Skip to main content

A Review on the Estimation of Glacial Lake Outburst Floods (GLOFs) in the Himalayan Region Using Remote Sensing and Geographic Information System

  • Chapter
  • First Online:
Disaster Management in the Complex Himalayan Terrains

Abstract

Glacier lake outburst flood (GLOF) is one of the most devastating natural hazards in the Himalayan region. Several studies used identification and size monitoring of glacier lakes in the Himalayan region using remote sensing and GIS. For glacier lake bathymetry, most of the studies used in situ data. However, the collection of bathymetry data of several glacier lakes in the Himalayan region is difficult, time-consuming, and expensive. None of the studies used remote sensing data to estimate the bathymetry of glacier lakes. In this chapter, different types of floods in the Himalayas and the use of remote sensing data to estimate river/coastal bathymetry were reviewed. Furthermore, the application of remote sensing data to estimate glacial lake bathymetry is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdallah H, Bailly JS, Baghdadi NN, Saint-Geours N, Fabre F (2012) Potential of space-borne LiDAR sensors for global bathymetry in coastal and inland waters. IEEE J Sel Top Appl Earth Observ Remote Sens 6(1):202–216

    Article  Google Scholar 

  • Allen SK, Rastner P, Arora M, Huggel C, Stoffel M (2016) Lake outburst and debris flow disaster at Kedarnath, June 2013: hydrometeorological triggering and topographic predisposition. Landslides 13(6):1479–1491

    Article  Google Scholar 

  • Bajracharya SR, Mool PK, Shrestha BR (2007) Impact of climate change on Himalayan glaciers and glacial lakes: case studies on GLOF and associated hazards in Nepal and Bhutan. International Centre for Integrated Mountain Development (ICIMOD)

    Google Scholar 

  • Brêda JPLF, Paiva RCD, Bravo JM, Passaia OA, Moreira DM (2019) Assimilation of satellite altimetry data for effective river bathymetry. Water Resour Res 55(9):7441–7463

    Article  Google Scholar 

  • Cao B, Fang Y, Jiang Z, Gao L, Hu H (2019) Shallow water bathymetry from WorldView-2 stereo imagery using two-media photogrammetry. Eur J Remote Sens 52(1):506–521

    Article  Google Scholar 

  • Carbonneau PE, Lane SN, Bergeron NE (2004) Catchment-scale mapping of surface grain size in gravel-bed rivers using airborne digital imagery. Water Resour Res 40:7

    Article  Google Scholar 

  • Carbonneau PE, Lane SN, Bergeron N (2006) Feature based image processing methods applied to bathymetric measurements from airborne remote sensing in fluvial environments. Earth Surface Process Landforms: J Br Geomorphol Res Group 31(11):1413–1423

    Article  Google Scholar 

  • Das L, Meher JK (2019) Drivers of climate over the Western Himalayan region of India: a review. Earth-Sci Rev 198:102935

    Google Scholar 

  • DeWitt BA, Wolf PR (2000) Elements of photogrammetry (with applications in GIS).

    Google Scholar 

  • Dietrich JT (2017) Bathymetric structure-from-motion: extracting shallow stream bathymetry from multi-view stereo photogrammetry. Earth Surf Proc Land 42(2):355–364

    Article  Google Scholar 

  • Dubey S, Goyal MK (2020) Glacial lake outburst flood hazard, downstream impact, and risk over the Indian Himalayas. Water Resour Res 56(4): e2019WR026533

    Google Scholar 

  • Fabris M, Baldi P, Anzidei M, Pesci A, Bortoluzzi G, Aliani S (2010) High resolution topographic model of Panarea Island by fusion of photogrammetric, lidar and bathymetric digital terrain models. Photogram Rec 25(132):382–401

    Article  Google Scholar 

  • Fernández-Lozano J, Andrés-Bercianos R (2020) On the origin of a remote mountainous natural reserve: insights from a topo-bathymetry reconstruction of the glacial lake of Truchillas (NW Spain). Quaternary International

    Google Scholar 

  • Fushimi H, Ikegami K, Higuchi K, Shankar K (1985) Nepal case study: catastrophic floods. In: Young GJ (ed) Techniques for prediction of runoff from glacierized areas. Publication 149, International Association of Hydrological Sciences, Wallingford, pp 125–130

    Google Scholar 

  • Galay V (1985) Glacier Lake Outburst flood (Jõkulhlaup) on the Bhote/Dudh Kosi-August 4

    Google Scholar 

  • Gichamo TZ, Popescu I, Jonoski A, Solomatine D (2012) River cross-section extraction from the ASTER global DEM for flood modeling. Environ Model Softw 31:37–46

    Article  Google Scholar 

  • Hodúl M, Bird S, Knudby A, Chénier R (2018) Satellite derived photogrammetric bathymetry. ISPRS J Photogramm Remote Sens 142:268–277

