Skip to main content

Modern Landfilling Approaches for Waste Disposal and Management

  • Chapter
  • First Online:
Bioremediation of Environmental Pollutants

Abstract

Solid waste has become a characteristic pollutant in the native surroundings, and it is necessary to understand the sources of the pollution properly. Mainly, organic waste is generated by low-to-medium-income people while more metals, glasses, and wastepaper are produced by high population area. Municipal solid waste management involves recycling, burning, conversion of waste to electricity, composting, or waste disposal. In many communities around the world, landfills for solid waste disposal are preferred. Deposits operate as ecological reactors in which waste is transformed physically, chemically, and biologically. This chapter covers the impact of modern landfills and the generation of municipal solid waste from different sectors and their management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asnani PU (2006) Solid waste management. In: Rastogi A (ed) India Infrastructure Report. Urban Infrastructure. Oxford University Press, New Delhi, p 186

    Google Scholar 

  • Azargohar R, Nanda S, Dalai AK, Kozinski JA (2019) Physico-chemistry of biochars produced through steam gasification and hydro-thermal gasification of canola hull and canola meal pellets. Biomass Bioenergy 120:458–470

    CAS  Google Scholar 

  • Balat H, Kırtay E (2010) Hydrogen from biomass–present scenario and future prospects. Int J Hydrog Energy 35(14):7416–7426

    CAS  Google Scholar 

  • Batllevell M, Hanf K (2008) The fairness of PAYT systems: some guidelines for decision-makers. Waste Manag 28(12):2793–2800

    PubMed  Google Scholar 

  • Bogner J, Pipatti R, Hashimoto S, Diaz C, Mareckova K, Diaz L, Kjeldsen P, Monni S, Faaij A, Gao Q, Zhang T (2008) Mitigation of global greenhouse gas emissions from waste: conclusions and strategies from the intergovernmental panel on climate change (IPCC) fourth assessment report. Working group III (mitigation). Waste Manag Res 26(1):11–32

    PubMed  Google Scholar 

  • Dash B, Sahu N, Singh AK, Gupta SB, Soni R (2021) Arsenic efflux in Enterobacter cloacae RSN3 isolated from arsenic-rich soil. Folia Microbiol 66:189–196

    CAS  Google Scholar 

  • De la Cruz F, Chanton J, Barlaz M (2013) Measurement of carbon storage in landfills from the biogenic carbon content of excavated waste samples. Waste Manag 33:2001–2005. https://doi.org/10.1016/j.wasman.2012.12.012

    Article  CAS  PubMed  Google Scholar 

  • Dixit R, Agrawal L, Singh SP, Singh PC, Prasad V, Chauhan PS (2018) Paenibacillus lentimorbus induces autophagy for protecting tomato from Sclerotium rolfsii infection. Microbiol Res 215:164–174

    PubMed  Google Scholar 

  • Fang S, Yu Z, Ma X, Lin Y, Chen L, Liao Y (2018) Analysis of catalytic pyrolysis of municipal solid waste and paper sludge using TG-FTIR, Py-GC/MS and DAEM (distributed activation energy model). Energy 143:517–532

    CAS  Google Scholar 

  • Giroux L (2014) State of waste management in Canada prepared for: Canadian Council of Ministers of Environment

    Google Scholar 

  • Gopinath KP, Vo DVN, Prakash DG, Joseph AA, Viswanathan S, Arun J (2020) Environmental applications of carbon-based materials: a review. Environ Chem Lett. https://doi.org/10.1007/s10311-020-01084-9 (Return to ref 2020 in article)

  • Government of Ontario (2020) Illegal waste dumping. https://www.ontario.ca/page/illegal-waste-dumping. Accessed 14 Feb 2020

  • Gunarathne V, Ashiq A, Ramanayaka S, Wijekoon P, Vithanage M (2019) Biochar from municipal solid waste for resource recovery and pollution remediation. Environ Chem Lett 17(3):1225–1235

    CAS  Google Scholar 

  • Han D, Tong X, Currell MJ, Cao G, Jin M, Tong C (2014) Evaluation of the impact of an uncontrolled landfill on surrounding groundwater quality, Zhoukou, China. J Geochem Explor 136:24–39

    CAS  Google Scholar 

  • Hargreaves JC, Adl MS, Warman PR (2008) A review of the use of composted municipal solid waste in agriculture. Agric Ecosyst Environ 123(1–3):1–14

