Skip to main content

Chromium Contamination in Soil and Its Bioremediation: An Overview

  • Chapter
  • First Online:
Advances in Bioremediation and Phytoremediation for Sustainable Soil Management

Abstract

Heavy metal contamination in the environment has been considered as an important threat to the life in recent days. Chromium contamination is also listed among the potential threat to the human and animals as well as plants. Chromium is a ubiquitous metal having three main oxidation states viz., Cr2+, Cr3+ and Cr6+. Among these, divalent form is unstable. Chromium and its particulates are excreted into the environment from different industries like tanneries, textiles, ore mining, printing-photographic houses, dyeing factories, electroplating workshops and medical industries. Hexavalent chromium having carcinogenic potentiality is considered to be the most toxic form because it can readily cross the biomembrane of organisms. Chromium can contaminate soil, groundwater and surface water. To render the contaminated resource reusable, chromium must be removed physically or by using the techniques of bioremediation. Bioremediation has been considered as the future of waste management technologies for sustainable development. The process includes the involvement of plants and microbes that are capable of absorbing, degrading and removing contaminated chromium from the environment. Usually, the process can be practiced both ex situ and in situ taking the advantage of natural homeostasis mechanism of environment. Among these two, in situ practice is cheaper and environment friendly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams RM (1983) Occupational skin disease. Grune & Stratton, New York, p 92

    Google Scholar 

  • Agnello AC, Bagard M, Van Hullebusch ED, Esposito G, Huguenot D (2016) Comparative bioremediation of heavy metals and petroleum hydrocarbons cocontaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation. Sci Total Environ 563:693–703

    Article  PubMed  Google Scholar 

  • Ahemad M (2015) Enhancing phytoremediation of chromium-stressed soils through plant-growth-promoting bacteria. J Genet Eng Biotechnol 13:51–58. https://doi.org/10.1016/j.jgeb.2015.02.001

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmad I, Javed M, Asghar HN, Shahid M (2016) Differential effects of plant growth-promoting rhizobacteria on maize growth and cadmium uptake. J Plant Growth Regul 35:303–315

    Article  CAS  Google Scholar 

  • Alam MZ, Ahmad S (2013) Multi-metal biosorption and bioaccumulation by Exiguobacterium sp. ZM-2. Ann Microbiol 63:1137–1146. https://doi.org/10.1007/s13213-012-0571-z

    Article  CAS  Google Scholar 

  • Aparicio JD, Garcia-Velasco N, Urionabarrenetxea E, Soto M, Álvarez A, Polti MA (2019) Evaluation of the effectiveness of a bioremediation process in experimental soils polluted with chromium and lindane. Ecotoxicol Environ Saf 181:255–263

    Article  CAS  PubMed  Google Scholar 

  • Aparicio JD, Raimondo EE, Gil RA, Benimeli CS, Polti MA (2018) Actinobacteria consortium as an efficient biotechnological tool for mixed polluted soil reclamation: experimental factorial design for bioremediation process optimization. J Hazard Mater 342:408–417

    Article  CAS  PubMed  Google Scholar 

  • Aparicio JD, Saez JM, Raimondo EE, Benimeli CS, Polti MA (2018) Comparative study of single and mixed cultures of actinobacteria for the bioremediation of co-contaminated matrices. J Environ Chem Eng 6:2310–2318

    Article  CAS  Google Scholar 

  • Ashraf A, Bibi I, Niazi NK, Ok YS, Murtaza G, Shahid M, Kunhikrishnan A, Mahmood T (2017) Chromium(VI) sorption efficiency of acid-activated banana peel over organo-montmorillonite in aqueous solutions. Int J Phytoremediat 19(7):605–6013. https://doi.org/10.1080/15226514.2016.1256372

    Article  CAS  Google Scholar 

  • ATSDR (2012) Toxicol profile of chromium. Agency for toxic substances and drug registry, Atlanta, GA. US Department of Health and Human Services

    Google Scholar 

  • Avudainayagam S, Megharaj M, Owens G, Kookana RS, Chittleborough D, Naidu R (2003) Chemistry of chromium in soils with emphasis on tannery waste sites. In: Ware GW (ed) Reviews of environmental contamination and toxicology, vol 178. Springer, New York, pp 53–91. https://doi.org/10.1007/0-387-21728-2_3

