Skip to main content

Sanitary Landfill Types and Design

  • Chapter
  • First Online:
Solid Waste Engineering and Management

Abstract

In terms of solid waste management, landfills are the favored disposal strategy. Before an area is established as a landfill, certain crucial things must be focused on and acted upon. In its most basic form, a landfill is a location where trash is “thrown” or “dumped.” However, developing a landfill necessitates a great deal of engineering expertise. A sanitary landfill is an engineered technique for disposing of solid waste on land that is designed to cause the least amount of environmental harm and inconvenience. As a result, the sanitary landfill design includes a detailed description and plan that ensures the safe and effective disposal of solid waste. This chapter goes through the types of sanitary landfills and the critical design requirements. Site selection, landfill liners, landfilling technology, and landfill cover system up to closure stage are all part of the sanitary landfill design. Every part must be properly designed; otherwise, the ecosystem will suffer. Because a sanitary landfill is a site where solid waste is disposed of in an engineered manner, the environmental effect is reduced or eliminated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

A :

Volume of waste to be disposed of

E :

Rate of compaction (kg/m3), average 600 kg/m3

G :

Area of land per year

H :

Total land area (m2)

I :

Land age (years)

J :

Ratio of total land area to effective land area (min.1.2)

L :

Area of land needed each year (m2)

T :

Height of the planned landfill (m)

V :

Volume of solid waste (m3/h)

References

  1. Povarova AI (2020) Accounts Chamber of the Russian Federation. Ekon. i Sotsialnye Peremeny

    Google Scholar 

  2. Sorg TJ, Hickman HL (1970) Sanitary landfill facts. US Bureau of Solid Waste Management, Washington, DC

    Google Scholar 

  3. Lau VL (2004) Case study on the management of waste materials in Malaysia. Forum Geookol 15(2):7–14

    Google Scholar 

  4. Idris A, Inanc B, Hassan MN (2004) Overview of waste disposal and landfills/dumps in Asian countries. J Mater Cycles Waste Manag 6(2):104–110

    Article  Google Scholar 

  5. Shimaoka T, Matsufuji Y, Hanashima M (2000) Characteristic and mechanism of semi-aerobic landfill on stabilization of solid waste. In: First intercontinental landfill research symposia

    Google Scholar 

  6. Tchobanoglous G, Theisen H, Vigil S (1993) Integrated solid waste management: engineering principles and management issues. McGraw-Hill, New York

    Google Scholar 

  7. McBean E (1995) Solid waste landfill engineering and design. Prentice Hall, Englewood Cliffs

    Google Scholar 

  8. Jackson C, Boyon N (2009) Earth Day: environmental issues. Statista Research Department, Oct 19, 2021

    Google Scholar 

  9. Eitzer BD (1995) Eimsshms of volatile organic chemicals from municipal solid waste composting facilities. Environ Sci Technol 29(4):896–902

    Article  CAS  Google Scholar 

  10. Bogner J (2008) Mitigation of global greenhouse gas emissions from waste: conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Working Group III (Mitigation). Waste Manag Res 26(1):11–32

    Article  Google Scholar 

  11. Josimović B, Marić I (2012) Methodology for the regional landfill site selection, Sustainable development in authoritative and leading edge content for environmental management. IntechOpen, Rijeka

    Book  Google Scholar 

  12. Tassi F, Montegrossi G, Vaselli O, Liccioli C, Moretti S, Nisi B (2009) Degradation of C2-C15 volatile organic compounds in a landfill cover soil. Sci Total Environ 407(15):4513–4525

    Article  CAS  Google Scholar 

  13. Chiriac R, De Araujos MJ, Carre J, Bayard R, Chovelon JM, Gourdon R (2011) Study of the VOC emissions from a municipal solid waste storage pilot-scale cell: comparison with biogases from municipal waste landfill site. Waste Manag 31(11):2294–2301

    Article  CAS  Google Scholar 

  14. Kim KH, Choi Y, Jeon E, Sunwoo Y (2005) Characterization of malodorous sulfur compounds in landfill gas. Atmos Environ 39(6):1103–1112

