehan PL, Arienti PM (2003) Bioslurry treatment for soils contaminated with very high concentrations of 2,4,6-trinitrophenylmethylnitramine (tetryl). J Hazard Mater 100:245–257

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Yuan X, Lin X, Sun B, Zhao Z (2015) Low-molecular-weight organic acids enhance the release of bound PAH residues in soils. Soil till Res 145:103–110

    Article  Google Scholar 

  • García-Delgado C, Alfaro-Barta I, Eymar E (2015) Combination of biochar amendment and mycoremediation for polycyclic aromatic hydrocarbons immobilization and biodegradation in creosote-contaminated soil. J Hazard Mater 285:259–266

    Article  PubMed  Google Scholar 

  • Gardner WS, Lee RF, Tenore KR, Smith LW (1979) Degradation of selected polycyclic aromatic hydrocarbons in coastal sediments: importance of microbes and polychaete worms. Water Air Soil Pollut 11:339–347

    Article  CAS  Google Scholar 

  • Gidarakos E, Aivalioti M (2007) Large scale and long-term application of bioslurping: the case of a Greek petroleum refinery site. J Hazard Mater 149(3):574–581

    Article  CAS  PubMed  Google Scholar 

  • Gomez F, Sartaj M (2014) Optimization of field scale biopiles for bioremediation of petroleum hydrocarbon contaminated soil at low temperature conditions by response surface methodology (RSM). Int Biodeterior Biodegradation 89:103–109

    Article  CAS  Google Scholar 

  • Gregorio SD, Azaizeh H, Lorenzi R (2013) Biostimulation of the autochthonous microbial community for the depletion of polychlorinated biphenyls (PCBs) in contaminated sediments. Environ Sci Pollut Res 20:3989–3999

    Article  Google Scholar 

  • Gregorio SD, Gentini A, Siracusa G, Becarelli S, Azaizeh H, Lorenzi, R (2014) Phytomediated biostimulation of the autochthonous bacterial community for the acceleration of the depletion of polycyclic aromatic hydrocarbons in contaminated sediments. BioMed Res Int 1–11

    Google Scholar 

  • Griffiths BS, Philippot L (2013) Insights into the resistance and resilience of the soil microbial community. FEMS Microbiol Rev 37(2):112–129

    Article  CAS  PubMed  Google Scholar 

  • Guerin WF, Boyd SA (1992) Differential availability of soil-sorbed naphthalene to two bacteria. Appl Environ Microbiol 58:1142–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15

    Article  CAS  PubMed  Google Scholar 

  • Harms H (1996) Bacterial growth on distant naphthalene diffusing through water, air and water-saturated and non-saturated porous media. Appl Environ Microbiol 62:2286–2293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Höhener P, Ponsin V (2014) In situ vadose zone bioremediation. Curr Opin Biotechnol 27:1–7

    Article  PubMed  Google Scholar 

  • Iori V, Pietrini F, Cheremisina A, Shevyakova NI, Radyukina N, Kuznetsov VV, Zacchini M (2013) Growth responses, metal accumulation and phytoremoval capability in Amaranthus plants exposed to nickel under hydroponics. Water Air Soil Pollut 224:1–10

    Article  CAS  Google Scholar 

  • IPCS, International Programme on Chemical Safety (1995) A review of selected persistent organic pollutants

    Google Scholar 

  • Karickhoff SW, Brown DS, Scott TA (1979) Sorption of hydrophobic pollutants on natural sediments. Water Res 13:241–248

    Article  CAS  Google Scholar 

  • Khan FI, Husain T, Hejazi R (2004) An overview and analysis of site remediation technologies. J Environ Manage 71:95–122

    Article  PubMed  Google Scholar 

  • Koenig JC, Boparai HK, Lee MJ, O’Carroll DM, Barnes RJ, Manefield MJ (2016) Particles and enzymes: combining nanoscale zero valent iron and organochlorine respiring bacteria for the detoxification of chloroethane mixtures. J Hazard Mater 308:106–112