    Article  Google Scholar 

  • Ives JD (1986) Glacial lake outburst floods and risk engineering in the Himalaya. Occasional Paper No. 5, International Center for Integrated Mountain Development, Kathmandu

    Google Scholar 

  • Kaamin M, Fadzil MAFM, Razi MAM, Daud ME, Abdullah NH, Nor AHM, Ahmad NFA (2020) The shoreline bathymetry assessment using unmanned aerial vehicle (UAV) photogrammetry. J Phys: Conf Ser 1529(3):032109 (IOP Publishing)

    Google Scholar 

  • Kasvi E, Salmela J, Lotsari E, Kumpula T, Lane SN (2019) Comparison of remote sensing based approaches for mapping bathymetry of shallow, clear water rivers. Geomorphology 333:180–197

    Article  Google Scholar 

  • Kanti T, Flemming G, Madhu J, Kuldeep J (2019) Extreme rainfall and vulnerability assessment: case study of Uttarakhand rivers. Nat Hazards 99(2):665–687

    Google Scholar 

  • Kirchner N, Noormets R, Kuttenkeuler J, Erstorp ES, Holmlund ES, Rosqvist G, Holmlund P, Wennbom M, Karlin T (2019) High-resolution bathymetric mapping reveals subaqueous glacial landforms in the Arctic alpine lake Tarfala, Sweden. J Quater Sci 34(6):452–462

    Article  Google Scholar 

  • Kumar D, Singh AK, Singh DS (2020) Spatio-temporal fluctuations over Chorabari glacier, Garhwal Himalaya, India between 1976 and 2017. Quaternary International (in press)

    Google Scholar 

  • Lague D, Feldmann B (2020) Topo-bathymetric airborne LiDAR for fluvial-geomorphology analysis. In: Developments in earth surface processes, vol 23. Elsevier, pp 25–54

    Google Scholar 

  • Legleiter CJ, Roberts DA, Marcus WA, Fonstad MA (2004) Passive optical remote sensing of river channel morphology and in-stream habitat: physical basis and feasibility. Remote Sens Environ 93(4):493–510

    Article  Google Scholar 

  • Legleiter CJ, Roberts DA (2005) Effects of channel morphology and sensor spatial resolution on image-derived depth estimates. Remote Sens Environ 95(2):231–247

    Article  Google Scholar 

  • Legleiter CJ, Roberts DA (2009) A forward image model for passive optical remote sensing of river bathymetry. Remote Sens Environ 113(5):1025–1045

    Article  Google Scholar 

  • Legleiter CJ, Roberts DA, Lawrence RL (2009) Spectrally based remote sensing of river bathymetry. Earth Surf Proc Land 34(8):1039–1059

    Article  Google Scholar 

  • Legleiter CJ, Overstreet BT, Kinzel PJ (2018) Sampling strategies to improve passive optical remote sensing of river bathymetry. Remote Sens 10(6):935

    Article  Google Scholar 

  • Liu Y, Tang D, Deng R, Cao B, Chen Q, Zhang R, Qin Y, Zhang S (2020a) An adaptive blended algorithm approach for deriving bathymetry from multispectral imagery. IEEE J Sel Top Appl Earth Observ Remote Sens 14:801–817

    Article  Google Scholar 

  • Liu M, Chen N, Zhang Y, Deng M (2020b) Glacial lake inventory and lake outburst flood/debris flow hazard assessment after the Gorkha earthquake in the Bhote Koshi Basin. Water 12(2):464

    Article  Google Scholar 

  • Lyzenga DR (1978) Passive remote-sensing techniques for mapping water depth and bottom features. Appl Opt 17:379–383

    Article  Google Scholar 

  • Lyzenga DR, Malinas NP, Tanis FJ (2006) Multispectral bathymetry using a simple physically based algorithm. IEEE Trans Geosci Remote Sens 44(8):2251–2259

    Article  Google Scholar 

  • McGlone J (2004) Manual of photogrammetry, 5th edn. The American Society for Photogrammetry and Remote Sensing

    Google Scholar 

  • Misra A, Vojinovic Z, Ramakrishnan B, Luijendijk A, Ranasinghe R (2018) Shallow water bathymetry mapping using Support Vector Machine (SVM) technique and multispectral imagery. Int J Remote Sens 39(13):4431–4450

    Article  Google Scholar 

  • Motschmann A, Huggel C, Carey M, Moulton H, Walker-Crawford N, Muñoz R (2020) Losses and damages connected to glacier retreat in the Cordillera Blanca, Peru. Clim Change 162(2):837–858

    Article  Google Scholar 

  • Muller F (1959) Eight months of glacier and soil research in the Everest region. Mountain World 1958/1959:191–208

    Google Scholar 

  • Nandargi S, Dhar ON (2011) Extreme rainfall events over the Himalayas between 1871 and 2007. Hydrol Sci J 56(6):930–945