  • Babula P, Adam V, Opatrilova R, Zehnalek J, Havel L, Kizek R (2008) Uncommon heavy metals, metalloids and their plant toxicity: a review. Environ Chem Lett 6:189–213

    Article  CAS  Google Scholar 

  • Bakshi A, Panigrahi AK (2018) A comprehensive review on chromium induced alterations in fresh water fishes. Toxicol Rep 5:440–447. https://doi.org/10.1016/j.toxrep.2018.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakshi A (2016) Analysis of anthropogenic disturbances and impact of pollution on fish fauna of River Churni with special reference to chromium pollution. PhD Thesis, University of Kalyani, Shodhganga. http://hdl.handle.net/10603/241694

  • Banks M, Schwab A, Henderson C (2006) Leaching and reduction of chromium in soil as affected by soil organic content and plants. Chemosphere 62:255–264

    Article  CAS  PubMed  Google Scholar 

  • Barabasz W, Chmiel M, Galus A, Paśmionka I (1998) Ecotoxicology of chromium (In Polish). Chem Inż Ekol 5(8–9):665

    CAS  Google Scholar 

  • Barros MASD, Zola AS, Arroyo PA, Tavares CRG, Sousa-Aguiar EF (2006) Chromium uptake from tricomponent solution in zeolite fixed bed. Adsorption 12(4):239–248

    Article  CAS  Google Scholar 

  • Benazir JF, Suganthi R, Rajvel D, Pooja MP, Mathithumilan B (2010) Bioremediation of chromium in tannery effluent by microbial consortia. Afr J Biotech 9(21):3140–3143

    Google Scholar 

  • Bhattacharya A, Gupta A, Kaur A, Malik D (2014) Efficacy of Acinetobacter sp. B9 for simultaneous removal of phenol and hexavalent chromium from co-contaminated system. Appl Microbiol Biotechnol 98(23):9829–9841. https://doi.org/10.1007/s00253-014-5910-5

  • Biedermann KA, Landolph JR (1990) Role of valence state and solubility of chromium compounds on induction of cytotoxicity, mutagenesis, and anchorage independence in diploid human fibroblasts. Cancer Res 50:7835–7842

    CAS  PubMed  Google Scholar 

  • Bielicka A, Bojanowska I, Wis´niewski A (2005) Two faces of chromium—pollutant and bioelement. Pol J Environ Stud 14(1):5–10

    Google Scholar 

  • Bojanowska I (2002) Recovery of chromium from sludge formed after neutralization of chromic wastewater. Polish J Environ Stud 11(2):117

    CAS  Google Scholar 

  • Bolan NS, Thiagarajan S (2001) Retention and plant availability of chromium in soils as affected by lime and organic matter amendments. Soil Res 39:1091–1103

    Article  CAS  Google Scholar 

  • Bosnir J, Puntaric D, Cvetkovic Z, Pollak L, Barusic L, Klaric I, Miskulin M, Puntaric I, Puntaric E, Milosevic M (2013) Effects of magnesium, chromium, iron and zinc from food supplements on selected aquatic organisms. Coll Antropol 37:965–971

    CAS  PubMed  Google Scholar 

  • Brandes EA, Greenaway HT, Stone HEN (1956) Ductility in chromium. Nature 178(4533):587–587

    Article  CAS  Google Scholar 

  • Brooks RR, Chambers MF, Nicks LJ, Robinson BH (1998) Phytomining. Trends Plant Sci 1:359–362

    Article  Google Scholar 

  • Burt R, Wilson M, Mays M, Lee C (2003) Major and trace elements of selected pedons in the USA. J Environ Qual 32:2109–2121

    Article  CAS  PubMed  Google Scholar 

  • CCME (2015) Canadian soil quality guidelines for the protection of environmental and human health. Canada Council of Ministers of the Environment, Winnipeg, Canada

    Google Scholar 

  • Cervantes C, Campos-Garcı́a J, Devars S, Gutiérrez-Corona F, Loza-Tavera H, Torres-Guzmán JC, Moreno-Sánchez R (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25:335–347