    Article  CAS  PubMed  Google Scholar 

  • Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJ (2004) Rhizoremediation: a beneficial plant-microbe interaction. Mol Plant Microbe Interact 17(1):6–15

    Article  CAS  PubMed  Google Scholar 

  • Lee JH (2013) An overview of phytoremediation as a potentially promising technology for environmental pollution control. Biotechnol Bioprocess Eng 18:431–439

    Article  CAS  Google Scholar 

  • Li F, Zhu L, Wang L, Zhan Y (2015) Gene expression of an arthrobacter in surfactant-enhanced biodegradation of a hydrophobic organic compound. Environ Sci Technol 49:3698–3704

    Article  CAS  PubMed  Google Scholar 

  • Magalhães SM, Ferreira Jorge RM, Castro PM (2009) Investigations into the application of a combination of bioventing and biotrickling filter technologies for soil decontamination processes-a transition regime between bioventing and soil vapour extraction. J Hazard Mater 170(2–3):711–715

    Article  PubMed  Google Scholar 

  • Mahmoudi N, Slater GF, Fulthorpe RR (2011) Comparison of commercial DNA extraction kits for isolation and purification of bacterial and eukaryotic DNA from PAH-contaminated soils. Can J Microbiol 57:623–628

    Article  CAS  PubMed  Google Scholar 

  • Mahro B (2000) Bioavailability of contaminants. In: Rehm H-J, Reed G (eds) Biotechnology, vol 11 b, 2nd edn. Wiley-VCH, Weinheim, pp 61–88

    Google Scholar 

  • Maila MP, Colete TE (2004) Bioremediation of petroleum hydrocarbons through land farming: are simplicity and cost-effectiveness the only advantages? Rev Environ Sci Bio/technol 3:349–360

    Article  CAS  Google Scholar 

  • Martínez-Pascual E, Grotenhuis T, Solanas AM, Viñas M (2015) Coupling chemical oxidation and biostimulation: Effects on the natural attenuation capacity and resilience of the native microbial community in alkylbenzene-polluted soil. J Hazard Mater 300:135–143

    Article  PubMed  Google Scholar 

  • Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3(2):153–162

    Article  CAS  PubMed  Google Scholar 

  • Mench M, Lepp N, Bert V, Schwitzguébel J-P, Gawronski S, Schröder P, Vangronsveld J (2010) Successes and limitations of phytotechnologies at field scale: outcomes, assessment and outlook from COST Action 859. J Soils Sediments 10:1039–1070

    Article  CAS  Google Scholar 

  • Mihopoulos PG, Suidan MT, Sayles GD (2000) Vapor phase treatment of PCE by lab-scale anaerobic bioventing. Water Res 34:3231–3237

    Article  CAS  Google Scholar 

  • Mirsal IA (2008) Soil pollution – origin, monitoring and remediation. Springer, Berlin, p 312

    Google Scholar 

  • Mohan SV, Sirisha K, Rao NC, Sarma PN, Reddy SJ (2004) Degradation of chlorpyrifos contaminated soil by bioslurry reactor operated in sequencing batch mode: bioprocess monitoring. J Hazard Mater 116(1–2):39–48

    Article  CAS  PubMed  Google Scholar 

  • Momose Y, Hirayama K, Itoh K (2008) Competition for proline between indigenous Escherichia coli and E. coli O157:H7 in gnotobiotic mice associated with infant intestinal microbiota and its contribution to the colonization resistance against E. coli O157:H7. Antonie Van Leeuwenhoek 94:165–171

    Article  CAS  PubMed  Google Scholar 

  • Moreira ITA, Oliveira OMC, Triguis JA, Queiroz AFS, Barbosa RM, Anjos JASA, Reyes CY, Silva CS, Trindade MCLF, Rios MC (2013) Evaluation of the effects of metals on biodegradation of total petroleum hydrocarbons. Microchem J 110:215–220