    Article  CAS  Google Scholar 

  15. De La Rosa DA, Velasco A, Rosas A, Volke-Sepúlveda T (2006) Total gaseous mercury and volatile organic compounds measurements at five municipal solid waste disposal sites surrounding the Mexico City metropolitan area. Atmos Environ 40(12):2079–2088

    Article  Google Scholar 

  16. Shin HC, Park JW, Park K, Song HC (2002) Removal characteristics of trace compounds of landfill gas by activated carbon adsorption. Environ Pollut 119(2):227–236

    Article  CAS  Google Scholar 

  17. Abiriga D, Vestgarden LS, Klempe H (2020) Groundwater contamination from a municipal landfill: effect of age, landfill closure, and season on groundwater chemistry. Sci Total Environ 737:140307

    Article  CAS  Google Scholar 

  18. Mouhoun-Chouaki S, Derridj A, Tazdaït D, Salah-Tazdaït R (2019) A study of the impact of municipal solid waste on some soil physicochemical properties: the case of the landfill of Ain-El-Hammam Municipality, Algeria. Appl Environ Soil Sci 2019:1–8

    Article  Google Scholar 

  19. Morales RGE, Toro AR, Morales L, GMA L (2018) Landfill fire and airborne aerosols in a large city: lessons learned and future needs. Air Qual Atmos Health 11(1):111–121

    Article  Google Scholar 

  20. Vaverková MD (2019) Landfill impacts on the environment—review. Geoscience 9(10):1–16

    Article  Google Scholar 

  21. Jaramillo J (2003) Guidelines for the design, construction and operation of manual sanitary landfills. Pan American Center for Sanitary Engineering and Environmental Science, Lima

    Google Scholar 

  22. The study on the safe closure and rehabilitation of landfill sites in malaysia (2004) Volume 3, Guideline for Safe Closure and Rehabilitation of MSW Landfill Sites, November 2004, Ministry of Housing and Local Government Malaysia

    Google Scholar 

  23. Landfill design, construction and operational practice (1997) Department of the Environment Great Britain (Transport and the Regions), HM Stationery Office, London

    Google Scholar 

  24. Terlecky PMJ (1980) Sanitary landfill. In: Wang LK, Pereira NC (eds) Solid waste processing and resource recovery. The Humana Press, Totowa, pp 227–267

    Chapter  Google Scholar 

  25. Townsend TG, Powell J, Jain P, Xu Q, Tolaymat T, Reinhart D (2015) Waste and landfill fundamentals. In: Sustainable practices for landfill design and operation. Springer, New York, pp 1–472

    Chapter  Google Scholar 

  26. Hughes KL, Christy AD, Heimlich JE (2008) Landfill types and liner systems. Extension Fact Sheet, pp 1–4

    Google Scholar 

  27. Goren S (2012) Design parameters and possible soil deformation in landfill areas. Int J Mod Res Eng Technol 43(3)

    Google Scholar 

  28. Eith AW, Koerner GR (1997) Assessment of HDPE geomembrane performance in a municipal waste landfill double liner system after eight years of service. Geotext Geomembr 15(4–6):277–287

    Article  Google Scholar 

  29. Ajmeri JR, Ajmeri CJ (2016) Developments in nonwoven as geotextiles. In: Advances in technical nonwovens. Elsevier, Amsterdam, pp 339–363

    Chapter  Google Scholar 

  30. Chen Y, Tang X, Zhan L (2010) Advances in environmental geotechnics, international. Springer, Dordrecht/London/New York

    Book  Google Scholar 

  31. Ören AH, Akar RÇ (2017) Swelling and hydraulic conductivity of bentonites permeated with landfill leachates. Appl Clay Sci 142:81–89