    Google Scholar 

  • Chaturvedi MK (2011) Studies on chromate removal by chromium-resistant Bacillus sp. isolated from tannery effluent. J Environ Prot 2(1):76. https://doi.org/10.4236/jep.2011.21008

  • Choppala G, Kunhikrishnan A, Seshadri B, Park JH, Bush R, Bolan N (2016) Comparative sorption of chromium species as influenced by pH, surface charge and organic matter content in contaminated soils. J Geochem Explor 184:255–260. https://doi.org/10.1016/j.gexplo.2016.07.012

    Article  CAS  Google Scholar 

  • Congeevaram S, Dhanarani S, Park J, Dexilin M, Thamaraiselvi K (2007) Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. J Hazard Mater 146(1–2):270–277. https://doi.org/10.1016/j.jhazmat

    Article  CAS  PubMed  Google Scholar 

  • Costa M (1997) Toxicity and carcinogenicity of Cr(VI) in animal models and humans. Crit Rev Toxicol 27(5):431–442. https://doi.org/10.3109/10408449709078442

    Article  CAS  PubMed  Google Scholar 

  • Cundy AB, Bardos RP, Church A, Puschenreiter M, Friesl-Hanl W, Müller I, Neu S, Mench M, Witters N, Vangronsveld J (2013) Developing principles of sustainability and stakeholder engagement for “gentle” remediation approaches: the European context. J Environ Manag 129:283–291

    Article  CAS  Google Scholar 

  • Dayan AD, Paine AJ (2001) Mechanisms of chromium toxicity, carcinogenicity and allergenicity: review of the literature from 1985 to 2000. Hum Exp Toxicol 20(9):439–451

    Article  CAS  PubMed  Google Scholar 

  • De Mattia G, Bravi MC, Laurenti O, De Luca O, Palmeri A, Sabatucci A, Mendico G, Ghiselli A (2004) Impairment of cell and plasma redox state in subjects professionally exposed to chromium. Am J Ind Med 46(2):120–125

    Article  PubMed  Google Scholar 

  • de Oliveira LM, Gress J, De J, Rathinasabapathi B, Marchi G, Chen Y, Ma LQ (2016) Sulfate and chromate increased each other’s uptake and translocation in As-hyperaccumulator Pteris vittata. Chemosphere 147:36–43

    Article  PubMed  Google Scholar 

  • Dhal B, Thatoi H, Das N, Pandey B (2013) Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review. J Hazard Mater 250:272–291

    Google Scholar 

  • Di Bona KR, Love S, Rhodes NR, McAdory D, Sinha SH, Kern N, Kent J, Strickland J, Wilson A, Beaird J, Ramage J, Rasco JF, Vincent JB (2011) Chromium is not an essential trace element for mammals: effects of a ‘“low-chromium”’ diet. J Biol Inorg Chem 16:381–390

    Article  PubMed  Google Scholar 

  • Di Palma L, Gueye M, Petrucci E (2015) Hexavalent chromium reduction in contaminated soil: a comparison between ferrous sulphate and nanoscale zerovalent iron. J Hazard Mater 281:70–76

    Article  PubMed  Google Scholar 

  • Dias-Ferreira C, Kirkelund GM, Ottosen LM (2015) Ammonium citrate as enhancement for electrodialytic soil remediation and investigation of soil solution during the process. Chemosphere 119:889–895

    Article  CAS  PubMed  Google Scholar 

  • Ding C, Li X, Zhang T, Ma Y, Wang X (2014) Phytotoxicity and accumulation of chromium in carrot plants and the derivation of soil thresholds for Chinese soils. Ecotoxicol Environ Saf 108:179–186

    Article  CAS  PubMed  Google Scholar 

  • Ding W, Stewart DI, Humphreys PN, Rout SP, Burke IT (2016) Role of an organic carbon-rich soil and Fe (III) reduction in reducing the toxicity and environmental mobility of chromium (VI) at a COPR disposal site. Sci Total Environ 541:1191–1199

    Article  CAS  PubMed  Google Scholar 

  • Dong J, Wu F, Huang R, Zang G (2007) A chromium tolerant plant growing in Cr-contaminated land. Int J Phytoremediat 9:167–179