    Article  Google Scholar 

  • Niroumand-Jadidi M, Bovolo F, Bruzzone L (2020) SMART-SDB: sample-specific multiple band ratio technique for satellite-derived bathymetry. Remote Sens Environ 251:112091

    Google Scholar 

  • Osti R, Egashira S (2009) Hydrodynamic characteristics of the Tam Pokhari Glacial Lake outburst flood in the Mt. Everest region, Nepal. Hydrol Proc Int J 23(20):2943–2955

    Google Scholar 

  • Pan Z, Glennie C, Hartzell P, Fernandez-Diaz JC, Legleiter C, Overstreet B (2015) Performance assessment of high resolution airborne full waveform LiDAR for shallow river bathymetry. Remote Sensing 7(5):5133–5159

    Article  Google Scholar 

  • Philpot WD (1989) Bathymetric mapping with passive multispectral imagery. Appl Opt 28:1569–1578

    Article  Google Scholar 

  • Pramanik N, Panda RK, Sen D (2010) One dimensional hydrodynamic modeling of river flow using DEM extracted river cross-sections. Water Resour Manage 24(5):835–852

    Article  Google Scholar 

  • Purdie H, Bealing P, Tidey E, Gomez C, Harrison J (2016) Bathymetric evolution of Tasman Glacier terminal lake, New Zealand, as determined by remote surveying techniques. Glob Planet Change 147:1–11

    Article  Google Scholar 

  • Romshoo SA, Fayaz M, Meraj G, Bahuguna IM (2020) Satellite-observed glacier recession in the Kashmir Himalaya, India, from 1980 to 2018. Environ Monit Assess 192(9):1–17

    Article  Google Scholar 

  • Schenk T (1997) Towards automatic aerial triangulation. ISPRS J Photogramm Remote Sens 52(3):110–121

    Article  Google Scholar 

  • Serway RA (1983) Physics for scientists and engineers. CBS, pp 132–133

    Google Scholar 

  • Å iljeg A, Lozić S, Å iljeg S (2015) A comparison of interpolation methods on the basis of data obtained from a bathymetric survey of Lake Vrana, Croatia. Hydrol Earth Syst Sci 19(8)

    Google Scholar 

  • Sharma RK, Pradhan P, Sharma NP, Shrestha DG (2018) Remote sensing and in situ-based assessment of rapidly growing South Lhonak glacial lake in eastern Himalaya, India. Nat Hazards 93(1):393–409

    Article  Google Scholar 

  • Shintani C, Fonstad MA (2017) Comparing remote-sensing techniques collecting bathymetric data from a gravel-bed river. Int J Remote Sens 38(8–10):2883–2902

    Article  Google Scholar 

  • Shrestha AB, Eriksson M, Mool P, Ghimire P, Mishra B, Khanal NR (2010) Glacial lake outburst flood risk assessment of Sun Koshi basin, Nepal. Geom Nat Hazards Risk 1(2):157–169

    Article  Google Scholar 

  • Thompson I, Shrestha M, Chhetri N, Agusdinata DB (2020) An institutional analysis of glacial floods and disaster risk management in the Nepal Himalaya. Int J Disaster Risk Reduct 47:101567

    Google Scholar 

  • Tonina D, McKean JA, Benjankar RM, Yager E, Carmichael RA, Chen Q, Leah CA, Kelsey G, Edmondson MR (2020) Evaluating the performance of topobathymetric LiDAR to support multi-dimensional flow modelling in a gravel-bed mountain stream. Earth Surf Proc Land 45(12):2850–2868

    Article  Google Scholar 

  • Veh G, Korup O, Roessner S, Walz A (2018) Detecting Himalayan glacial lake outburst floods from Landsat time series. Remote Sens Environ 207:84–97

    Article  Google Scholar 

  • Veh G, Korup O, von Specht S, Roessner S, Walz A (2019) Unchanged frequency of moraine-dammed glacial lake outburst floods in the Himalaya. Nat Clim Chang 9(5):379–383

    Article  Google Scholar 

  • Watanabe T, Rothacher D (1996) The 1994 Lugge Tsho glacial lake outburst flood, Bhutan Himalaya. Mountain Res Dev 16(1):77–81

    Google Scholar 

  • Weng Q (2010) Remote sensing and GIS integration: theories, methods, and applications. McGraw-Hill, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anees, M.T., Akhtar, N., Bakar, A.F.B.A., Ishak, M.I.S. (2022). A Review on the Estimation of Glacial Lake Outburst Floods (GLOFs) in the Himalayan Region Using Remote Sensing and Geographic Information System. In: Kanga, S., Meraj, G., Farooq, M., Singh, S.K., Nathawat, M.S. (eds) Disaster Management in the Complex Himalayan Terrains . Geography of the Physical Environment. Springer, Cham. https://doi.org/10.1007/978-3-030-89308-8_7

Download citation

Publish with us

Policies and ethics