    Article  Google Scholar 

  32. Rowe RK (2020) Geosynthetic clay liners: perceptions and misconceptions. Geotext Geomembr 48(2):137–156

    Article  Google Scholar 

  33. Elbeshbishy E, Okoye F (2019) Improper disposal of household hazardous waste in landfill/municipal wastewater treatment plant. Municipal Solid Waste Management, Hosam El-Din Mostafa Saleh, IntechOpen, https://doi.org/10.5772/intechopen.81845. Available from: https://www.intechopen.com/chapters/64364

  34. Rowe RK, Islam MZ (2009) Impact of landfill liner time-temperature history on the service life of HDPE geomembranes. Waste Manag 29(10):2689–2699

    Article  CAS  Google Scholar 

  35. Widomski MK, Stěpniewski W, Musz-Pomorska A (2018) Clays of different plasticity as materials for landfill liners in rural systems of sustainable waste management. Sustainability 10(7):7–10

    Article  Google Scholar 

  36. de Correia NS, RCS C, Oluremi JR (2020) Feasibility of using CDW fine fraction and bentonite mixtures as alternative landfill barrier material. J Mater Cycles Waste Manag 22(6):1877–1886

    Article  CAS  Google Scholar 

  37. Jang J, Cao SC, Stern LA, Jung J, Waite WF (2018) Impact of pore fluid chemistry on fine-grained sediment fabric and compressibility. J Geophys Res Solid Earth 123(7):5495–5514

    Article  Google Scholar 

  38. Tian K, Likos WJ, Benson CH (2019) Polymer elution and hydraulic conductivity of bentonite–polymer composite geosynthetic clay liners. J. Geotech. Geoenviron Eng 145(10):04019071

    Article  CAS  Google Scholar 

  39. Li Z, Su G, Zheng Q, Nguyen TS (2020) A dual-porosity model for the study of chemical effects on the swelling behaviour of MX-80 bentonite. Acta Geotech 15(3):635–653

    Article  Google Scholar 

  40. Slim GI (2016) Optimization of polymer-amended fly ash and paper pulp millings mixture for alternative landfill liner. Procedia Eng 145:312–318

    Article  CAS  Google Scholar 

  41. Rubinos DA, Spagnoli G (2018) Utilization of waste products as alternative landfill liner and cover materials – a critical review. Crit Rev Environ Sci Technol 48(4):376–438

    Article  CAS  Google Scholar 

  42. Wu H, Wen Q, Hu L, Gong M, Tang Z (2017) Feasibility study on the application of coal gangue as landfill liner material. Waste Manag 63:161–171

    Article  Google Scholar 

  43. Meggyes T (2007) Landfill applications. In: Geosynthetics in civil engineering. Woodhead Publishing, Cambridge, pp 163–180

    Chapter  Google Scholar 

  44. Cortellazzo G, Mandaglio MC, Busana S, Favaretti M, Moraci N (2020) A new approach for the design, construction and control of compacted mineral liners of a MSW landfill capping. Int J Geosynth Gr Eng 6(4):1–10

    Google Scholar 

  45. Yoshida H, Rowe RK (2003) Consideration of landfill liner temperature. In: Ninth international waste management landfill Symposium, October, pp. 1–9

    Google Scholar 

  46. Yal GP, Akgün H (2013) Landfill site selection and landfill liner design for Ankara, Turkey. Environ Earth Sci 70(6):2729–2752

    Article  Google Scholar 

  47. Ambat RE (2020) Design of end of waste disposal with sanitary landfill method. Adv Eng Res 198(I):82–89

    Google Scholar 

  48. Yolcubal I, Brusseau ML, Artiola JF, Wierenga PJ, Wilson LG (2004) Environmental physical properties and processes. In: Environmental monitoring and characterization. Elsevier, Amsterdam, pp 207–239

    Chapter  Google Scholar 

  49. Staub M, Gourc JP, Simonin R (2010) Influence of landfill cap cover characteristics on the mitigation of GHG emissions in 9th international conference geosynthetics – geosynthetics advanced solutions for a challenging world, ICG 2010, December, pp 909–914

    Google Scholar 

  50. Chabuk A (2018) Landfill final cover systems design for arid areas using the HELP model: a case study in the Babylon Governorate, Iraq. Sustainability 10(12):4568