    Google Scholar 

  • Hassen A, Belguith K, Jedidi N, Cherif A, Cherif M, Boudabous A (2001) Microbial characterization during composting of municipal solid waste. Bioresour Technol 80(3):217–225

    CAS  PubMed  Google Scholar 

  • HID Global (2020) RFID waste management. https://www.hidglobal.com/solutions/waste-management. Accessed 15 Feb 2020

  • Hoornweg D, Bhada-Tata P (2012) What a waste: a global review of solid waste management

    Google Scholar 

  • Illinois Environmental Protection Agency (2020) Open dumps. https://www2.illinois.gov/epa/topics/waste-management/illegal-dumping/Pages/open-dumping.aspx. Accessed 14 Feb 2020

  • Jain S, Jain S, Wolf IT, Lee J, Tong YW (2015) A comprehensive review on operating parameters and different pretreatment methodologies for anaerobic digestion of municipal solid waste. Renew Sust Energ Rev 52:142–154

    Google Scholar 

  • Jones PT, Geysen D, Tielemans Y, Van Passel S, Pontikes Y, Blanpain B, Quaghebeur M, Hoekstra N (2013) Enhanced landfill mining in view of multiple resource recovery: a critical review. J Clean Prod 55:45–55

    Google Scholar 

  • Katakojwala R, Kopperi H, Kumar S, Mohan SV (2020) Hydrothermal liquefaction of biogenic municipal solid waste under reduced H2 atmosphere in biorefinery format. Bioresour Technol 310:123369

    CAS  PubMed  Google Scholar 

  • Kelleher M, Dixie J, Robins J (2005) Taking out the trash: how to allocate the costs fairly. Commentary-CD Howe Institute, vol 213, p 1

    Google Scholar 

  • Kour D, Kaur T, Devi R, Yadav A, Singh M et al (2021) Beneficial microbiomes for bioremediation of diverse contaminated environments for environmental sustainability: present status and future challenges. Environ Sci Pollut Res 28:24917–24939

    CAS  Google Scholar 

  • Krishnamurthi S, Chakrabarti T (2013) Diversity of bacteria and archaea from a landfill in Chandigarh, India as revealed by culture-dependent and culture-independent molecular approaches. Syst Appl Microbiol 36(1):56–68

    CAS  PubMed  Google Scholar 

  • Kumar S, Chiemchaisri C, Mudhoo A (2011) Bioreactor landfill technology in municipal solid waste treatment: an overview. Crit Rev Biotechnol 31(1):77–97

    CAS  PubMed  Google Scholar 

  • Kumar P, Dash B, Suyal D C, Gupta SB, Singh AK, Chowdhury T, Soni R (2021) Characterization of arsenic-resistant Klebsiella pneumoniae RnASA11 from contaminated soil and water samples and its bioremediation potential. Curr Microbiol. https://doi.org/10.1007/s00284-021-02602-w

  • Long YY, Shen DS, Wang HT, Lu WJ, Zhao Y (2011) Heavy metal source analysis in municipal solid waste (MSW): case study on Cu and Zn. J Hazard Mater 186(2–3):1082–1087

    CAS  PubMed  Google Scholar 

  • Moya D, Aldás C, Jaramillo D, Játiva E, Kaparaju P (2017) Waste-to-energy technologies: an opportunity of energy recovery from municipal solid waste, using Quito-Ecuador as case study. Energy Procedia 134:327–336

    CAS  Google Scholar 

  • Munir MT, Mardon I, Al-Zuhair S, Shawabkeh A, Saqib NU (2019) Plasma gasification of municipal solid waste for waste-to-value processing. Renew Sust Energ Rev 116:109461

    CAS  Google Scholar 

  • Nabavi-Pelesaraei A, Bayat R, Hosseinzadeh-Bandbafha H, Afrasyabi H, Chau KW (2017) Modeling of energy consumption and environmental life cycle assessment for incineration and landfill systems of municipal solid waste management-a case study in Tehran Metropolis of Iran. J Clean Prod 148:427–440

    CAS  Google Scholar 

  • Nanda S, Abraham J (2013) Remediation of heavy metal contaminated soil. Afr J Biotechnol 12:3099–3109