    Article  CAS  Google Scholar 

  • Morillo E, Sánchez-Trujillo MA, Villaverde J, Madrid F, Undabeytia T (2014) Effect of contact time and the use of hydroxypropyl-β-cyclodextrin in the removal of fluorene and fluoranthene from contaminated soils. Sci Total Environ 496:144–154

    Article  CAS  PubMed  Google Scholar 

  • Morillo E, Madrid F, Lara-Moreno A, Villaverde J (2020) Soil bioremediation by cyclodextrins. a review. Int J Pharm 591:119943

    Google Scholar 

  • Mustafa YA, Abdul-Hameed HM, Razak ZA (2015) Biodegradation of 2,4-dichlorophenoxyacetic acid contaminated soil in a roller slurry bioreactor. Clean-Soil Air Water 43:1115–1266

    Article  Google Scholar 

  • Nam K, Alexander M (1998) Role of nanoporosity and hydrophobicity in sequestration and bioavailability tests with model solids. Environ Sci Technol 32:71–74

    Article  CAS  Google Scholar 

  • Nikolopoulou M, Pasadakis N, Norf H, Kalogerakis N (2013) Enhanced ex situ bioremediation of crude oil contaminated beach sand by supplementation with nutrients and rhamnolipids. Mar Pollut Bull 77(1–2):37–44

    Article  CAS  PubMed  Google Scholar 

  • Okuta A (2004) Construction of chimeric catechol 2,3-dioxygenase exhibiting improved activity against the suicide inhibitor 4-methylcatechol. Appl Environ Microbiol 70:1804–1810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul D, Pandey G, Pandey J, Jain RK (2005) Accessing microbial diversity for bioremediation and environmental restoration. Trends Biotechnol 23(3):135–142

    Article  CAS  PubMed  Google Scholar 

  • Philp JC, Atlas RM (2005) Bioremediation of contaminated soils and aquifers. In: Atlas RM, Philp JC (eds) Bioremediation: applied microbial solutions for real-world environmental cleanup. American Society for Microbiology (ASM), Washington Press, pp 139–236

    Google Scholar 

  • Plangklang P, Alissara Reungsang A (2010) Bioaugmentation of carbofuran by Burkholderia cepacia PCL3 in a bioslurry phase sequencing batch reactor. Process Chem 45:230–238

    CAS  Google Scholar 

  • Prosser JI (2012) Ecosystem processes and interactions in a morass of diversity. FEMS Microbiol Ecol 81:507–519

    Article  CAS  PubMed  Google Scholar 

  • Rayner JL, Snape I, Walworth JL, Harvey PM, Ferguson SH (2007) Petroleum–hydrocarbon contamination and remediation by microbioventing at sub-antarctic macquarie Island. Cold Reg Sci Technol 48:139–153

    Article  Google Scholar 

  • Rhind S (2005) Are endocrine disrupting compounds a threat to farm animal health, welfare and productivity? Reprod Domest Anim 40:282

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Rodríguez CE, Marco-Urrea E, Caminal G (2010) Degradation of naproxen and carbamazepine in spiked sludge by slurry and solid-phase Trametes versicolor systems. Bioresour Technol 101(7):2259–2266

    Article  PubMed  Google Scholar 

  • Saravanan V, Rajasimman M, Rajamohan N (2015) Performance of packed bed biofilter during transient operating conditions on removal of xylene vapour. Int J Environ Sci Technol 12:1625–1634

    Article  CAS  Google Scholar 

  • Shah JK, Sayles GD, Suidan MT, Mihopoulos P, Kaskassian S (2001) Anaerobic bioventing of unsaturated zone contaminated with DDT and DNT. Water Sci Technol 43(2):35–42

    Article  CAS  PubMed  Google Scholar 

  • Sikka SC, Wang R (2008) Endocrine disruptors and estrogenic effects on male reproductive axis. Asian J Androl 10:134

    Article  CAS  PubMed  Google Scholar 

  • Snow DD, Cassada DA, Larsen ML, Mware NA, Li X, D’Alessio M, Zhang Y, Sallach JB (2017) Detection, occurrence and fate of emerging contaminants in agricultural environments. Water Environ Res 89:897–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stroud JL, Paton GI, Semple KT (2007) Microbe-aliphatic hydrocarbon interactions in soil: implications for biodegradation and bioremediation. J Appl Microbiol 102:1239–1253

    Article  CAS  PubMed  Google Scholar 

  • Sui H, Li X (2011) Modeling for volatilization and bioremediation of toluene-contaminated soil by bioventing. Chin J Chem Eng 19:340–348

    Article  CAS  Google Scholar 

  • Thomé A, Reginatto C, Cecchin I, Colla LM (2014) Bioventing in a residual clayey soil contaminated with a blend of biodiesel and diesel oil. J Environ Eng 140:1–6

    Article  Google Scholar 

  • Timmis KN, Pieper DH (1999) Bacteria designed for bioremediation. Trends Biotechnol 17:200–204

    Article  CAS  PubMed  Google Scholar 

  • Tyagi M, da Fonseca MMR, de Carvalho CC (2011) Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 22(2):231–241

    Article  CAS  PubMed  Google Scholar 

  • van-Camp L, Bujarrabal B, Gentile AR, Jones RJA, Montanarella L, Olazabal C, Selvaradjou SK (2004) Reports of the technical working groups established under the thematic strategy for soil protection, vol 4. Contamination and land management. EUR 21319 EN/4, Office for Official Publications of the European Communities. Luxembourg

    Google Scholar 

  • Vos JG, Dybing E, Greim HA, Ladefoged O, Lambre´ C, Tarazona JV, Brandt I, Vethaak AD (2000) Health effects of endocrine-disrupting chemicals on wildlife, with special reference to the European situation. Crit Rev Toxicol 30:71–133

    Google Scholar 

  • Wang X, Wang Q, Wang S, Li F, Guo G (2012) Effect of biostimulation on community level physiological profiles of microorganisms in field-scale biopiles composed of aged oil sludge. Bioresour Technol 11:308–315

    Article  Google Scholar 

  • Weber R, Schlumpf M, Nakano T, Vijgen J (2015) The need for better management and control of POPs stockpiles. Environ Sci Pollut Res 22:14385–14390

    Article  Google Scholar 

  • Whelan MJ, Coulon F, Hince G, Rayner J, McWatters R, Spedding T, Snape I (2015) Fate and transport of petroleum hydrocarbons in engineered biopiles in polar regions. Chemosphere 131:232–240

    Article  CAS  PubMed  Google Scholar 

  • Xu SY, Chen YX, Wu WX, Wang KX, Lin Q, Liang XQ (2006) Enhanced dissipation of phenanthrene and pyrene in spiked soils by combined plants cultivation. Sci Total Environ 363(1–3):206–215

    Article  CAS  PubMed  Google Scholar 

  • Ye J, Singh A, Ward OP (2004) Biodegradation of nitroaromatics and other nitrogen-containing xenobiotics. World J Microbiol Biotechnol 20:117–135

    Article  CAS  Google Scholar 

  • Zangi-Kotler M, Ben-Dov E, Tiehm A, Kushmaro A (2015) Microbial community structure and dynamics in a membrane bioreactor supplemented with the flame retardant dibromoneopentyl glycol. Environ Sci Pollut Res Int 22(22):17615–17624

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nayak, A., Bhushan, B., Wilson, I. (2022). Current Soil Bioremediation Technologies: An Assessment. In: Malik, J.A. (eds) Advances in Bioremediation and Phytoremediation for Sustainable Soil Management. Springer, Cham. https://doi.org/10.1007/978-3-030-89984-4_2

Download citation

Publish with us

Policies and ethics