    Article  Google Scholar 

  51. Youcai Z, Ziyang L (2016) Stabilization process and mining operation for sanitary landfill. In: Municipal solid wastes at landfill. Butterworth-Heinemann, Oxford

    Google Scholar 

  52. Manyuchi MM, Mbohwa C, Muzenda E (2017) Design considerations for an engineered landfill. In: 6th international conference on sustainability, technology and education vol 11, no 13, pp 11–13

    Google Scholar 

  53. Ireaja NA, Okeke OC, Opara AI (2018) Sanitary landfills: geological and environmental factors that influence their siting, operation and management in IIARD. Int J Geogr Environ Manag 4(5):1–9

    Google Scholar 

  54. Colomer-Mendoza FJ (2013) Influence of the design on slope stability in solid waste landfills in earth. Science 2(2):31

    Google Scholar 

  55. Townsend TG, Powell J, Jain P, Xu Q, Tolaymat T, Reinhart D (2015) Slope stability. In: Sustainable practices for landfill design and operation. Springer, New York, pp 1–472

    Chapter  Google Scholar 

  56. Jiang H, Zhou X, Xiao Z (2020) Stability of extended earth berm for high landfill. Appl Sci 10(18):6281. https://doi.org/10.3390/app10186281

  57. Vaverková MD, Adamcová D (2018) Case study of landfill reclamation at Czech landfill site. Environ Eng Manag J 17(3):641–648

    Article  Google Scholar 

  58. Ansari AA, Gill SS, Gill R, Lanza GR, Newman L (2017) Phytoremediation: management of environmental contaminants, volume 5. Springer, Cham, pp 1–54

    Book  Google Scholar 

  59. Koliopoulos TK, Kouloumbis P, Ciarkowska K, Antonkiewicz J (2018) Soil covers and landfill management for agricultural food protection: the soil cover. Manag Landfill Emissions Waste 1:116–130

    Google Scholar 

  60. Gilman EF, Flower FB, Leone ID (1985) Standardized procedures for planting vegetation on completed sanitary landfills. Waste Manag Res 3(1):65–50

    Article  Google Scholar 

  61. Ikehata K, Liu Y (2011) Land disposal of wastes. Encyclopedia of Environmental Health, Burlington

    Book  Google Scholar 

  62. Townsend TG, Powell J, Jain P, Xu Q, Tolaymat T, Reinhart D (2015) Final landfill disposition. In: Sustainable practices for landfill design and operation. Springer, New York, pp 1–472

    Chapter  Google Scholar 

  63. Office of Solid Waste and Emergency Response (2005) Introduction to United States environmental protection agency land disposal units. Office of Solid Waste and Emergency Response, Washington, DC

    Google Scholar 

  64. Bagchi A (2004) Design of landfills and integrated solid waste management. Wiley, Hoboken.

    Google Scholar 

  65. Fernández-Nava Y, Del Río J, Rodríguez-Iglesias J, Castrillón L, Marañón E (2014) Life cycle assessment of different municipal solid waste management options: a case study of Asturias (Spain). J Clean Prod 81:178–189

    Article  Google Scholar 

  66. Damgaard A, Manfredi S, Merrild H, Stensøe S, Christensen TH (2011) LCA and economic evaluation of landfill leachate and gas technologies. Waste Manag 31(7):1532–1541

    Article  CAS  Google Scholar 

  67. Townsend TG, Powell J, Jain P, Xu Q, Tolaymat T, Reinhart D (2015) Leachate collection and removal systems (LCRS). In: Sustainable practices for landfill design and operation. Springer, New York, pp 1–472

    Chapter  Google Scholar 

  68. Fleming IR, Rowe RK (2004) Laboratory studies of clogging of landfill leachate collection and drainage systems. Can Geotech J 41(1):134–153

    Article  CAS  Google Scholar 

  69. Yu Y, Rowe RK (2012) Modelling leachate-induced clogging of porous media. Can Geotech J 49(8):877–890

    Article  Google Scholar 

  70. Liu Y, Liu J (2021) Mechanism and dynamic evolution of leachate collection system clogging in MSW landfills in China. Waste Manag 120:314–321