    Article  CAS  Google Scholar 

  • Eisler R (1986) Chromium hazards to fish, wildlife, and invertebrates: a synoptic review. US Fish and Wildlife Service Biological Report 85(1.6), p 60

    Google Scholar 

  • Ericson B (2011) Common global pollution issues: Blacksmith Institute’s experience. In: Presentation to the 10th meeting of the international committee on contaminated Land, Washington, DC

    Google Scholar 

  • Eriksson J (2001) Concentrations of 61 trace elements in sewage sludge, farmyard manure, mineral fertiliser, precipitation and in oil and crops. Swedish Environmental Protection Agency, Stockholm

    Google Scholar 

  • Frohne T, Diaz-Bone RA, Du Laing G, Rinklebe J (2015) Impact of systematic change of redox potential on the leaching of Ba, Cr, Sr, and V from a riverine soil into water. J Soils Sed 15:623–633

    Article  CAS  Google Scholar 

  • Ganguly R, Sahu S, Ohanyan V, Haney R, Chavez RJ, Shah S, Yalamanchili S, Raman P (2017) Oral chromium picolinate impedes hyperglycemia-induced atherosclerosis and inhibits proatherogenic protein TSP-1 expression in STZ-induced type 1 diabetic ApoE−/− mice. Sci Rep 7:45279. https://doi.org/10.1038/srep45279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of its by-products. Appl Ecol Environ Res 3(1):1–18

    Article  Google Scholar 

  • Hayat S, Khalique G, Irfan M, Wani AS, Tripathi BN, Ahmad A (2012) Physiological changes induced by chromium stress in plants: an overview. Protoplasma 249:599–611. https://doi.org/10.1007/s00709-011-0331-0

    Article  CAS  PubMed  Google Scholar 

  • Henry JR (2000) An overview of phytoremediation of lead and mercury. National Network of Environmental Management Studies (NNEMS) Report, pp 1–31

    Google Scholar 

  • Hsu LC, Liu YT, Tzou YM (2015) Comparison of the spectroscopic speciation and chemical fractionation of chromium in contaminated paddy soils. J Hazard Mater 296:230–238

    Article  CAS  PubMed  Google Scholar 

  • Huang JW, Chen J, Berti WR, Cunningham SD (1997) Phytoremediation of lead contaminated soils-role of synthetic chelates in lead phytoextraction. Environ Sci Tech 31:800–806

    Article  CAS  Google Scholar 

  • Isıklı B, Demir T, Ürer S, Berber A, Akar T, Kalyoncu C (2003) Effects of chromium exposure from a cement factory. Environ Res 91(2):113118

    Google Scholar 

  • Jaison S, Muthukumar T (2016) Chromium accumulation in medicinal plants growing naturally on tannery contaminated and non-contaminated soils. Biol Trace Elem Res 175(1):223–235

    Article  PubMed  Google Scholar 

  • Kabata-Pendias A (2010) Trace elements in soils and plants. CRC Press, Boca Raton, Florida

    Book  Google Scholar 

  • Katz SA, Salem H (1994) The biological and environmental chemistry of chromium. VCH Publishers Inc., New York, NY, p 214

    Google Scholar 

  • Kendrick MJ, May MT, Plishka MJ, Robinson KD (1992) Metals in biological systems. Ellis Horwood Limited, Chichester, p 183

    Google Scholar 

  • Kiling J (1997) Phytoremediation of organics moving rapidly into field trials. Environ Sci Tech 31(3):129A-129A

    Article  Google Scholar 

  • Kim IH, Choi JH, Joo JO, Kim YK, Choi JW, Oh BK (2015) Development of a microbe-zeolite carrier for the effective elimination of heavy metals from seawater. J Microbiol Biotechnol 25(9):1542–1546. https://doi.org/10.4014/jmb.1504.04067

    Article  CAS  PubMed  Google Scholar 

  • Kisielowska E, Hołda A, Niedoba T (2010) Removal of heavy metals from coal medium with application of biotechnological methods. Górnictwo I Geoinzynieria 34:93–104

    Google Scholar 

  • Kulikova T, Hiller E, Jurkovič Ľ, Filová L, Šottník P, Lacina P (2019) Total mercury, chromium, nickel and other trace chemical element contents in soils at an old cinnabar mine site (Merník, Slovakia): anthropogenic versus natural sources of soil contamination. Environ Monit Assess 191(5):263. https://doi.org/10.1007/s10661-019-7391-6

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Bhatia D, Singh R, Rani S, Bishnoi NR (2011) Sorption of heavy metals from electroplating effluent using immobilized biomass Trichoderma viride in a continuous packed-bed column. Int Biodeterior Biodegradation 65(8):1133–1139. https://doi.org/10.1016/j.ibiod.2011.09.003

    Article  CAS  Google Scholar 

  • Lacalle RG, Aparicio JD, Artetxe U, Urionabarrenetxea E, Polti MA, Soto M, Garbisu C, Becerril JM (2020) Gentle remediation options for soil with mixed chromium (VI) and lindane pollution: biostimulation, bioaugmentation, phytoremediation and vermiremediation. Heliyon 6(8):e04550. https://doi.org/10.1016/j.heliyon.2020.e04550

    Article  PubMed  PubMed Central  Google Scholar 

  • Leung M (2004) Bioremediation: techniques for cleaning up a mess. Biotech J 2:18–22

    Google Scholar 

  • Lindberg E, Vesterberg O (1983) Urinary excretion of proteins in chromeplaters, exchromeplaters and referents. Scand J Work Environ Health 9(6):505–510

    Article  CAS  PubMed  Google Scholar 

  • Lippmann M (2000) Environmental toxicants: human exposures and their health effects, 2nd edn. Wiley-Interscience, New York, pp 173–191

    Google Scholar 

  • Liu J, Chang-Qun D, Xue-Hong Z, Yi-Nian Z, Hu C (2011) Characteristics of chromium (III) uptake in hyperaccumulator Leersia hexandra Swartz. Environ Exp Bot 74:122–126

    Article  CAS  Google Scholar 

  • López-Bucio J, Hernández-Madrigal F, Cervantes C (2014) Phosphate relieves chromium toxicity in Arabidopsis thaliana plants by interfering with chromate uptake. Biometals 27:363–370. https://doi.org/10.1007/s10534-014-9718-7

    Article  CAS  PubMed  Google Scholar 

  • Luippold R, Mundt K, Austin R, Liebig E, Panko J, Crump C, Crump K, Proctor D (2003) Lung cancer mortality among chromate production workers. Occup Environ Med 60(6):451–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacKie RM (1981) Clinical dermatology. Oxford University Press, New York, Toronto

    Google Scholar 

  • Mandal A, Voutchkov M (2011) Heavy metals in soils around the cement factory in Rockfort, Kingston Jamaica. Int J Geosci 2(1):48

    Article  CAS  Google Scholar 

  • Mane PC, Bhosle AB (2012) Bioremoval of some metals by living Algae Spirogyra sp. and Spirullina sp. from aqueous solution. Int J Environ Res 6(2):571–576

    Google Scholar 

  • Misra AK, Pattnaik R, Thatoi HN, Padhi GS (1994) Study on growth and N2 fixation ability of some leguminous plant species for reclamation of mine spoilt areas of Eastern Ghats of Orissa. Final Technical Report submitted to Ministry of Environment and Forests, Govt of India, New Delhi, India

    Google Scholar 

  • Misra AK, Thatoi HN, Dutta B, Pattnaik MM, Padhi GS (2004) Stabilisation and restoration of ecosystem in iron and chromite mine waste areas of Eastern Ghats of Orissa through application of microbial technology. Final Technical Report submitted to Ministry of Environment and Forests, Govt of India, New Delhi, India

    Google Scholar 

  • Mohanty M, Patra HK (2011) Attenuation of chromium toxicity by bioremediation technology. In: Whitacre DM (ed) Reviews of environmental contamination and toxicology, vol 210. Springer, New York, pp 1–34

    Google Scholar 

  • Mwamburi J (2016) Chromium distribution and spatial variations in the finer sediment grain size fraction and unfractioned surficial sediments on Nyanza gulf, of Lake Victoria (East Africa). J Waste Manage 2016, Article ID 7528263:15. https://doi.org/10.1155/2016/7528263

