Skip to main content

Unraveling the Molecular Impact of Sperm DNA Damage on Human Reproduction

  • Chapter
  • First Online:
Oxidative Stress and Toxicity in Reproductive Biology and Medicine

Abstract

Semen analysis is the cornerstone in the investigation of fertility status of male partner. However, more advanced tests have emerged including the analysis of sperm chromatin integrity and DNA damage as markers of semen quality. This is of particular interest, as preserving the genetic information is essential to achieve a successful reproductive event. Moreover, the presence of unrepaired DNA lesions can affect cellular functions, resulting in the onset of pathological conditions associated with male infertility, and the transmission of diseases to the offspring. Hence, in this chapter, we aim to review the main factors leading to sperm DNA damage, along with the different types of damage which can occur. Furthermore, molecular mechanisms involved in DNA repair during spermatogenesis or after fertilization of the oocyte are described, and the laboratory techniques currently used in diagnostics and research, for the analysis of sperm DNA damage are also presented. Finally, the impact of sperm DNA damage on reproductive outcomes such as fertilization and pregnancy rates will be discussed with a focus on animal and human studies, along with the identification of new markers of sperm chromatin integrity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

8-OHdG:

8-hydroxyguanosine

APE1:

AP endonuclease1

AZF:

Azoospermia factor

BER:

Base excision repair

DAPI:

4′,6-diamidino-2-phenylindole

DDR:

DNA damage response

DFI:

DNA fragmentation index

DSB:

Double-strand break

dUTP:

Deoxyuridine triphosphate

FEN-1:

Flap endonuclease-1

GG-NER:

Global genome NER

HSPA2:

Heat shock protein

HR:

Homologous recombination

IUI:

Intrauterine insemination

miRNAs:

microRNAs

MMEJ:

Microhomology-mediated end joining pathway

mtDNA:

Mitochondrial DNA

NAHR:

Non-allelic homologous recombination

NHEJ:

Nonhomologous end-joining

NER:

Nucleotide excision repair

NGS:

Next generation sequencing

ORP:

Oxidation-reduction potential

PCNA:

Proliferating cell nuclear antigen

PARP:

Poly (ADP-ribose) polymerase

Q-FISH:

Quantitative fluorescent in situ hybridization

RPL:

Recurrent pregnancy loss

RR:

Relative risk

RPA:

Replication protein-A

RNA pol II:

RNA polymerase II

rNTPs:

Ribose nucleoside triphosphate

ROS:

Reactive oxygen species

SCD:

Sperm chromatin dispersion

SCSA:

Sperm chromatin structure assay

STS-PCR:

Sequence-tagged site polymerase chain reaction

SSB:

Single-strand break

ssDNA:

Single-stranded DNA

TC-NER:

Transcription-coupled NER

TERC:

Telomerase RNA component

TERT:

Telomerase reverse transcriptase

TUNEL:

Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling

XRCC1:

X-Ray cross-complementing protein 1.

References

  1. Zegers-Hochschild F, Adamson GD, Dyer S, et al. The international glossary on infertility and fertility care, 2017. Hum Reprod. 2017;32(9):1786–801.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hamada A, Esteves SC, Nizza M, et al. Unexplained male infertility: diagnosis and management. Hum Androl. 2011;1(1):2–16.

    Article  Google Scholar 

  3. Agarwal A, Parekh N, Panner Selvam M, et al. Male oxidative stress infertility (MOSI): proposed terminology and clinical practice guidelines for management of idiopathic male infertility. World J Mens Health. 2019;37(3):296–312.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Baldi E. Genetic damage in human spermatozoa. 2nd ed. Baldi E, Muratori M, editors. Vol. 1166. Springer; 2014. XIII, 210.

    Google Scholar 

  5. Lindahl T, Barnes DE. Repair of endogenous DNA damage. Cold Spring Harb Symp Quant Biol. 2000;65:127–33.

    Article  CAS  PubMed  Google Scholar 

  6. Poetsch AR. The genomics of oxidative DNA damage, repair, and resulting mutagenesis. Comput Struct Biotechnol J. 2020;18:207–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kunkel T. Evolving views of DNA replication (in)fidelity. Cold Spring Harb Symp Quant Biol. 2009;74:91–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Potenski CJ, Klein HL. How the misincorporation of ribonucleotides into genomic DNA can be both harmful and helpful to cells. Nucleic Acids Res. 2014;42(16):10226–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. McElhinny SAN, Kumar D, Clark AB, et al. Genome instability due to ribonucleotide incorporation into DNA. Nat Chem Biol. 2010;6(10):774–81.

    Article  CAS  Google Scholar 

  10. Lujan S, Williams J, Clausen A, et al. Evidence that ribonucleotides are signals for mismatch repair of leading strand replication errors. Mol Cell. 2013;50(3):437–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bush NG, Evans-roberts K, Maxwell A. DNA Topoisomerases. EcoSal Plus. 2015;6(2):1–34.

    Article  CAS  Google Scholar 

  12. Wilson DM, Barsky D. The major human abasic endonuclease: formation, consequences and repair of abasic lesions in DNA. Mutat Res – DNA Repair. 2001;485(4):283–307.

    Article  CAS  PubMed  Google Scholar 

  13. Lindahl T. Instability and decay of the primary structure of DNA. Nature. 1993;362(6422):709–15.

    Article  CAS  PubMed  Google Scholar 

  14. Vignard J, Mirey G, Salles B. Ionizing-radiation induced DNA double-strand breaks: a direct and indirect lighting up. Radiother Oncol. 2013;108(3):362–9.

    Article  CAS  PubMed  Google Scholar 

  15. Mullenders LHF. Solar UV damage to cellular DNA: from mechanisms to biological effects. Photochem Photobiol Sci. 2018;17(12):1842–52.

    Article  CAS  PubMed  Google Scholar 

  16. Fu D, Calvo J, a, Samson LD. SERIES: genomic instability in cancer balancing repair and tolerance of DNA damage caused by alkylating agents. Nat Rev Cancer. 2013;12(2):104–20.

    Article  CAS  Google Scholar 

  17. Jalal N, Surendranath AR, Pathak JL, et al. Bisphenol A (BPA) the mighty and the mutagenic. Toxicol Rep. June 2017;2018(5):76–84.