    Article  CAS  Google Scholar 

  71. Xu Q, Qin J, Ko JH (2019) Municipal solid waste landfill performance with different biogas collection practices: biogas and leachate generations. J Clean Prod 222:446–454

    Article  CAS  Google Scholar 

  72. Rasapoor M, Young B, Brar R, Baroutian S (2020) Improving biogas generation from aged landfill waste using moisture adjustment and neutral red additive – case study: Hampton Downs’s landfill site. Energy Convers Manag 216(March):112947

    Article  CAS  Google Scholar 

  73. Zhan TLT, Xu XB, Chen YM, Ma XF (2015) Dependence of gas collection efficiency on leachate level at wet municipal solid waste landfills and its improvement methods in China. J Geotech Geoenviron Eng 138(July):236

    Google Scholar 

  74. Villanueva-Estrada RE, Rocha-Miller R, Arvizu-Fernández JL, Castro González A (2019) Energy production from biogas in a closed landfill: a case study of Prados de la Montaña, Mexico City. Sustain Energy Technol Assess 31(December):236–244

    Google Scholar 

  75. Aguilar-Virgen Q, Taboada-González P, Ojeda-Benítez S (2014) Analysis of the feasibility of the recovery of landfill gas: a case study of Mexico. J Clean Prod 79:53–60

    Article  CAS  Google Scholar 

  76. Danthurebandara M, Van Passel S, Nelen D (2013) Environmental and socio-economic impacts of landfills. Linnaeus Eco-Tech, January, pp 40–52

    Google Scholar 

  77. Eklund B, Anderson EP, Walker BL, Burrows DB (1998) Characterization of landfill gas composition at the fresh kills municipal solid-waste landfill. Environ Sci Technol 32(15):2233–2237

    Article  CAS  Google Scholar 

  78. Ayodele TR, Alao MA, Ogunjuyigbe ASO (2020) Effect of collection efficiency and oxidation factor on greenhouse gas emission and life cycle cost of landfill distributed energy generation. Sustain Cities Soc 52(September):101821

    Article  Google Scholar 

  79. Linnaeus University (2018) Landfills: a future source of raw material. Science News, March

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puganeshwary Palaniandy .

Editor information

Editors and Affiliations

Glossary

Glossary

Anthropogenetic: :

Relating to the study of the origin and development of human beings.

Biodegradation: :

Under typical environmental conditions, naturally accessible microbes degrade the materials into environmentally desirable products such as water, carbon dioxide, and biomass.

Compacted clay liner (CCL): :

Type of landfill-capping system.

Embankment: :

A man-made earthen or stone barrier built to keep a river from flooding a particular area.

Geonets: :

A geosynthetic material with a structure comparable to a geogrid, consisting of integrally connected parallel sets of ribs covering identical sets at varying angles for in-plane liquid or gas drainage.

Geosynthetic clay liner (GCL): :

Water, leachate, and other liquids can be contained by using containment as a hydraulic barrier.

High-density polyethylene (HDPE): :

Two plastics commonly used in making containers for milk, motor oil, shampoos and conditioners, soap bottles, detergents, and bleaches.

Homogeneous: :

Containing entirely of the same pieces or elements.

Oxidizing: :

To react with oxygen chemically.

Permeability: :

Able to be penetrated or passed through.

Polyvinyl chloride (PVC): :

Polymer of synthetic plastic.

Sanitary landfill: :

A sanitary landfill is a specially designed structure that separates and contains garbage.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Palaniandy, P., Aziz, H.A., Wang, L.K., Michael Terlecky, P., Hung, YT. (2022). Sanitary Landfill Types and Design. In: Wang, L.K., Wang, MH.S., Hung, YT. (eds) Solid Waste Engineering and Management. Handbook of Environmental Engineering, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-030-89336-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89336-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89335-4

  • Online ISBN: 978-3-030-89336-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics