Skip to main content

Role of Additive Manufacturing in Biomedical Engineering

  • Chapter
  • First Online:
Innovations in Additive Manufacturing

Abstract

Additive manufacturing, which overcomes the drawbacks of traditional manufacturing methods, is rapidly revolutionizing in the field of medical sector. The importance of additive manufacturing in the field of biomedical engineering are discussed in this chapter. The additive manufacturing technique is a flexible and cost-effective approach for printing complex body parts, supporting tissue growth, and providing personalized solutions to a wide range of problems. The additive manufacturing is playing a vital role such as therapeutic delivery, surgical planning, implant design, temporal bone dissection and tissue engineering. The selection of materials and additive manufacturing techniques for the implants and prosthesis is important in terms of customization to the patients. This technology can create any object with any complexity at higher reduction in manufacturing lead time. Three dimensional bioprinting overcomes the drawbacks of three-dimensional printing such as better control of cell distribution and adaptable to extracellular matrix (ECM) environment and biocompatibility characteristics. The rapid prototyping is playing a vital role in fabricating the various personalized protective equipments amidst during COVID 19 despite in the restricted rules and regulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sames, W.J., List, F.A., Pannala, S., Dehoff, R.R., Babu, S.S.: The metallurgy and processing science of metal additive manufacturing. Int. Mater. Rev. 61(5), 315–360 (2016)

    Article  Google Scholar 

  2. Chen, R.K., Jin, Y.A., Wensman, J., Shih, A.: Additive manufacturing of custom orthoses and prostheses—a review. Addit. Manuf. 12, 77–89 (2016)

    Google Scholar 

  3. Cuellar, J.S., Smit, G., Zadpoor, A.A., Breedveld, P.: Ten guidelines for the design of non-assembly mechanisms: the case of 3D-printed prosthetic hands. Proc. Inst. Mech. Eng. [H] 232(9), 962–971 (2018)

    Article  Google Scholar 

  4. Banks, J.: Adding value in additive manufacturing: researchers in the United Kingdom and Europe look to 3D printing for customization. IEEE Pulse 4(6), 22–26 (2013)

    Article  Google Scholar 

  5. Mertz, L.: Dream it, design it, print it in 3-D: What can 3-D printing do for you? IEEE Pulse 4(6), 15–21 (2013)

    Article  Google Scholar 

  6. Ibrahim, A.M., Jose, R.R., Rabie, A.N., Gerstle, T.L., Lee, B.T., Lin, S.J.: Three-dimensional printing in developing countries. Plast Re-constr. Surg. Glob. Open. 3(7), e443 (2015)

    Google Scholar 

  7. Rankin, T.M., Giovinco, N.A., Cucher, D.J., Watts, G., Hurwitz, B., Armstrong, D.G.: Three-dimensional printing surgical instruments: are we there yet? J. Surg. Res. 189(2), 193–197 (2014)

    Article  Google Scholar 

  8. Ursan, I.D., Chiu, L., Pierce, A.: Three-dimensional drug printing: a structured review. J. Am. Pharm. Assoc. 53(2), 136–144 (2013)

    Article  Google Scholar 

  9. Cui, X., Boland, T., DD'Lima, D.K., Lotz, M.: Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Pat. Drug Deliv. Formulation 6(2), 149–55 (2012)

    Google Scholar 

  10. Gross, B.C., Erkal, J.L., Lockwood, S.Y., Chen, C., Spence, D.M.: Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences (2014)

    Google Scholar 

  11. Kumar, R., Kumar, M., Chohan, J.S.: The role of additive manufacturing for biomedical applications: a critical review. J. Manuf. Process. 64, 828–850 (2021)

    Article  Google Scholar 

  12. Javaid, M., Haleem, A.: Additive manufacturing applications in medical cases: a literature-based review. Alexandria J. Med. 54, 411–422 (2018)

    Article  Google Scholar 

  13. Culmone, C., Smit, G., Breedveld, P.: Additive manufacturing of medical instruments: a start of the art review. Addit. Manuf. 27 (2019)

    Google Scholar 

  14. Törmälä, P.: Biodegradable self-reinforced composite materials; manufacturing structure and mechanical properties. Clin. Mater. 10(1–2), 29–34 (1992)

    Article  Google Scholar 

  15. Christel, P.: Biodegradable composites for internal fixation. Biomaterials 1, 271–280 (1980)

    Google Scholar 

  16. Linhart, W., Peters, F., Lehmann, W., Schwarz, K., Schilling, A.F., Amling, M., Rueger, J.M., Epple, M.: Biologically and chemically optimized composites of carbonated apatite and polyglycolide as bone substitution materials. J. Biomed. Mater. Res.: Official J. Soc. Biomater. Jpn. Soc. Biomater. 54(2), 162–171 (2001)

    Article  Google Scholar 

  17. Ji, Y., Ping Xu, G., Peng Zhang, Z., Jun Xia, J., Long Yan, J., Ha Pan, S.: BMP-2/PLGA delayed-release microspheres composite graft, selection of bone particulate , and prevention of aseptic inflammation for bone tissue engineering. Annals Biomed. Eng. 38(3), 632–9 (2010)

    Google Scholar 

  18. Gavenis, K., Schneider, U., Groll, J., Schmidt-Rohlfing, B.: BMP-7-loaded PGLA microspheres as a new delivery system for the cultivation of human chondrocytes in a collagen type I gel: the common nude mouse model. Int. J. Artif. Organs 33(1), 45–53 (2010)

    Article  Google Scholar 

  19. Fei, Z., Hu, Y., Wu, D., Wu, H., Lu, R., Bai, J., Song, H.: Preparation and property of a novel bone graft composite consisting of rhBMP-2 loaded PLGA microspheres and calcium phosphate cement. J. Mater. Sci.—Mater. Med. 19(3), 1109–1116 (2008)

    Article  Google Scholar 

  20. Balçik, C., Tokdemir, T., Şenköylü, A., Koç, N., Timuçin, M., Akin, S., Korkusuz, P., Korkusuz, F.: Early weight bearing of porous HA/TCP (60/40) ceramics in vivo: a longitudinal study in a segmental bone defect model of rabbit. Acta Biomater. IA. 3(6), 985–996 (2007)

    Article  Google Scholar 

  21. Bedi, T.S., Kumar, S., Kumar, R.: Corrosion performance of hydroxyapaite and hydroxyapaite/titania bond coating for biomedical applications. Mater. Res. Expr. 7(1), 015402 (2019)

    Article  Google Scholar 

  22. Mardziah, C.M., Sopyan, I., Ramesh, S.: Strontium-doped hydroxyapatite nano powder via sol-gel method: effect of strontium concentration and calcination temperature on phase behavior. Trends Biomater. Artif. Organs. 23(2), 105–113 (2009)

    Google Scholar 

  23. Staiger, M.P., Pietak, A.M., Huadmai, J., Dias, G.: Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27(9), 1728–1734 (2006)

    Article  Google Scholar 

  24. Wong, H.M., Yeung, K.W., Lam, K.O., Tam, V., Chu, P.K., Luk, K.D., Cheung, K.M.: A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants. Biomaterials 31(8), 2084–2096 (2010)

    Article  Google Scholar 

  25. Zeng, R., Dietzel, W., Witte, F., Hort, N., Blawert, C.: Progress and challenge for magnesium alloys as biomaterials. Adv. Eng. Mater. 10(8), B3–B14 (2008)

    Article  Google Scholar 

  26. Waizy, H., Seitz, J.M., Reifenrath, J., Weizbauer, A., Bach, F.W., Meyer-Lindenberg, A., Denkena, B., Windhagen, H.: Biodegradable magnesium implants for orthopedic applications. J. Mater. Sci. 48(1), 39–50 (2013)

    Article  Google Scholar 

  27. Gu, X.N., Zheng, Y.F.: A review on magnesium alloys as biodegradable materials. Front. Mater. Sci. Chin. 4(2), 111–115 (2010)

    Article  Google Scholar 

  28. Ghosh, S.K., Nandi, S.K., Kundu, B., Datta, S., De, D.K., Roy, S.K., Basu, D.: In vivo response of porous hydroxyapatite and β-tricalcium phosphate prepared by aqueous solution combustion method and comparison with bioglass scaffolds. J. Biomed. Mater. Res. B Appl. Biomater. 86(1), 217–227 (2008)

    Article  Google Scholar 

  29. Cutright, D.E., Bhaskar, S.N., Brady, J.M., Getter, L., Posey, W.R.: Reaction of bone to tricalcium phosphate ceramic pellets. Oral Surg., Oral Med., Oral Pathol. 33(5), 850–856 (1972)

    Article  Google Scholar 

  30. Bohner, M.: Physical and chemical aspects of calcium phosphates used in spinal surgery. Eur. Spine J. 10(2), S114–S121 (2001)

    Google Scholar 

  31. Peter, S.J., Kim, P., Yasko, A.W., Yaszemski, M.J., Mikos, A.G.: Crosslinking characteristics of an injectable poly (propylene fumarate)/β-tricalcium phosphate paste and mechanical properties of the crosslinked composite for use as a biodegradable bone cement. J. Biomed. Mater. Res.: Official J. Soc. Biomater. Jpn. Soc. Biomater., Australian Soc. Biomater. 44(3), 314–321 (1999)

    Article  Google Scholar 

  32. Kang, I.G., Jung, J.H., Kim, S.T., Choi, J.Y., Sykes, J.M.: Comparison of titanium and biodegradable plates for treating midfacial fractures. J. Oral Maxillofac. Surg. 72(4), 762-e1 (2014)

    Article  Google Scholar 

  33. Mazzoni, S., Bianchi, A., Schiariti, G., Badiali, G., Marchetti, C.: Computer-aided design and computer-aided manufacturing cutting guides and customized titanium plates are useful in upper maxilla waferless repositioning. J. Oral Maxillofac. Surg. 73(4), 701–707 (2015)

    Article  Google Scholar 

  34. Paeng, J.Y., Hong, J., Kim, C.S., Kim, M.J.: Comparative study of skeletal stability between biocritical resorbable and titanium screw fixation after sagittal split ramus osteotomy for mandibular prognathism. J. Cranio-Maxillofacial Surg. 40(8), 660–664 (2012)

    Article  Google Scholar 

  35. Fiorilli, S., Baino, F., Cauda, V., Crepaldi, M., Vitale-Brovarone, C., Demarchi, D., Onida, B.: Electrophoretic deposition of mesoporous bioactive glass on glass–ceramic foam scaffolds for bone tissue engineering. J. Mater. Sci.—Mater. Med. 26(1), 21 (2015)

    Article  Google Scholar 

  36. Bártolo, P.J., Almeida, H.A., Rezende, R.A., Laoui, T., Bidanda, B.: Advanced processes to fabricate scaffolds for tissue engineering. In: Virtual prototyping & bio manufacturing in medical applications, pp. 149–170. Springer, Boston, MA (2008)

    Google Scholar 

  37. Liu, X., Shen, Y., Yang, R., Zou, S., Ji, X., Shi, L., Zhang, Y., Liu, D., Xiao, L., Zheng, X., Li, S.: Inkjet printing assisted synthesis of multicomponent mesoporous metal oxides for ultrafast catalyst exploration. Nano. Lett. 12(11), 5733–5739 (2012)

    Article  Google Scholar 

  38. Mazzoli, A.: Selective laser sintering in biomedical engineering. Med. Biol. Eng. Compu. 51(3), 245–256 (2013)

    Article  Google Scholar 

  39. Attar, H., Bönisch, M., Calin, M., Zhang, L.C., Scudino, S., Eckert, J.: Selective laser melting of in situ titanium–titanium boride composites: processing, microstructure and mechanical properties. Acta Mater. 76, 13–22 (2014)

    Article  Google Scholar 

  40. Cronskär, M., Bäckström, M., Rännar, L.E.: Production of customized hip stem prostheses–a comparison between conventional machining and electron beam melting (EBM). Rapid Prototyping J. (2013)

    Google Scholar 

  41. Mazzoli, A., Germani, M., Raffaeli, R.: Direct fabrication through electron beam melting technology of custom cranial implants designed in a PHANToM-based haptic environment. Mater. Des. 30(8), 3186–3192 (2009)

    Article  Google Scholar 

  42. Liu, Y., Wang, W., Zhang, L.C.: Additive manufacturing techniques and their biomedical applications. Fam. Med. Commun. Health. 5(4), 286–298 (2017)

    Article  Google Scholar 

  43. Fedorovich, N.E., Schuurman, W., Wijnberg, H.M., Prins, H.J., Van Weeren, P.R., Malda, J., Alblas, J., Dhert, W.J.: Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds. Tissue Eng. Part C Methods 18(1), 33–44 (2012)

    Article  Google Scholar 

  44. Gerbino, G., Zavattero, E., Zenga, F., Bianchi, F.A., Garzino-Demo, P., Berrone, S.: Primary and secondary reconstruction of complex craniofacial defects using polyetheretherketone custom-made implants. J. Cranio-Maxillofacial Surg. 43(8), 1356–1363 (2015)