    CAS  Google Scholar 

  • Nanda S, Berruti F (2020a) Municipal solid waste management and landfilling technologies: a review. Environ Chem Lett 1–24

    Google Scholar 

  • Nanda S, Berruti F (2020b) Thermochemical conversion of plastic waste to fuels: a review. Environ Chem Lett 1–26

    Google Scholar 

  • Nanda S, Dalai AK, Berruti F, Kozinski JA (2016a) Biochar as an exceptional bioresource for energy, agronomy, carbon sequestration, activated carbon and specialty materials. Waste Biomass Valorization 7(2):201–235

    CAS  Google Scholar 

  • Nanda S, Dalai AK, Kozinski JA (2016b) Supercritical water gasification of timothy grass as an energy crop in the presence of alkali carbonate and hydroxide catalysts. Biomass Bioenergy 95:378–387

    CAS  Google Scholar 

  • Nanda S, Isen J, Dalai AK, Kozinski JA (2016c) Gasification of fruit wastes and agro-food residues in supercritical water. Energy Convers Manag 110:296–306

    CAS  Google Scholar 

  • Nanda S, Rana R, Zheng Y, Kozinski JA, Dalai AK (2017) Insights on pathways for hydrogen generation from ethanol. Sustain Energy Fuels 1(6):1232–1245

    CAS  Google Scholar 

  • Narayana T (2009) Municipal solid waste management in India: from waste disposal to recovery of resources? Waste Manag 29(3):1163–1166

    CAS  PubMed  Google Scholar 

  • Onishi N (2005) How do the Japanese dump trash? Let us count the myriad ways. The New York Times 12

    Google Scholar 

  • Peters A (2016) Fast company. These maps show how many landfills there are in the U.S. https://www.fastcompany.com/3062853/these-maps-show-how-much-of-the-us-is-covered-in-landfills. Accessed 12 Apr 2020

  • Powell JT, Townsend TG, Zimmerman JB (2016) Estimates of solid waste disposal rates and reduction targets for landfill gas emissions. Nat Clim Chang 6(2):162–165

    Google Scholar 

  • RenoSam, Rambøll (2006) The most efficient waste management system in Europe: waste-to-energy in Denmark. https://stateofgreen.com/files/download/275. Accessed 8 Feb 2019

  • Saidi M, Gohari MH, Ramezani AT (2020) Hydrogen production from waste gasification followed by membrane filtration: a review. Environ Chem Lett 1–28

    Google Scholar 

  • Shah GM, Tufail N, Bakhat HF, Ahmad I, Shahid M, Hammad HM, Nasim W, Waqar A, Rizwan M, Dong R (2019) Composting of municipal solid waste by different methods improved the growth of vegetables and reduced the health risks of cadmium and lead. Environ Sci Pollut Res 26(6):5463–5474

    CAS  Google Scholar 

  • Sharholy M, Ahmad K, Mahmood G, Trivedi RC (2008) Municipal solid waste management in Indian cities–a review. Waste Manag 28(2):459–467

    PubMed  Google Scholar 

  • Sharma P (2021) Efficiency of bacteria and bacterial assisted phytoremediation of heavy metals: an update bioresource technology, 124835

    Google Scholar 

  • Sharma P, Kumar S (2021) Characterization and phytotoxicity assessment of organic pollutants in old and fresh municipal solid wastes at open dump site: a case study. Environ Technol Innov 24:101938

    CAS  Google Scholar 

  • Sharma P, Rath SK (2021) Potential applications of fungi in the remediation of toxic effluents from pulp and paper industries. In: fungi bio-prospects in sustainable agriculture, environment and nanotechnology. Academic, pp 193–211

    Google Scholar 

  • Sharma P, Singh SP (2021) Role of the endogenous fungal metabolites in the plant growth improvement and stress tolerance. In: Fungi bio-prospects in sustainable agriculture, environment and nanotechnology. Academic, pp 381–401

    Google Scholar 

  • Sharma P, Singh SP, Pandey S, Thanki A, Singh NK (2020) Role of potential native weeds and grasses for phytoremediation of endocrine-disrupting pollutants discharged from pulp paper industry waste. In: Bioremediation of pollutants, pp 17–37. Elsevier

    Google Scholar 

  • Sharma P, Tripathi S, Purchase D, Chandra R (2021a) Integrating phytoremediation into treatment of pulp and paper industry wastewater: field observations of native plants for the detoxification of metals and their potential as part of a multidisciplinary strategy. J Environ Chem Eng 9(4):105547

    CAS  Google Scholar 

  • Sharma P, Kumar S, Pandey A (2021b) Bioremediated techniques for remediation of metal pollutants using metagenomics approaches: a review. J Environ Chem Eng 9(4):105684

    CAS  Google Scholar 

  • Sharma P, Ngo HH, Khanal S, Larroche C, Kim SH, Pandey A (2021c) Efficiency of transporter genes and proteins in hyperaccumulator plants for metals tolerance in wastewater treatment: sustainable technique for metal detoxification. Environ Technol Innov 23:101725

    CAS  Google Scholar 

  • Sharma P, Pandey AK, Udayan A, Kumar S (2021d) Role of microbial community and metal-binding proteins in phytoremediation of heavy metals from industrial wastewater. Bioresour Technol 326:124750

    CAS  PubMed  Google Scholar 

  • Singh S, Kumar R, Setiabudi HD, Nanda S, Vo DVN (2018) Advanced synthesis strategies of mesoporous SBA-15 supported catalysts for catalytic reforming applications: a state-of-the-art review. Appl Catal A Gen 559:57–74

    CAS  Google Scholar 

  • Singh A, Nanda S, Berruti F (2020a) A review of thermochemical and biochemical conversion of Miscanthus to biofuels. In: Biorefinery of alternative resources: targeting green fuels and platform chemicals, pp 195–220

    Google Scholar 

  • Singh AD, Upadhyay A, Shrivastava S, Vivekanand V (2020b) Life-cycle assessment of sewage sludge-based large-scale biogas plant. Bioresour Technol 309:123373

    CAS  PubMed  Google Scholar 

  • Singh M, Singh D, Rai P, Suyal DC, Saurabh S, Soni R, Giri K, Yadav AN (2021) Fungi in remediation of hazardous wastes: current status and future. In: Yadav AN (ed) Recent trends in mycological research, fungal biology. Springer Nature, Cham

    Google Scholar 

  • Srivastava PK, Kulshreshtha K, Mohanty CS, Pushpangadan P, Singh A (2005) Stakeholder-based SWOT analysis for successful municipal solid waste management in Lucknow, India. Waste Manag 25(5):531–537

    CAS  PubMed  Google Scholar 

  • Suyal DC, Soni R, Singh DK, Goel R (2021) Microbiome change of agricultural soil under organic farming practices. Biologia 76:1315–1325

    CAS  Google Scholar 

  • The World Bank (2020) Trends in solid waste management. https://datatopics.worldbank.org/what-a-waste/trends_in_solid_waste_management.html. Accessed 21 Apr 2020

  • Tripathi S, Sharma P, Purchase D, Tiwari M, Chakrabarty D, Chandra R (2021) Biodegradation of organo-metallic pollutants in distillery wastewater employing a bioaugmentation process. Environ Technol Innov 23:101774

    CAS  Google Scholar 

  • United Nations (2020) About the sustainable development goals. https://www.un.org/sustainabledevelopment/sustainable-development-goals/. Accessed 14 Apr 2020

  • USEPA, U.S. Environmental Protection Agency (2016) Advancing sustainable materials management: 2014 fact sheet. USEPA, Washington, DC (Return)

    Google Scholar 

  • Van Haaren R, Themelis N, Goldstein N (2010) State of garbage in America. Biocycle 51:16

    Google Scholar 

  • Wagner TP, Raymond T (2015) Landfill mining: case study of a successful metals recovery project. Waste Manag 45:448–457

    CAS  PubMed  Google Scholar 

  • Waste Atlas (2018) What a waste: an updated look into the future of solid waste management. https://www.worldbank.org/en/news/immersive-story/2018/09/20/what-a-waste-an-updated-look-into-the-future-of-solid-waste-management. Accessed 15 Apr 2020

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surendra Pratap Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, P., Soni, R., Srivastava, S.K., Singh, S.P. (2022). Modern Landfilling Approaches for Waste Disposal and Management. In: Suyal, D.C., Soni, R. (eds) Bioremediation of Environmental Pollutants. Springer, Cham. https://doi.org/10.1007/978-3-030-86169-8_10

Download citation

Publish with us

Policies and ethics