    Google Scholar 

  18. Zengin N, Yüzbaşioĝlu D, Ünal F, et al. The evaluation of the genotoxicity of two food preservatives: sodium benzoate and potassium benzoate. Food Chem Toxicol. 2011;49(4):763–9.

    Article  CAS  PubMed  Google Scholar 

  19. Pandir D. DNA damage in human germ cell exposed to the some food additives in vitro. Cytotechnology. 2016;68(4):725–33.

    Article  CAS  PubMed  Google Scholar 

  20. Levinson G, Gutman GA. Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol. 1987;4(3):203–21.

    CAS  PubMed  Google Scholar 

  21. Carey LB. RNA polymerase errors cause splicing defects and can be regulated by differential expression of RNA polymerase subunits. Elife. 2015;4:e09945.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Baskaran S, Finelli R, Agarwal A. Reactive oxygen species in male reproduction: a boon or a bane? Andrologia. 2020;00:e13577.

    Google Scholar 

  23. Tremblay S, Wagner JR. Dehydration, deamination and enzymatic repair of cytosine glycols from oxidized poly(dG-dC) and poly(dI-dC). Nucleic Acids Res. 2008;36(1):284–93.

    Article  CAS  PubMed  Google Scholar 

  24. Jena NR, Mishra PC. Formation of ring-opened and rearranged products of guanine: mechanisms and biological significance. Free Radic Biol Med. 2012 Jul 1;53(1):81–94.

    Article  CAS  PubMed  Google Scholar 

  25. Drabløs F, Feyzi E, Aas PA, et al. Alkylation damage in DNA and RNA – repair mechanisms and medical significance. DNA Repair (Amst). 2004 Nov 2;3(11):1389–407.

    Article  PubMed  CAS  Google Scholar 

  26. Dutta S, Chowdhury G, Gates KS. Interstrand cross-links generated by abasic sites in duplex DNA. J Am Chem Soc. 2007;129(7):1852–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gates K. An overview of chemical processes that damage cellular DNA: spontaneous hydrolysis, alkylation, and reactions with radicals. Chem Res Toxicol. 2009;22(11):1747–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Banaś AK, Zgłobicki P, Kowalska E, et al. All you need is light. Photorepair of uv-induced pyrimidine dimers. Genes (Basel). 2020;11(11):1–17.

    Article  CAS  Google Scholar 

  29. Tommasi S, Denissenko MF, Pfeifer GP. Sunlight induces pyrimidine dimers preferentially at 5-methylcytosine bases. Cancer Res. 1997;57(21):4727–30.

    CAS  PubMed  Google Scholar 

  30. Noll DM, McGregor Mason T, Miller PS. Formation and repair of interstrand cross-links in DNA. Chem Rev. 2006;106(2):277–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Muratori M, Tamburrino L, Marchiani S, et al. Investigation on the origin of sperm DNA fragmentation: role of apoptosis, immaturity and oxidative stress. Mol Med. 2015 Jan 30;21(1):109–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sakkas D, Mariethoz E, St. John JC. Abnormal sperm parameters in humans are indicative of an abortive apoptotic mechanism linked to the fas-mediated pathway. Exp Cell Res. 1999;251(2):350–5.

    Article  CAS  PubMed  Google Scholar 

  33. Esterbauer H, Muskiet F, Horrobin DF. Cytotoxicity and genotoxicity of lipid-oxidation products. Am J Clin Nutr. 1993;57(5 Suppl)

    Google Scholar 

  34. Łuczaj W, Skrzydlewska E. DNA damage caused by lipid peroxidation products. Cell Mol Biol Lett. 2003;8(2):391–413.

    PubMed  Google Scholar 

  35. Turner K, Vasu V, Griffin D. Telomere biology and human phenotype. Cells. 2019;8(73):1–19.

    Google Scholar 

  36. Burgers PMJ. Polymerase dynamics at the eukaryotic DNA replication fork. J Biol Chem. 2009;284(7):4041–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shay JW, Wright WE. Hayflick, his limit, and cellular ageing. Nat Rev Mol Cell Biol. 2000;1(1):72–6.

    Article  CAS  PubMed  Google Scholar 

  38. Kimura M, Cherkas LF, Kato BS, et al. Offspring’s leukocyte telomere length, paternal age, and telomere elongation in sperm. PLoS Genet. 2008;4(2):e37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Barnes R, Fouquerel E, Opresko P. The impact of oxidative DNA damage and stress on telomere homeostasis. Mech Ageing Dev. 2019;177:37–45.

    Article  CAS  PubMed  Google Scholar 

  40. Rocca MS, Speltra E, Menegazzo M, et al. Sperm telomere length as a parameter of sperm quality in normozoospermic men. Hum Reprod. 2016;31(6):1158–63.

    Article  CAS  PubMed  Google Scholar 

  41. Thilagavathi J, Kumar M, Mishra SS, et al. Analysis of sperm telomere length in men with idiopathic infertility. Arch Gynecol Obstet. 2013;287(4):803–7.

    Article  CAS  PubMed  Google Scholar 

  42. Yang Q, Zhang N, Zhao F, et al. Processing of semen by density gradient centrifugation selects spermatozoa with longer telomeres for assisted reproduction techniques. Reprod Biomed Online. 2015;31(1):44–50.

    Article  PubMed  Google Scholar 

  43. Sadeghi-Nejad H, Oates RD. The Y chromosome and male infertility. Curr Opin Urol. 2008 Nov;18(6):628–32.

    Article  PubMed  Google Scholar 

  44. Ferlin A, Arredi B, Speltra E, et al. Molecular and clinical characterization of Y chromosome microdeletions in infertile men: a 10-year experience in Italy. J Clin Endocrinol Metab. 2007;92(3):762–70.

    Article  CAS  PubMed  Google Scholar 

  45. Vogt PH, Edelmann A, Kirsch S, et al. Human Y chromosome azoospermia factors (AZF) mapped to different subregions in Yq11. Hum Mol Genet. 1996;5(7):933–43.

    Article  CAS  PubMed  Google Scholar 

  46. Yu XW, Wei ZT, Jiang YT, et al. Y chromosome azoospermia factor region microdeletions and transmission characteristics in azoospermic and severe oligozoospermic patients. Int J Clin Exp Med. 2015;8(9):14634–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kamp C, Hirschmann P, Voss H, et al. Two long homologous retroviral sequence blocks in proximal Yq11 cause AZFa microdeletions as a result of intrachromosomal recombination events. Hum Mol Genet. 2000;9(17):2563–72.

    Article  CAS  PubMed  Google Scholar 

  48. Gunes S, Esteves SC. Role of genetics and epigenetics in male infertility. Andrologia. 2021 Feb 1;53(1):e13586.

    Article  PubMed  Google Scholar 

  49. Liu Y, Lu C, Yang Y, et al. Influence of histone tails and H4 tail acetylations on nucleosome- nucleosome interactions. J Mol Biol. 2011 Dec 16;414(5):749–64.

    Article  CAS  PubMed  Google Scholar 

  50. Smeenk G, Wiegant WW, Marteijn JA, et al. Poly(ADP-ribosyl)ation links the chromatin remodeler SMARCA5/SNF2H to RNF168-dependent DNA damage signaling. J Cell Sci. 2013;126(4):889–903.

    CAS  PubMed  Google Scholar 

  51. Scully R, Xie A. Double strand break repair functions of histone H2AX. Mutat Res – Fundam Mol Mech Mutagen. 2013;750(1–2):5–14.

    Article  CAS  Google Scholar 

  52. Steger K, Balhorn R. Sperm nuclear protamines: a checkpoint to control sperm chromatin quality. J Vet Med Ser C Anat Histol Embryol. 2018;47(4):273–9.

    Article  Google Scholar 

  53. Roest HP, Van Klaveren J, De Wit J, et al. Inactivation of the HR6B ubiquitin-conjugating DNA repair enzyme in mice causes male sterility associated with chromatin modification. Cell. 1996 Sep 6;86(5):799–810.

    Article  CAS  PubMed  Google Scholar 

  54. Rahiminia T, Yazd EF, Fesahat F, et al. Sperm chromatin and DNA integrity, methyltransferase mRNA levels, and global DNA methylation in oligoasthenoteratozoospermia. Clin Exp Reprod Med. 2018;45(1):17–24.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Laqqan M, Hammadeh ME. Alterations in DNA methylation patterns and gene expression in spermatozoa of subfertile males. Andrologia. 2018;50(3):1–9.

    Article  Google Scholar 

  56. Krokan HE, Bjoras M. Base excision repair. In: Friedberg E, Elledge S, Lehmann A, Lindahl T, Muzi-Falconi M, editors. Additional Perspectives on DNA Repair, Mutagenesis, and Other Responses to DNA Damage. Cold Spring Harbor Laboratory Press; 2013. p. a012583.

    Google Scholar 

  57. Stivers JT, Jiang YL. A mechanistic perspective on the chemistry of DNA repair glycosylases. Chem Rev. 2003 Jul;103(7):2729–59.

    Article  CAS  PubMed  Google Scholar 

  58. Cappelli E, Taylor R, Cevasco M, et al. Involvement of XRCC1 and DNA ligase III gene products in DNA base excision repair. J Biol Chem. 1997 Sep 19;272(38):23970–5.

    Article  CAS  PubMed  Google Scholar 

  59. Sung JS, Demple B. Roles of base excision repair subpathways in correcting oxidized abasic sites in DNA. FEBS J. 2006;273(8):1620–9.

    Article  CAS  PubMed  Google Scholar 

  60. Scharer O. Nucleotide excision repair in eukaryotes. In: Friedberg E, Elledge S, Lehmann A, Lindahl T, Muzi-Falconi M, editors. Additional Perspectives on DNA Repair, Mutagenesis, and Other Responses to DNA Damage. Cold Spring Harbor Laboratory Press; 2013. p. 341–4.

    Google Scholar 

  61. Spivak G. Nucleotide excision repair in humans. DNA Repair. 2015;36:13–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fagbemi AF, Orelli B, Schärer OD. Regulation of endonuclease activity in human nucleotide excision repair. DNA Repair (Amst). 2011 Jul 15;10(7):722–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jiricny J. Postreplicative mismatch repair. Cold Spring Harb Perspect Biol. 2013 Apr;5(4):1–23.

    Article  CAS  Google Scholar 

  64. Weßbecher IM, Brieger A. Phosphorylation meets DNA mismatch repair. DNA Repair (Amst). 2018 Dec 1;72:107–14.

    Article  PubMed  CAS  Google Scholar 

  65. Ijsselsteijn R, Jansen JG, de Wind N. DNA mismatch repair-dependent DNA damage responses and cancer. DNA Repair (Amst). 2020 Sep;1(93):102923.

    Article  CAS  Google Scholar 

  66. Paul Solomon Devakumar LJ, Gaubitz C, Lundblad V, et al. Effective mismatch repair depends on timely control of PCNA retention on DNA by the Elg1 complex. Nucleic Acids Res. 2019 Jul 26;47(13):6826–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Bateman AC. DNA mismatch repair proteins: scientific update and practical guide. J Clin Pathol. 2021;74:264–8.

    Article  CAS  PubMed  Google Scholar 

  68. Huang Y, Li GM. DNA mismatch repair in the context of chromatin. Cell Biosci. 2020;10(10):1–8.

    Google Scholar 

  69. Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461(7267):1071–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Her J, Bunting SF. How cells ensure correct repair of DNA double-strand breaks. J Biol Chem. 2018;293(27):10502–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Boulton SJ, Jackson SP. Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways. EMBO J. 1996;15(18):5093–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Huertas P, Jackason SP. Human CtIP mediates cell cycle control of DNA end resection and double strand break repair. J Biol Chem. 2009;284(14):9558–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lee KJ, Saha J, Sun J, et al. Phosphorylation of Ku dictates DNA double-strand break (DSB) repair pathway choice in S phase. Nucleic Acids Res. 2015;44(4):1732–45.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Reynolds P, Anderson JA, Harper JV, et al. The dynamics of Ku70/80 and DNA-PKcs at DSBs induced by ionizing radiation is dependent on the complexity of damage. Nucleic Acids Res. 2012;40(21):10821–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ranjha L, Howard SM, Cejka P. Main steps in DNA double-strand break repair: an introduction to homologous recombination and related processes. Chromosoma. 2018;127(2):187–214.

    Article  CAS  PubMed  Google Scholar 

  76. Johzuka K, Ogawa H. Interaction of Mre11 and Rad50: two proteins required for DNA repair and meiosis-specific double-strand break formation in Saccharomyces cerevisiae. Genetics. 1995;139(4):1521–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Huertas P. DNA resection in eukaryotes: deciding how to fix the break. Nat Struct Mol Biol. 2010;17(1):11–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ramsden DA, Geliert M. Ku protein stimulates DNA end joining by mammalian DNA ligases: a direct role for Ku in repair of DNA double-strand breaks. EMBO J. 1998;17(2):609–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Huang J, Dynan WS. Reconstitution of the mammalian DNA double-strand break end-joining reaction reveals a requirement for an Mre11/Rad50/NBS1-containing fraction. Nucleic Acids Res. 2002;30(3):667–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ma Y, Pannicke U, Schwarz K, et al. Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell. 2002;108(6):781–94.

    Article  CAS  PubMed  Google Scholar 

  81. Chang HHY, Pannunzio NR, Adachi N, et al. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol. 2017;18(8):495–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Deng SK, Gibb B, De Almeida MJ, et al. RPA antagonizes microhomology-mediated repair of DNA double-strand breaks. Nat Struct Mol Biol. 2014;21(4):405–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Howard SM, Yanez DA, Stark JM. DNA damage response factors from diverse pathways, including DNA crosslink repair, mediate alternative end joining. PLoS Genet. 2015;11(1):1–25.

    Article  CAS  Google Scholar 

  84. Mateos-Gomez P, Kent T, Deng S, et al. The helicase domain of Polθ counteracts RPA to promote alt- NHEJ. Nat Struct Mol Biol. 2017;24(12):1116–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gunes S, Al-Sadaan M, Agarwal A. Spermatogenesis, DNA damage and DNA repair mechanisms in male infertility. Reprod Biomed Online. 2015;31(3):309–19.

    Article  CAS  PubMed  Google Scholar 

  86. Ahmed EA, Scherthan H, de Rooij DG. DNA double strand break response and limited repair capacity in mouse elongated spermatids. Int J Mol Sci. 2015 Dec 16;16(12):29923–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Boiteux S, Radicella JP. Base excision repair of 8-hydroxyguanine protects DNA from endogenous oxidative stress. Biochimie. 1999;81(1–2):59–67.

    Article  CAS  PubMed  Google Scholar 

  88. Smith TB, Dun MD, Smith ND, et al. The presence of a truncated base excision repair pathway in human spermatozoa that is mediated by OGG1. J Cell Sci. 2013 Mar 15;126(6):1488–97.

    CAS  PubMed  Google Scholar 

  89. Matsuda Y, Tobari I. Repair capacity of fertilized mouse eggs for X-ray damage induced in sperm and mature oocytes. Mutat Res. 1989;210(1):35–47.

    Article  CAS  PubMed  Google Scholar 

  90. Jaroudi S, Kakourou G, Cawood S, et al. Expression profiling of DNA repair genes in human oocytes and blastocysts using microarrays. Hum Reprod. 2009;24(10):2649–55.

    Article  CAS  PubMed  Google Scholar 

  91. Menezo Y, Russo GL, Tosti E, et al. Expression profile of genes coding for DNA repair in human oocytes using pangenomic microarrays, with a special focus on ROS linked decays. J Assist Reprod Genet. 2007;24(11):513–20.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Ahmadi A, Ng SC. Fertilizing ability of DNA-damaged spermatozoa. J Exp Zool. 1999 Nov;284(6):696–704.

    Article  CAS  PubMed  Google Scholar 

  93. Horta F, Catt S, Ramachandran P, et al. Female ageing affects the DNA repair capacity of oocytes in IVF using a controlled model of sperm DNA damage in mice. Hum Reprod. 2020;35(3):529–44.

    Article  CAS  PubMed  Google Scholar 

  94. Grøndahl ML, Yding Andersen C, Bogstad J, et al. Gene expression profiles of single human mature oocytes in relation to age. Hum Reprod. 2010;25(4):957–68.

    Article  PubMed  CAS  Google Scholar 

  95. Marchetti F, Essers J, Kanaar R, et al. Disruption of maternal DNA repair increases sperm-derived chromosomal aberrations. Proc Natl Acad Sci USA. 2007;104(45):17725–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Fernández JL, Muriel L, Rivero MT, et al. The sperm chromatin dispersion test: a simple method for the determination of sperm DNA fragmentation. J Androl. 2003 Jan;24(1):59–66.

    PubMed  Google Scholar 

  97. Fernández JL, Muriel L, Goyanes V, et al. Halosperm® is an easy, available, and cost-effective alternative for determining sperm DNA fragmentation. Fertil Steril. 2005;84(4):860.

    Article  PubMed  Google Scholar 

  98. Velez de la Calle JF, Muller A, Walschaerts M, et al. Sperm deoxyribonucleic acid fragmentation as assessed by the sperm chromatin dispersion test in assisted reproductive technology programs: results of a large prospective multicenter study. Fertil Steril. 2008;90(5):1792–9.

    Article  PubMed  Google Scholar 

  99. Evenson DP. Sperm Chromatin Structure Assay (SCSA®). Methods Mol Biol. 2013;927:147–64.

    Article  CAS  PubMed  Google Scholar 

  100. Evenson DP, Jost LK, Marshall D, et al. Utility of the sperm chromatin structure assay as a diagnostic and prognostic tool in the human fertility clinic. Hum Reprod. 1999;14(4):1039–49.

    Article  CAS  PubMed  Google Scholar 

  101. Bungum M, Bungum L, Giwercman A. Sperm chromatin structure assay (SCSA): a tool in diagnosis and treatment of infertility. Asian J Androl. 2011;13(1):69–75.

    Article  CAS  PubMed  Google Scholar 

  102. Evenson DP, Kasperson K, Wixon RL. Analysis of sperm DNA fragmentation using flow cytometry and other techniques. Soc Reprod Fertil Suppl. 2007;65(August):93–113.

    CAS  PubMed  Google Scholar 

  103. Miciński P, Pawlicki K, Wielgus E, et al. The sperm chromatin structure assay (SCSA) as prognostic factor in IVF/ICSI program. Reprod Biol. 2009;9(1):65–70.

    Article  PubMed  Google Scholar 

  104. Sharma R, Ahmad G, Esteves SC, et al. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay using bench top flow cytometer for evaluation of sperm DNA fragmentation in fertility laboratories: protocol, reference values, and quality control. J Assist Reprod Genet. 2016;33:291–300.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Sharma RK, Sabanegh E, Mahfouz R, et al. TUNEL as a test for sperm DNA damage in the evaluation of male infertility. Urology. 2010 Dec;76(6):1380–6.

    Article  PubMed  Google Scholar 

  106. Sergerie M, Laforest G, Bujan L, et al. Sperm DNA fragmentation: threshold value in male fertility. Hum Reprod. 2005;20(12):3446–51.

    Article  CAS  PubMed  Google Scholar 

  107. Benchaib M, Braun V, Lornage J, et al. Sperm DNA fragmentation decreases the pregnancy rate in an assisted reproductive technique. Hum Reprod. 2003;18(5):1023–8.

    Article  PubMed  Google Scholar 

  108. Simon L, Carrell DT. Sperm DNA damage measured by comet assay. In: Carrell D, Aston K, editors. Spermatogenesis: Methods and Protocols. Springer; 2013. p. 137–46.

    Chapter  Google Scholar 

  109. Simon L, Lutton D, McManus J, et al. Sperm DNA damage measured by the alkaline comet assay as an independent predictor of male infertility and in vitro fertilization success. Fertil Steril. 2011;95(2):652–7.

    Article  PubMed  Google Scholar 

  110. Lewis SEM, Agbaje IM. Using the alkaline comet assay in prognostic tests for male infertility and assisted reproductive technology outcomes. Mutagenesis. 2008;23(3):163–70.

    Article  CAS  PubMed  Google Scholar 

  111. Faja F, Carlini T, Coltrinari G, et al. Human sperm motility: a molecular study of mitochondrial DNA, mitochondrial transcription factor A gene and DNA fragmentation. Mol Biol Rep. 2019;46(4):4113–21.

    Article  CAS  PubMed  Google Scholar 

  112. Darr CR, Moraes LE, Connon RE, et al. The relationship between mitochondrial DNA copy number and stallion sperm function. Theriogenology. 2017;94:94–9.

    Article  CAS  PubMed  Google Scholar 

  113. Grady JP, Murphy JL, Blakely EL, et al. Accurate measurement of mitochondrial DNA deletion level and copy number differences in human skeletal muscle. PLoS One. 2014;9(12):e114462.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. O’Hara R, Tedone E, Ludlow A, et al. Quantitative mitochondrial DNA copy number determination using droplet digital PCR with single cell resolution: a focus on aging and cancer. Genome Res. 2019;29(11):1878–88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Song GJ, Lewis V. Mitochondrial DNA integrity and copy number in sperm from infertile men. Fertil Steril. 2008;90(6):2238–44.

    Article  CAS  PubMed  Google Scholar 

  116. May-Panloup P, Chrétien MF, Savagner F, et al. Increased sperm mitochondrial DNA content in male infertility. Hum Reprod. 2003;18(3):550–6.

    Article  CAS  PubMed  Google Scholar 

  117. Wu H, Whitcomb BW, Huffman A, et al. Associations of sperm mitochondrial DNA copy number and deletion rate with fertilization and embryo development in a clinical setting. Hum Reprod. 2019;34(1):163–70.

    Article  CAS  PubMed  Google Scholar 

  118. Nelson WS, Prodöhl PA, Avise JC. Development and application of long-PCR for the assay of full-length animal mitochondrial DNA. Mol Ecol. 1996;5(6):807–10.

    Article  CAS  PubMed  Google Scholar 

  119. O’Connell M, McClure N, Lewis SEM. A comparison of mitochondrial and nuclear DNA status in testicular sperm from fertile men and those with obstructive azoospermia. Hum Reprod. 2002;17(6):1571–7.

    Article  PubMed  Google Scholar 

  120. Kao SH, Chao HT, Wei YH. Mitochondrial deoxyribonucleic acid 4977-bp deletion is associated with diminished fertility and motility of human sperm. Biol Reprod. 1995;52(4):729–36.

    Article  CAS  PubMed  Google Scholar 

  121. Amir S, Vakonaki E, Tsiminikaki K, et al. Sperm telomere length: diagnostic and prognostic biomarker in male infertility (Review). World Acad Sci J. 2020:259–63.

    Google Scholar 

  122. Yang Q, Zhao F, Dai S, et al. Sperm telomere length is positively associated with the quality of early embryonic development. Hum Reprod. 2015;30(8):1876–81.

    Article  CAS  PubMed  Google Scholar 

  123. Cariati F, Jaroudi S, Alfarawati S, et al. Investigation of sperm telomere length as a potential marker of paternal genome integrity and semen quality. Reprod Biomed Online. 2016;33(3):404–11.

    Article  CAS  PubMed  Google Scholar 

  124. Simoni M, Bakker E, Krausz C. EAA/EMQN best practice guidelines for molecular diagnosis of y-chromosomal microdeletions. State of the art 2004. Int J Androl. 2004;27(4):240–9.

    Article  CAS  PubMed  Google Scholar 

  125. Kozina V, Cappallo-Obermann H, Gromoll J, et al. A one-step real-time multiplex PCR for screening Y-chromosomal microdeletions without downstream amplicon size analysis. PLoS One. 2011;6(8):e23174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Harrington CT, Lin EI, Olson MT, et al. Fundamentals of pyrosequencing. Arch Pathol Lab Med. 2013;137(9):1296–303.

    Article  CAS  PubMed  Google Scholar 

  127. Masser DR, Stanford DR, Freeman WM. Targeted DNA methylation analysis by next-generation sequencing. J Vis Exp. 2015;96:1–11.

    Google Scholar 

  128. Hammoud SS, Cairns BR, Carrell DT. Analysis of gene-specific and genome-wide sperm DNA methylation. In: Carrell D, Aston K, editors. Spermatogenesis: Methods and Protocols. Springer; 2013. p. 451–8.

    Chapter  Google Scholar 

  129. He W, Sun Υ, Zhang S, et al. Profiling the DNA methylation patterns of imprinted genes in abnormal semen samples by next-generation bisulfite sequencing. J Assist Reprod Genet. 2020;37(9):2211–21.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Benchaib M, Ajina M, Lornage J, et al. Quantitation by image analysis of global DNA methylation in human spermatozoa and its prognostic value in in vitro fertilization: A preliminary study. Fertil Steril. 2003;80(4):947–53.

    Article  PubMed  Google Scholar 

  131. Marques PI, Fernandes S, Carvalho F, et al. DNA methylation imprinting errors in spermatogenic cells from maturation arrest azoospermic patients. Andrology. 2017;5(3):451–9.

    Article  CAS  PubMed  Google Scholar 

  132. Aston KI, Uren PJ, Jenkins TG, et al. Aberrant sperm DNA methylation predicts male fertility status and embryo quality. Fertil Steril. 2015;104(6):1388–97. e1–5

    Article  CAS  PubMed  Google Scholar 

  133. Urdinguio RG, Bayón GF, Dmitrijeva M, et al. Aberrant DNA methylation patterns of spermatozoa in men with unexplained infertility. Hum Reprod. 2015;30(5):1014–28.

    Article  CAS  PubMed  Google Scholar 

  134. Khambata K, Raut S, Deshpande S, et al. DNA methylation defects in spermatozoa of male partners from couples experiencing recurrent pregnancy loss. Hum Reprod. 2021;36(1):48–60.

    CAS  PubMed  Google Scholar 

  135. Rothkamm K, Löbrich M. Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc Natl Acad Sci USA. 2003;100(9):5057–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Ivashkevich AN, Martin OA, Smith AJ, et al. γH2AX foci as a measure of DNA damage: a computational approach to automatic analysis. Mutat Res. 2011;711(1–2):49–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Sharma A, Singh K, Almasan A. Histone H2AX phosphorylation: a marker for DNA damage. In: Bjergbæk L, editor. DNA Repair Protocols, Methods in Molecular Biology. New York: Springer; 2012. p. 613–26.

    Chapter  Google Scholar 

  138. Garolla A, Cosci I, Bertoldo A, et al. DNA double strand breaks in human spermatozoa can be predictive for assisted reproductive outcome. Reprod Biomed Online. 2015;31(1):100–7.

    Article  CAS  PubMed  Google Scholar 

  139. Coban O, Serdarogullari M, Yarkiner Z, et al. Investigating the level of DNA double-strand break in human spermatozoa and its relation to semen characteristics and IVF outcome using phospho-histone H2AX antibody as a biomarker. Andrology. 2019:1–6.

    Google Scholar 

  140. Zhong HZ, Lv FT, Deng XL, et al. Evaluating γH2AX in spermatozoa from male infertility patients. Fertil Steril. 2015;104(3):574–81.

    Article  CAS  PubMed  Google Scholar 

  141. London R. The structural basis of XRCC1-mediated DNA repair. DNA Repair. 2015;30:90–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Abbas Kadhum R, Abbas AW. Detection of XRCC1 expression and (8-OHdG) levels as a marker of oxidative DNA damage in individuals exposed to low dose of gamma rays. IOP Conf Ser Mater Sci Eng. 2019;557(1):012082.

    Article  Google Scholar 

  143. Singh P, Mitra P, Goyal T, et al. Evaluation of DNA damage and expressions of DNA repair gene in occupationally lead exposed workers (Jodhpur, India). Biol Trace Elem Res. 2021;199(5):1707–14.

    Article  CAS  PubMed  Google Scholar 

  144. Singh V, Kumar Mohanty S, Verma P, et al. XRCC1 deficiency correlates with increased DNA damage and male infertility. Mutat Res – Genet Toxicol Environ Mutagen. 2019;839(January):1–8.

    CAS  PubMed  Google Scholar 

  145. Li MW, Lloyd KCK. DNA fragmentation index (DFI) as a measure of sperm quality and fertility in mice. Sci Rep. 2020;10(1):1–11.

    CAS  Google Scholar 

  146. Kumaresan A, Johannisson A, Al-Essawe EM, et al. Sperm viability, reactive oxygen species, and DNA fragmentation index combined can discriminate between above- and below-average fertility bulls. J Dairy Sci. 2017 Jul 1;100(7):5824–36.

    Article  CAS  PubMed  Google Scholar 

  147. Waterhouse KE, Haugan T, Kommisrud E, et al. Sperm DNA damage is related to field fertility of semen from young Norwegian Red bulls. Reprod Fertil Dev. 2006;18(7):781–8.

    Article  CAS  PubMed  Google Scholar 

  148. Gliozzi TM, Turri F, Manes S, et al. The combination of kinetic and flow cytometric semen parameters as a tool to predict fertility in cryopreserved bull semen. Animal. 2017 Apr 11;11(11):1975–82.

    Article  CAS  PubMed  Google Scholar 

  149. Prinosilova P, Rybar R, Zajicova A, et al. DNA integrity in fresh, chilled and frozen-thawed canine spermatozoa. Vet Med (Praha). 2012;57(3):133–42.

    Article  CAS  Google Scholar 

  150. Castro R, Morales P, Parraguez VH. Post-thawing sperm quality in Chilean purebred stallions: effect of age and seasonality. J Equine Vet Sci. 2020 Sep;1(92):103170.

    Article  Google Scholar 

  151. Tang L, Rao M, Yang W, et al. Predictive value of the sperm DNA fragmentation index for low or failed IVF fertilization in men with mild-to-moderate asthenozoospermia. J Gynecol Obstet Hum Reprod. 2020;101868

    Google Scholar 

  152. Simon L, Brunborg G, Stevenson M, et al. Clinical significance of sperm DNA damage in assisted reproduction outcome. Hum Reprod. 2010;25(7):1594–608.

    Article  CAS  PubMed  Google Scholar 

  153. Green KA, Patounakis G, Dougherty MP, et al. Sperm DNA fragmentation on the day of fertilization is not associated with embryologic or clinical outcomes after IVF/ICSI. J Assist Reprod Genet. 2020;37(1):71–6.

    Article  PubMed  Google Scholar 

  154. Casanovas A, Ribas-Maynou J, Lara-Cerrillo S, et al. Double-stranded sperm DNA damage is a cause of delay in embryo development and can impair implantation rates. Fertil Steril. 2019;111(4):699–707.e1.

    Article  CAS  PubMed  Google Scholar 

  155. Ribas-Maynou J, Yeste M, Becerra-Tomás N, et al. Clinical implications of sperm DNA damage in IVF and ICSI: updated systematic review and meta-analysis. Biol Rev. 2021;1–17

    Google Scholar 

  156. Zhu YC, Wu TH, Li GG, et al. Decrease in fertilization and cleavage rates, but not in clinical outcomes for infertile men with AZF microdeletion of the y chromosome. Zygote. 2014;23:771–7.

    Article  PubMed  CAS  Google Scholar 

  157. Golin AP, Yuen W, Flannigan R. The effects of y chromosome microdeletions on in vitro fertilization outcomes, health abnormalities in offspring and recurrent pregnancy loss. Transl Androl Urol. 2021;10(3):1457–66.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Zhang L, Ming MJ, Li M, et al. Poor intracytoplasmic sperm injection outcome in infertile males with azoospermia factor c microdeletions. Fertil Steril. 2021;2:1–8.

    Google Scholar 

  159. Zhu Y, Wu T, Li G, et al. The sperm quality and clinical outcomes were not affected by sY152 deletion in Y chromosome for oligozoospermia or azoospermia men after ICSI treatment. Gene. 2015;573(2):233–8.

    Article  CAS  PubMed  Google Scholar 

  160. Liu XY, Wang RX, Fu Y, et al. Outcomes of intracytoplasmic sperm injection in oligozoospermic men with Y chromosome AZFb or AZFc microdeletions. Andrologia. 2017 Feb 1;49(1)

    Google Scholar 

  161. Nasr-Esfahani MH, Razavi S, Tavalaee M. Failed fertilization after ICSI and spermiogenic defects. Fertil Steril. 2008 Apr;89(4):892–8.

    Article  PubMed  Google Scholar 

  162. Benchaib M, Braun V, Ressnikof D, et al. Influence of global sperm DNA methylation on IVF results. Hum Reprod. 2005;20(3):768–73.

    Article  CAS  PubMed  Google Scholar 

  163. Braude P, Bolton V, Moore S. Human gene expression first occurs between the four- and eight-cell stages of preimplantation development. Nature. 1988;332:459–61.

    Article  CAS  PubMed  Google Scholar 

  164. Seifi-Jamadi A, Zhandi M, Kohram H, et al. Influence of seasonal differences on semen quality and subsequent embryo development of Belgian Blue bulls. Theriogenology. 2020;158:8–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Fortes MRS, Satake N, Corbet DH, et al. Sperm protamine deficiency correlates with sperm DNA damage in Bos indicus bulls. Andrology. 2014;2(3):370–8.

    Article  CAS  PubMed  Google Scholar 

  166. Dogan S, Vargovic P, Oliveira R, et al. Sperm protamine-status correlates to the fertility of breeding bulls. Biol Reprod. 2015;92(4): 92, 1–9.

    Google Scholar 

  167. Castro LS, Siqueira AFP, Hamilton TRS, et al. Effect of bovine sperm chromatin integrity evaluated using three different methods on in vitro fertility. Theriogenology. 2018;107:142–8.

    Article  CAS  PubMed  Google Scholar 

  168. Kipper BH, Trevizan JT, Carreira JT, et al. Sperm morphometry and chromatin condensation in Nelore bulls of different ages and their effects on IVF. Theriogenology. 2017;87:154–60.

    Article  CAS  PubMed  Google Scholar 

  169. Didion BA, Kasperson KM, Wixon RL, et al. Boar fertility and sperm chromatin structure status: a retrospective report. J Androl. 2009;30(6):655–60.

    Article  PubMed  Google Scholar 

  170. Kawase Y, Wada NA, Jishage K. Evaluation of DNA fragmentation of freeze-dried mouse sperm using a modified sperm chromatin structure assay. Theriogenology. 2009;72(8):1047–53.

    Article  CAS  PubMed  Google Scholar 

  171. Palazzese L, Gosálvez J, Anzalone DA, et al. DNA fragmentation in epididymal freeze-dried ram spermatozoa impairs embryo development. J Reprod Dev. 2018;64(5):393–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Crespo F, Quiñones-Pérez C, Ortiz I, et al. Seasonal variations in sperm DNA fragmentation and pregnancy rates obtained after artificial insemination with cooled-stored stallion sperm throughout the breeding season (spring and summer). Theriogenology. 2020;148:89–94.

    Article  CAS  PubMed  Google Scholar 

  173. Kumaresan A, Das Gupta M, Datta TK, et al. Sperm DNA integrity and male fertility in farm animals: a review. Front Vet Sci. 2020;7(321):1–15.

    Google Scholar 

  174. Upadhya D, Kalthur G, Kumar P, et al. Association between the extent of DNA damage in the spermatozoa, fertilization and developmental competence in preimplantation stage embryos. J Turkish Ger Gynecol Assoc. 2010;11(4):182–6.

    Article  Google Scholar 

  175. Fernández-Gonzalez R, Moreira PN, Pérez-Crespo M, et al. Long-term effects of mouse intracytoplasmic sperm injection with DNA-fragmented sperm on health and behavior of adult offspring. Biol Reprod. 2008;78(4):761–72.

    Article  PubMed  CAS  Google Scholar 

  176. Zini A. Are sperm chromatin and DNA defects relevant in the clinic? Syst Biol Reprod Med. 2011;57(1–2):78–85.

    Article  PubMed  Google Scholar 

  177. Chen Q, Zhao JY, Xue X, et al. The association between sperm DNA fragmentation and reproductive outcomes following intrauterine insemination, a meta analysis. Reprod Toxicol. 2019;86:50–5.

    Article  CAS  PubMed  Google Scholar 

  178. Sugihara A, Van Avermaete F, Roelant E, et al. The role of sperm DNA fragmentation testing in predicting intra-uterine insemination outcome: a systematic review and meta-analysis. Eur J Obstet Gynecol Reprod Biol. 2020;244:8–15.

    Article  CAS  PubMed  Google Scholar 

  179. Li Z, Wang L, Cai J, et al. Correlation of sperm DNA damage with IVF and ICSI outcomes: a systematic review and meta-analysis. J Assist Reprod Genet. 2006;23(9–10):367–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Zhao J, Zhang Q, Wang Y, et al. Whether sperm deoxyribonucleic acid fragmentation has an effect on pregnancy and miscarriage after in vitro fertilization/intracytoplasmic sperm injection: a systematic review and meta-analysis. Fertil Steril. 2014;102(4):998–1005. e8

    Article  CAS  PubMed  Google Scholar 

  181. Simon L, Zini A, Dyachenko A, et al. A systematic review and meta-analysis to determine the effect of sperm DNA damage on in vitro fertilization and intracytoplasmic sperm injection outcome. Asian J Androl. 2017;19(1):80–90.

    PubMed  Google Scholar 

  182. Zini A, Boman JM, Belzile E, et al. Sperm DNA damage is associated with an increased risk of pregnancy loss after IVF and ICSI: systematic review and meta-analysis. Hum Reprod. 2008;23(12):2663–8.

    Article  CAS  PubMed  Google Scholar 

  183. Ribas-Maynou J, García-Peiró A, Fernandez-Encinas A, et al. Double stranded sperm DNA breaks, measured by comet assay, are associated with unexplained recurrent miscarriage in couples without a female factor. PLoS One. 2012;7(9)

    Google Scholar 

  184. Osman A, Alsomait H, Seshadri S, et al. The effect of sperm DNA fragmentation on live birth rate after IVF or ICSI: a systematic review and meta-analysis. Reprod Biomed Online. 2015;30(2):120–7.

    Article  CAS  PubMed  Google Scholar 

  185. Tan J, Taskin O, Albert A, et al. Association between sperm DNA fragmentation and idiopathic recurrent pregnancy loss: a systematic review and meta-analysis. Reprod Biomed Online. 2019;38(6):951–60.

    Article  CAS  PubMed  Google Scholar 

  186. McQueen DB, Zhang J, Robins JC. Sperm DNA fragmentation and recurrent pregnancy loss: a systematic review and meta-analysis. Fertil Steril. 2019 Jul;112(1):54–60.e3.

    Article  PubMed  Google Scholar 

  187. Gonçalves C, Cunha M, Rocha E, et al. Y-chromosome microdeletions in nonobstructive azoospermia and severe oligozoospermia. Asian J Androl. 2017;19(3):338–45.

    Article  PubMed  Google Scholar 

  188. Aitken RJ, De Iuliis GN. Origins and consequences of DNA damage in male germ cells. Reprod Biomed Online. 2007 Jan 1;14(6):727–33.

    Article  CAS  PubMed  Google Scholar 

  189. Azpiazu R, Amaral A, Castillo J, et al. High-throughput sperm differential proteomics suggests that epigenetic alterations contribute to failed assisted reproduction. Hum Reprod. 2014;29(6):1225–37.

    Article  CAS  PubMed  Google Scholar 

  190. Douglas C, Parekh N, Kahn L, et al. A novel approach to improving the reliability of manual semen analysis: a paradigm shift in the workup of infertile men. World J Mens Health. 2021;39(2):172–85.

    Article  PubMed  Google Scholar 

  191. Agarwal A, Allamaneni SSR, Said TM. Chemiluminescence technique for measuring reactive oxygen species. Reprod Biomed Online. 2004;9(4):466–8.

    Article  CAS  PubMed  Google Scholar 

  192. Mahfouz R, Sharma R, Sharma D, et al. Diagnostic value of the total antioxidant capacity (TAC) in human seminal plasma. Fertil Steril. 2009;91(3):805–11.

    Article  PubMed  Google Scholar 

  193. Agarwal A, Bui AD. Oxidation-reduction potential as a new marker for oxidative stress: correlation to male infertility. Investig Clin Urol. 2017;58(6):385.

    Article  PubMed  PubMed Central  Google Scholar 

  194. Yuan R, Primakoff P, Myles DG. A role for the disintegrin domain of cyritestin, a sperm surface protein belonging to the ADAM family, in mouse sperm-egg plasma membrane adhesion and fusion. J Cell Biol. 1997;137(1):105–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Nixon B, Bromfield EG, Cui J, et al. Heat shock protein A2 (HSPA2): regulatory roles in germ cell development and sperm function. In: MacPhee D, editor. Advances in Anatomy Embryology and Cell Biology. Cham: Springer; 2017. p. 67–93.

    Google Scholar 

  196. Heidari M, Darbani S, Darbandi M, et al. Assessing the potential of HSPA2 and ADAM2 as two biomarkers for human sperm selection. Hum Fertil. 2020;23(2):123–33.

    Article  CAS  Google Scholar 

  197. Gagné JP, Moreel X, Gagné P, et al. Proteomic investigation of phosphorylation sites in poly(ADP-ribose) polymerase-1 and poly(ADP-ribose) glycohydrolase. J Proteome Res. 2009;8(2):1014–29.

    Article  PubMed  CAS  Google Scholar 

  198. Amours DD, Sallmann FR, Dixit VM, et al. Gain-of-function of poly(ADP-ribose) polymerase-1 upon cleavage by apoptotic proteases: implications for apoptosis. J Cell Sci. 2001;114(20):3771–8.

    Article  PubMed  Google Scholar 

  199. Mahfouz RZ, Sharma RK, Poenicke K, et al. Evaluation of poly(ADP-ribose) polymerase cleavage (cPARP) in ejaculated human sperm fractions after induction of apoptosis. Fertil Steril. 2009;91(5 Suppl):2210–20.

    Article  CAS  PubMed  Google Scholar 

  200. Kuo LJ, Yang LX. γ-H2AX- a novel biomaker for DNA double-strand breaks. In Vivo (Brooklyn). 2008;22(3):305–10.

    CAS  Google Scholar 

  201. Cleaver JE, Feeney L, Revet I. Phosphorylated H2Ax is not an unambiguous marker for DNA double strand breaks. Cell Cycle. 2011;10(19):3223–4.

    Article  CAS  PubMed  Google Scholar 

  202. Behrouzi B, Kenigsberg S, Alladin N, et al. Evaluation of potential protein biomarkers in patients with high sperm DNA damage. Syst Biol Reprod Med. 2013;59(3):153–63.

    Article  CAS  PubMed  Google Scholar 

  203. Li L, Li H, Tian Y, et al. Differential microRNAs expression in seminal plasma of normospermic patients with different sperm DNA fragmentation indexes. Reprod Toxicol. 2020;94:8–12.

    Article  CAS  PubMed  Google Scholar 

  204. Intasqui P, Camargo M, Del Giudice PT, et al. Unraveling the sperm proteome and post-genomic pathways associated with sperm nuclear DNA fragmentation. J Assist Reprod Genet. 2013 Sep 27;30(9):1187–202.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Agarwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Finelli, R., Moreira, B.P., Alves, M.G., Agarwal, A. (2022). Unraveling the Molecular Impact of Sperm DNA Damage on Human Reproduction. In: Kesari, K.K., Roychoudhury, S. (eds) Oxidative Stress and Toxicity in Reproductive Biology and Medicine. Advances in Experimental Medicine and Biology, vol 1358. Springer, Cham. https://doi.org/10.1007/978-3-030-89340-8_5

Download citation

Publish with us

Policies and ethics