    Article  Google Scholar 

  45. Bandyopadhyay, A., Espana, F., Balla, V.K., Bose, S., Ohgami, Y., Davies, N.M.: Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants. Acta Biomater. 6(4), 1640–1648 (2010)

    Article  Google Scholar 

  46. Zhang, L.C., Klemm, D., Eckert, J., Hao, Y.L., Sercombe, T.B.: Manufacture by selective laser melting and mechanical behavior of a biomedical Ti–24Nb–4Zr–8Sn alloy. Scripta Mater. 65(1), 21–24 (2011)

    Article  Google Scholar 

  47. Ponader, S., Vairaktaris, E., Heinl, P., Wilmowsky, C.V., Rottmair, A., Körner, C., Singer, R.F., Holst, S., Schlegel, K.A., Neukam, F.W., Nkenke, E.: Effects of topographical surface modifications of electron beam melted Ti-6Al-4V titanium on human fetal osteoblasts. J. Biomed. Mater. Res. Part A: An Official J. Soc. Biomater. Jpn. Soc. Biomater. Australian Soc. Biomater. Korean Soc. Biomater. 84(4), 1111–1119 (2008)

    Article  Google Scholar 

  48. Ponader, S., Von Wilmowsky, C., Widenmayer, M., Lutz, R., Heinl, P., Körner, C., Singer, R.F., Nkenke, E., Neukam, F.W., Schlegel, K.A.: In vivo performance of selective electron beam-melted Ti-6Al-4V structures. J. Biomed. Mater. Res. Part A: Official J. Soc. Biomater. Jpn. Soc. Biomater. Australian Soc. Biomater. Korean Soc. Biomater. 92(1), 56–62 (2010)

    Article  Google Scholar 

  49. Wixted, C.M., Peterson, J.R., Kadakia, R.J., Adams, S.B.: Three-dimensional printing in orthopaedic surgery: current applications and future developments. JAAOS Glob. Res. Rev. 5(4) (2021)

    Google Scholar 

  50. Eltorai, A.E., Nguyen, E., Daniels, A.H.: Three-dimensional printing in orthopaedic surgery. Orthopaedics. 38(11), 684–687 (2015)

    Article  Google Scholar 

  51. Spirig, J.M., Golshani, S., Farshad-Amacker, N.A., Farshad, M.: Patient-specific template-guided versus standard freehand lumbar pedicle screw implantation: a randomized controlled trial. J. Neurosurg.: Spine 1(aop), 1–7 (2021)

    Google Scholar 

  52. Mok, S.W., Nizak, R., Fu, S.C., Ho, K.W., Qin, L., Saris, D.B., Chan, K.M., Malda, J.: From the printer: potential of three-dimensional printing for orthopaedic applications. J. Orthop. Transl. 6, 42–49 (2016)

    Google Scholar 

  53. Noble, J.W., Jr., Moore, C.A., Liu, N.: The value of patient-matched instrumentation in total knee arthroplasty. J. Arthroplasty 27(1), 153–155 (2012)

    Article  Google Scholar 

  54. Mishra, S.: Application of 3D printing in medicine. Indian Heart J. 68(1), 108 (2016)

    Article  Google Scholar 

  55. Li, K.H., Kui, C., Lee, E.K., Ho, C.S., Sunny Hei, S.H., Wu, W., Wong, W.T., Voll, J., Li, G., Liu, T., Yan, B.: The role of 3D printing in anatomy education and surgical training: a narrative review. MedEdPublish. 6(2) (2017)

    Google Scholar 

  56. Nikitichev, D.I., Patel, P., Avery, J., Robertson, L.J., Bucking, T.M., Aristovich, K.Y., Maneas, E., Desjardins, A.E., Vercauteren, T.: Patient-specific 3D printed models for education, research and surgical simulation. 3D Print. 10, 115 (2018)

    Google Scholar 

  57. Wu, W., Zhang, Y., Li, H., Wang, W.: Fabrication of repairing skull bone defects based on the rapid prototyping. J. Bioact. Compatible Polym. 24(1_suppl), 125–36 (2009)

    Google Scholar 

  58. Fradique, R., Correia, T.R., Miguel, S.P., De Sa, K.D., Figueira, D.R., Mendonça, A.G., Correia, I.J.: Production of new 3D scaffolds for bone tissue regeneration by rapid prototyping. J. Mater. Sci.—Mater. Med. 27(4), 69 (2016)