  • Nayak AK, Panda SS, Basu A, Dhal NK (2018) Enhancement of toxic Cr (VI), Fe, and other heavy metals phytoremediation by the synergistic combination of native Bacillus cereus strain and Vetiveria zizanioides L. Int J Phytorem 20(7):682–691. https://doi.org/10.1080/15226514.2017.1413332

    Article  CAS  Google Scholar 

  • Nickens KP, Patierno SR, Ceryak S (2010) Chromium genotoxicity: a double-edged sword. Chem Biol Interact 188(2):276–288. https://doi.org/10.1016/j.cbi.2010.04.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nriagu JO (1988) Production and uses of chromium. Adv Environ Sci Technol 20:81–103

    CAS  Google Scholar 

  • Oliveira H (2012) Chromium as an environmental pollutant: insights on induced plant toxicity. J Bot 2012:375843

    Google Scholar 

  • Otero XL, Macias F (2003) Spatial variation in pyritization of trace metals in saltmarsh soils. Biogeochemistry 62:59–86

    Article  CAS  Google Scholar 

  • Oze C, Bird DK, Fendorf S (2007) Genesis of hexavalent chromium from natural sources in soil and groundwater. Proc Natl Acad Sci 104(16):6544–6549. https://doi.org/10.1073/pnas.0701085104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paknikar KM, Bhide JV (1993) Aerobic reduction and biosorption of chromium by a chromate resistant Aspergillus spp. In: Torma AE, Apel ML, Brierley CL (eds) Biohydrometallurgical technologies. The Minerals, Metals and Materials Society, Warrendale, PA, pp 237–244

    Google Scholar 

  • Pavesi T, Moreira JC (2020) Mechanisms and individuality in chromium toxicity in humans. J Appl Toxicol 40(9):1183–1197

    Article  CAS  PubMed  Google Scholar 

  • Pillichshammer M, Pumpel T, Poder R, Eller K, Klima A, Schinner F (1995) Biosorption of chromium to fungi. Biometal 8(2):117–121

    Article  CAS  Google Scholar 

  • Prado C, Ponce SC, Pagano E, Prado FE, Rosa M (2016) Differential physiological responses of two Salvinia species to hexavalent chromium at a glance. Aquat Toxicol 175:213–221

    Article  CAS  PubMed  Google Scholar 

  • Qian J, Wei L, Liu R, Jiang F, Hao X, Chen GH (2016) An exploratory study on the pathways of Cr (VI) reduction in sulfate-reducing up-flow anaerobic sludge bed (UASB) reactor. Sci Rep 6:23694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu M, Li W, Zhang C, Huang B, Zhao Y (2015) Assessing the pollution risk of soil chromium based on loading capacity of paddy soil at a regional scale. Sci Rep 5:18451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quagraine EK, Peterson HG, Headley JV (2005) In situ bioremediation of naphthenic acids contaminated tailing pond waters in the Athabasca oil sands region—demonstrated field studies and plausible options: a review. J Environ Sci Heal 40:685–722

    Article  CAS  Google Scholar 

  • Quantin C, Ettler V, Garnier J, Šebek O (2008) Sources and extractibility of chromium and nickel in soil profiles developed on Czech serpentinites. Comptes Rendus Geosci 340:872–882

    Article  CAS  Google Scholar 

  • Quenea K, Lamy I, Winterton P, Bermond A, Dumat C (2009) Interactions between metals and soil organic matter in various particle size fractions of soil contaminated with waste water. Geoderma 149:217–223

    Article  CAS  Google Scholar 

  • Rafiq M, Shahid M, Abbas G, Shamshad S, Khalid S, Niazi NK, Dumat C (2017) Comparative effect of calcium and EDTA on arsenic uptake and physiological attributes of Pisum sativum. Int J Phytoremediat 19(7):662–669. https://doi.org/10.1080/15226514.2016.1278426

    Article  CAS  Google Scholar 

  • Ramirez R, Calvo MC, Avila-Rodriguez M, Gutierrez-Corona JF (2000) Chromate resistance and reduction in a yeast strain isolated from industrial waste discharges. In: Raynal JA, Nucklos JR, Reyes P, Ward M (eds) Environmental engineering and health sciences, Section 4: environmental engineering application. Water Resources Publications, LCC, Englewood, CO, pp 437–445

    Google Scholar 

  • Ramírez-Díaz MI, Díaz-Pérez C, Vargas E, Riveros-Rosas H, Campos-García J, Cervantes C (2008) Mechanisms of bacterial resistance to chromium compounds. Biometals 21(3):321–332. https://doi.org/10.1007/s10534-007-9121-8

    Article  CAS  PubMed  Google Scholar 

  • Ran Z, Bi W, Cai QT, Li XX, Min LIU, Dong HU, Chun FAN (2016) Bioremediation of hexavalent chromium pollution by Sporosarcina saromensis M52 isolated from offshore sediments in Xiamen, China. Biomed Environ Sci 29(2):127–136. https://doi.org/10.3967/bes2015.014

  • Rupp H, Rinklebe J, Bolze S, Meissner R (2010) A scale-dependent approach to study pollution control processes in wetland soils using three different techniques. Ecol Eng 36:1439–1447

    Article  Google Scholar 

  • Saifullah SM, Zia-Ur-Rehman M, Sabir M, Ahmad HR (2015) Phytoremediation of Pb-contaminated soils using synthetic chelates. In: Hakeem K, Sabir M, Ozturk M, Mermut A (eds) Soil remediation and plants. Academic Press, San Diego, pp 397–414

    Chapter  Google Scholar 

  • Salminen R, Batista MJ, Bidovec M, Demetriades A, De Vivo B, De Vos W, Duris M, Gilucis A, Gregorauskiene V, Halamic J, Heitzmann P (2005) Geochemical atlas of Europe. Part 1—background information, methodology and maps. Geological Survey of Finland. Otamedia Oy, Espoo, p 525

    Google Scholar 

  • Salnokow K, Zhitkovich A (2008) Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic, and chromium. Chem Res Toxicol 21(1):28–44. https://doi.org/10.1021/tx700198a

    Article  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1995) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668

    Article  Google Scholar 

  • Sampanpanish P, Pongsapich W, Khaodhiar S, Khan E (2006) Chromium removal from soil by phytoremediation with weed plant species in Thailand. Water Air Soil Pollut Focus 6:191–206

    Article  CAS  Google Scholar 

  • Seigneur C, Constantinou E (1995) Chemical kinetic mechanism for atmospheric chromium. Environ Sci Technol 29(1):222–231

    Article  CAS  PubMed  Google Scholar 

  • Shadreck I (2013) Chromium, an essential nutrient and pollutant: a review. Afr J Pure Appl Chem 7:310–317

    Google Scholar 

  • Shahid M, Austruy A, Echevarria G, Arshad M, Sanaullah M, Aslam M, Nadeem M, Nasim W, Dumat C (2014) EDTA-enhanced phytoremediation of heavy metals: a review. Soil Sediment Contam Int J 23:389–416

    Article  CAS  Google Scholar 

  • Shahid M, Dumat C, Pourrut B, Abbas G, Shahid N, Pinelli E (2015) Role of metal speciation in lead-induced oxidative stress to Vicia faba roots. Russ J Plant Physiol 62:448–454

    Article  CAS  Google Scholar 

  • Shahid M, Shamshad S, Rafiq M, Khalid S, Bibi I, Niazi NK, Dumat C, Rashid MI (2017) Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: a review. Chemosphere 178:513–533. https://doi.org/10.1016/j.chemosphere.2017.03.074

    Article  CAS  PubMed  Google Scholar 

  • Shahid M, Xiong T, Castrec-Rouelle M, Leveque T, Dumat C (2013) Water extraction kinetics of metals, arsenic and dissolved organic carbon from industrial contaminated poplar leaves. J Environ Sci 25:2451–2459

    Article  CAS  Google Scholar 

  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739–753

    Article  CAS  PubMed  Google Scholar 

  • Shukla O, Dubey S, Rai U (2007) Preferential accumulation of cadmium and chromium: toxicity in Bacopa monnieri L. under mixed metal treatments. Bull Environ Contam Toxicol 78:252–257

    Article  CAS  PubMed  Google Scholar 

  • Singh HP, Mahajan P, Kaur S, Batish DR, Kohli RK (2013) Chromium toxicity and tolerance in plants. Environ Chem Lett 11:229–254. https://doi.org/10.1007/s10311-013-0407-5

    Article  CAS  Google Scholar 

  • Singh N, Verma T, Gaur R (2013) Detoxification of hexavalent chromium by an indigenous facultative anaerobic Bacillus cereus strain isolated from tannery effluent. Afr J Biotech 12(10):1091–1103

    CAS  Google Scholar 

  • Sklodowska A (2000) Biological methods of heavy metal leaching—biohydrometallurgy. Adv Microbiol 39(1):73–89

    CAS  Google Scholar 

  • Smith S, Peterson PJ, Kwan KHM (1989) Chromium accumulation, transport and toxicity in plants. Toxicol Environ Chem 24(4):241–251. https://doi.org/10.1080/02772248909357496

    Article  CAS  Google Scholar 

  • Sundaramoorthy P, Chidambaram A, Ganesh KS, Unnikannan P, Baskaran L (2010) Chromium stress in paddy: (i) nutrient status of paddy under chromium stress; (ii) phytoremediation of chromium by aquatic and terrestrial weeds. Comptes Rendus Biol 333:597–607

    Article  CAS  Google Scholar 

  • Taghipour M, Jalali M (2016) Influence of organic acids on kinetic release of chromium in soil contaminated with leather factory waste in the presence of some adsorbents. Chemosphere 155:395–404

    Article  CAS  PubMed  Google Scholar 

  • Takeda A, Kimura K, Yamasaki S (2004) Analysis of 57 elements in Japanese soils, with special reference to soil group and agricultural use. Geoderma 119:291–307

    Article  CAS  Google Scholar 

  • Tarekegn MM, Salilih FZ, Ishetu AI (2020) Microbes used as a tool for bioremediation of heavy metal from the environment. Cogent Food Agric 6:1783174. https://doi.org/10.1080/23311932.2020.1783174

    Article  CAS  Google Scholar 

  • Torresdey JLG, Videa JRP, Montes M, Rosa G, Diaz CB (2004) Bioaccumulation of cadmium, chromium and copper by Convolvulus arvensis: Impact on plant growth and uptake of nutritional elements. Bioresour Technol 92:229–235

    Article  Google Scholar 

  • Velma V, Vutukuru SS, Tchounwou PB (2009) Ecotoxicology of hexavalent chromium in fresh water fish: a critical review. Rev Environ Health 24(2):129–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Prog 11:235–250

    Article  CAS  PubMed  Google Scholar 

  • Wales DS, Sagar BF (1990) Recovery of metal ions by microfungal filters. J Chem Technol Biotechnol 49:345–355

    Article  CAS  PubMed  Google Scholar 

  • Xiao W, Ye X, Yang X, Li T, Zhao S, Zhang Q (2015) Effects of alternating wetting and drying versus continuous flooding on chromium fate in paddy soils. Ecotoxicol Environ Saf 113:439–445

    Article  CAS  PubMed  Google Scholar 

  • Zayed AM, Terry N (2003) Chromium in the environment: factors affecting biological remediation. Plant Soil 249:139–156

    Article  CAS  Google Scholar 

  • Zeng J, Gou M, Tang YQ, Li GY, Sun ZY, Kida K (2016) Effective bioleaching of chromium in tannery sludge with an enriched sulfur-oxidizing bacterial community. Bioresour Technol 218:859–866

    Article  CAS  PubMed  Google Scholar 

  • Zhuang P, Yang QW, Wang HB, Shu WS (2007) Phytoextraction of heavy metals by eight plant species in the field. Water Air Soil Pollut 84:235–242

    Google Scholar 

Download references

Acknowledgements

Authors are grateful to the authorities of Department of Zoology, University of Kalyani, Kalyani, Nadia, West Bengal, India, for their support during the research.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bakshi, A., Panigrahi, A.K. (2022). Chromium Contamination in Soil and Its Bioremediation: An Overview. In: Malik, J.A. (eds) Advances in Bioremediation and Phytoremediation for Sustainable Soil Management. Springer, Cham. https://doi.org/10.1007/978-3-030-89984-4_15

Download citation

Publish with us

Policies and ethics