    Article  Google Scholar 

  59. Vanaei, S., Parizi, M.S., Salemizadehparizi, F., Vanaei, H.R.: An overview on materials and techniques in 3d bioprinting toward biomedical application. Eng. Regeneration. 2, 1–8 (2021)

    Article  Google Scholar 

  60. Ozbolat, I.T., Moncal, K.K., Gudapati, H.: Evaluation of bioprinter technologies. Addit. Manuf. 13, 149–200 (2017)

    Google Scholar 

  61. Jeong, H.J., Nam, H., Jang, J., Lee, S.J.: 3D bioprinting strategies for the regeneration of functional tubular tissues and organs. Bioengineering 7(2), 32 (2020)

    Article  Google Scholar 

  62. Vijayavenkataraman, S., Yan, W.C., Lu, W.F., Wang, C.H., Fuh, J.Y.: 3D bioprinting of tissues and organs for regenerative medicine. Adv. Drug Deliv. Rev. 132, 296–332 (2018)

    Article  Google Scholar 

  63. Bartik, A.W., Bertrand, M., Cullen, Z., Glaeser, E.L., Luca, M., Stanton, C.: The impact of COVID-19 on small business outcomes and expectations. Proc. Natl. Acad. Sci. 117(30), 17656–17666 (2020)

    Article  Google Scholar 

  64. Shokrani, A., Loukaides, E.G., Elias, E., Lunt, A.J.: Exploration of alternative supply chains and distributed manufacturing in response to COVID-19; a case study of medical face shields. Mater. Des. 192, 108749 (2020)

    Google Scholar 

  65. Banerjee, S.S., Burbine, S., Kodihalli Shivaprakash, N., Mead, J.: 3D-printable PP/SEBS thermoplastic elastomeric blends: Preparation and properties. Polymers 11(2), 347 (2019)

    Article  Google Scholar 

  66. Ishack, S., Lipner, S.R.: Applications of 3D printing technology to address COVID-19–related supply shortages. Am. J. Med. 133(7), 771–773 (2020)

    Article  Google Scholar 

  67. Meglioli, M., Toffoli, A., Macaluso, G.M., Catros, S.: 3D printing workflows for printing individualized personal protective equipment: an overview. Trans. Add. Manuf. Meets Med. 2(1) (2020)

    Google Scholar 

  68. Amin, D., Nguyen, N., Roser, S.M., Abramowicz, S.: 3D printing of face shields during COVID-19 pandemic: a technical note. J. Oral Maxillofacial Surg. (2020)

    Google Scholar 

  69. Viera-Artiles, J., Valdiande, J.J.: 3D-printable headlight face shield adapter. Personal protective equipment in the COVID-19 era. Am. J. Otolaryngol. 41(5), 102576 (2020)

    Google Scholar 

  70. Erickson, M.M., Richardson, E.S., Hernandez, N.M., Bobbert, D.W., II., Gall, K., Fearis, P.: Helmet modification to PPE with 3D printing during the COVID-19 pandemic at Duke University Medical Center: a novel technique. J. Arthroplasty 35(7), S23–S27 (2020)

    Article  Google Scholar 

  71. Jafferson, J.M., Pattanashetti, S.: Use of 3D printing in production of personal protective equipment (PPE)-a review. Mater. Today: Proc. (2021)

    Google Scholar 

  72. Chen, K.L., Wang, S.J., Chuang, C., Huang, L.Y., Chiu, F.Y., Wang, F.D., Lin, Y.T., Chen, W.M.: Novel design for door handle—a potential technology to reduce hand contamination in the COVID-19 pandemic

    Google Scholar 

  73. François, P.M., Bonnet, X., Kosior, J., Adam, J., Khonsari, R.H.: 3D-printed contact-free devices designed and dispatched against the COVID-19 pandemic: the 3D COVID initiative. J. Stomatology, oral Maxillofac. Surg. (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ruban, R., Rajashekhar, V.S., Nivedha, B., Mohit, H., Sanjay, M.R., Siengchin, S. (2022). Role of Additive Manufacturing in Biomedical Engineering. In: Khan, M.A., Jappes, J.T.W. (eds) Innovations in Additive Manufacturing. Springer Tracts in Additive Manufacturing. Springer, Cham. https://doi.org/10.1007/978-3-030-89401-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89401-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89400-9

  • Online ISBN: 978-3-030-89401-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics