Skip to main content

Advertisement

Log in

Satellite-observed glacier recession in the Kashmir Himalaya, India, from 1980 to 2018

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The study, first of its kind in the Kashmir Valley, uses a time series of satellite data (1980–2018) to determine the glacier health, which is critical for sustaining the perenniality of the rivers originating from the area. The role of topography, morphology and climate on the observed glacier recession was investigated. In total, 147 glaciers were mapped from 1980 image; ~ 72% of the glaciers have area ≤ 3 km2 and a majority of them (123) are having size < 1 km2. The glaciers have reduced from 101.73 ± 16.79 km2 in 1980 to 72.41 ± 4.7 km2 in 2018 showing a recession of 29.32 ± 12.09 km2 during the period (28.82%). The observed glacier loss is higher (0.77 ± 0.31 km2 a−1) compared with the other Himalayan regions. The results indicated that there is strong influence of altitude, aspect, slope and climate on glacier recession. The glaciers with area ≤ 1 km2 have receded significantly more (41.20 ± 6.20%) than the larger glaciers > 3 km2 in area (15.97 ± 5.13%). The glaciers situated between 4200 and 4400 m altitudes have receded more (~ 55 ± 5.01%) than those situated at altitudes > 4800 m (~ 19 ± 6.9%). Furthermore, the glaciers with steep slope (> 25) have witnessed lower recession (0.25 ± 0.15 km2 a−1) compared to the glaciers with gentle slope (0.51 ± 0.22 km2 a−1). The south-facing glaciers showed higher recession (~ 38%) compared with the north-facing glaciers (~ 27%). The findings suggest that the increase in temperature and decline in winter solid precipitation have resulted in the glacier recession with the consequent depletion of the streamflows, which, if continued in the future, would adversely affect the economy in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ali, I., Shukla, A., & Romshoo, S. A. (2017). Assessing linkages between spatial facies changes and dimensional variations of glaciers in the upper Indus Basin, western Himalaya. Geomorphology, 284, 115–129.

    Article  Google Scholar 

  • Andreassen, L. M., Paul, F., Kääb, A., & Hausberg, J. E. (2008). Landsat-derived glacier inventory for Jotunheimen, Norway, and deduced glacier changes since the 1930s. The Cryosphere, 2(2), 131–145.

    Article  Google Scholar 

  • Bahr, D. B., & Radić, V. (2012). Significant contribution to total mass from very small glaciers. The Cryosphere, 6(4), 763–770.

    Article  Google Scholar 

  • Bahuguna, I. M., Kulkarni, A. V., Nayak, S., Rathore, B. P., Negi, H. S., & Mathur, P. (2007). Himalayan glacier retreat using IRS 1C PAN stereo data. International Journal of Remote Sensing, 28(2), 437–442.

    Article  Google Scholar 

  • Bahuguna, I. M., Rathore, B. P., Bhambhatt, R., Sharma, M., Dhar, S., Randhawa, S. S., Kumar, K., et al. (2014). Are the Himalayan glaciers retreating? Current Science, 106(7), 1008–1013.

    Google Scholar 

  • Bajracharya, S. R., & Shrestha, B. (Eds.). (2011). The status of glaciers in the Hindu Kush-Himalayan region. Kathmandu: ICIMOD.

  • Berthier, E., Arnaud, Y., Kumar, R., Ahmad, S., Wagnon, P., & Chevallier, P. (2007). Remote sensing estimates of glacier mass balances in the Himachal Pradesh (Western Himalaya, India). Remote Sensing of Environment, 108(3), 327–338.

    Article  Google Scholar 

  • Bhambri, R., Bolch, T., Chaujar, R. K., & Kulshreshtha, S. C. (2011). Glacier changes in the Garhwal Himalaya, India, from 1968 to 2006 based on remote sensing. Journal of Glaciology, 57, 543–556.

    Article  Google Scholar 

  • Bhat, M. A., Romshoo, S. A., & Beig, G. (2017). Aerosol black carbon at an urban site-Srinagar, Northwestern Himalaya, India: seasonality, sources, meteorology and radiative forcing. Atmospheric Environment, 165, 336348.

    Article  CAS  Google Scholar 

  • Bhutiyani, M. R., Kale, V. S., & Pawar, N. J. (2008). Changing the stream flow patterns in the rivers of Northwestern Himalaya: implication of global warming in the 20th century. Current Science, 95(5), 618–626.

    Google Scholar 

  • Bolch, T., Pieczonka, T., Mukherjee, K., & Shea, J. (2011). Brief communication: glaciers in the Hunza catchment (Karakoram) have been nearly in balance since the 1970s. Cryosphere, 11, 531–539.

    Article  Google Scholar 

  • Bolch, T., Kulkarni, A., Kääb, A., Huggel, C., Paul, F., Cogley, J. G., et al. (2012). The state and fate of Himalayan glaciers. Science, 336, 310–314.

    Article  CAS  Google Scholar 

  • Burn, B. H., Sharif, M., & Zhang, K. (2010). Detection of trends in hydrological extremes for Canadian watershed. Hydrological processes, 24(13), 1781–1790.

    Article  Google Scholar 

  • Burns, P., & Nolin, A. (2014). Using atmospherically-corrected Landsat imagery to measure glacier area change in the Cordillera Blanca, Peru from 1987 to 2010. Remote Sensing of Environment, 140, 165–178.

    Article  Google Scholar 

  • Byers, A. C. (2007). An assessment of contemporary glacier fluctuations in Nepal’s Khumbu Himal using repeat photography. Himalayan Journal of Sciences, 4, 21–26.

    Article  Google Scholar 

  • Chand, P., & Sharma, M. C. (2015). Glacier changes in the Ravi basin, North-Western Himalaya (India) during the last four decades (1971–2010/13). Global Planetary Change, 135, 133–147.

    Article  Google Scholar 

  • Chudley, T. R., Miles, E. S., & Willis, I. C. (2017). Glacier characteristics and retreat between 1991 and 2014 in the Ladakh range, Jammu and Kashmir. Remote Sensing letters, 8(6), 518–527.

    Article  Google Scholar 

  • Dar, R. A., Rashid, I., Romshoo, S. A., & Marazi, A. (2014). Sustainability of winter tourism in a changing climate over Kashmir Himalaya. Environmental monitoring and assessment, 186(4), 2549–2562.

    Article  CAS  Google Scholar 

  • Das, S., & Sharma, M. C. (2019). Glacier changes between 1971 and 2016 in the Jankar Chhu Watershed, Lahaul Himalaya, India. Journal of Glaciology, 65(249), 13–28.

  • Dimri, A. P., & Mohanty, U. C. (2009). Simulation of mesoscale features associated with intense western disturbances over western Himalayas. Meteorological Applications, 16(3), 289–308.

    Article  Google Scholar 

  • Dobhal, D. P., Mehta, M., & Srivastava, D. (2013). Influence of debris cover on terminus retreat and mass changes of Chorabari Glacier, Garwhal region, central Himalaya, India. Journal of Glaciology, 59, 961–971.

    Article  Google Scholar 

  • Frey, H., Paul, F., & Strozzi, T. (2012). Compilation of a glacier inventory for the western Himalayas from satellite data: methods, challenges, and results. Remote Sensing of Environment, 124, 832–843.

    Article  Google Scholar 

  • Fujita, K., & Nuimura, T. (2011). Spatially heterogeneous wastage of Himalayan glaciers. Proceedings of the National Academy of Sciences, 108, 14011–14014.

    Article  CAS  Google Scholar 

  • Gardelle, J., Berthier, E., Arnaud, Y., & Kaab, A. (2013). Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999-2011. The Cryosphere, Copernicus, 7, 1263–1286.

    Article  Google Scholar 

  • Gardner, A. S., Moholdt, G., Cogley, J. G., Wouters, B., Arendt, A. A., Wahr, J., Berthier, E., Hock, R., Pfeffer, W. T., Kaser, G., Ligtenberg, S. R. M., Bolch, T., Sharp, M. J., Hagen, J. O., van den Broeke, M. R., & Paul, F. (2013). A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science, 340, 852–856.

    Article  CAS  Google Scholar 

  • Granshaw, F. D., & Fountain, A. G. (2006). Glacier change (1958– 1998) in the North Cascades National Park Complex, Washington, USA. Journal of Glaciology, 52(177), 251–256.

    Article  CAS  Google Scholar 

  • Hall, M. H., & Fagre, D. B. (2003). Modeled climate-induced glacier change in Glacier National Park, 1850–2100. BioScience, 53(2), 131–140.

    Article  Google Scholar 

  • Hall, D. K., Bayr, K. J., Schöner, W., Schadler, B. R. A., & Chien, J. Y. (2003). Consideration of the errors inherent in mapping historical glacier positions in Austria from the ground and space (1893–2001). Remote Sensing of Environment, 86, 566–577.

    Article  Google Scholar 

  • Hess, A., Lyer, H., & Malm, W. (2001). Linear trend analysis: a comparison of method. Atmospheric environment, 35(30), 5211–5222.

    Article  CAS  Google Scholar 

  • Huss, M., & Fischer, M. (2016). Sensitivity of very small glaciers in the Swiss Alps to future climate change. Frontiers in Earth Science, 4, 34.

    Article  Google Scholar 

  • Immerzeel, W. W., Van Beek, L. P., & Bierkens, M. F. (2010). Climate change will affect the Asian water towers. Science, 328(5984), 1382-1385. International Journal of Water Resource Development., 31(2), 161–173.

    Google Scholar 

  • Immerzeel, W. W., Pellicciotti, F., & Shrestha, A. B. (2012). Glaciers as a proxy to quantify the spatial distribution of precipitation in the Hunza basin. Mountain research and development, 32(1), 30–38.

    Article  Google Scholar 

  • IPCC, 2013. “Climate Change (2013). The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, WMO/UNEP, Cambridge University Press.

  • Kääb, A., Berthier, E., Nuth, C., Gardelle, J., & Arnaud, Y. (2012). Contrasting patterns of early twenty-first century glacier mass change in the Himalayas. Nature, 488(7412), 495–498.

    Article  CAS  Google Scholar 

  • Kamp, U., Byrne, M., & Bolch, T. (2011). Mapping glacier fluctuations between 1975 and 2008 in the Greater Himalaya Range of Ladakh, north-western India. International Journal of Mountain Sciences, 8, 374–389.

    Article  Google Scholar 

  • Kargel, J. S., Abrams, M. J., Bishop, M. P., Bush, A., Hamilton, G., Jiskoot, H., Kääb, A., Kieffer, H. H., Lee, E. M., Paul, F., Rau, F., Raup, B., Shroder, J. F., Soltesz, D., Stainforth, D., Stearns, L., & Wessels, R. (2005). Multispectral imaging contributions to global land ice measurements from space. Remote Sensing of Environment, 99(1-2), 187–219.

    Article  Google Scholar 

  • Karimi, N., Eftekhari, M., Farajzadeh, M., Namdari, S., Moridnejad, A., & Karimi, D. (2014). Use of multitemporal satellite images to find some evidence for glacier changes in the Haft-Khan glacier, Iran. Arabian Journal of Geosciences, 8(8), 5879–5896.

    Article  Google Scholar 

  • Kaser, G., Großhauser, M., & Marzeion, B. (2010). Contribution potential of glaciers to water availability in different climate regimes. Proceedings of the National Academy of Sciences, 107, 20223–20227.

    Article  CAS  Google Scholar 

  • Kendall, M. G., (1962). Rank correlation methods. 3rd edn. Hafner Publishing Company, NewYork,128.

  • Khattak, M., Babel, M., & Sharif, M. (2011). Hydrometeorological trends in the upper Indus river basin in Pakistan. Climate Research, 46(2), 103–119.

    Article  Google Scholar 

  • Khromova, T. E., Osipova, G. B., Tsvetkov, D. G., Dyurgerov, M. B., & Barry, R. G. (2006). Changes in glacier extent in the eastern Pamir, Central Asia, determined from historical data and ASTER imagery. Remote sensing of Environment, 102(1), 24–32.

    Article  Google Scholar 

  • Kraaijenbrink, P. D. A., Lutz, A. F., Bierkens, M. F., Immerzeel, W. W., (2017). Impact of a 1.5 °C global temperature rise on the glaciers of High Mountain Asia. In AGU Fall Meeting Abstracts.

  • Kulkarni, A. V., Rathore, B. P., Singh, S. K., & Bahuguna, I. M. (2011). Understanding changes in the Himalayan cryosphere using remote sensing techniques. International Journal of Remote Sensing, 32(3), 601–615.

    Article  Google Scholar 

  • Mann, H. B. (1945). Non-parametric tests against trend. Econometrica, 13, 245–259.

    Article  Google Scholar 

  • Marazi, A. (2019). Modelling the contribution of glacier melt, snow melt, rainfall and baseflow to Lidder Valley. A Ph. D Thesis, University of Kashmir.

  • Marazi, A., & Romshoo, S. A. (2018). Streamflow response to shrinking glaciers under changing climate in the Lidder Valley, Kashmir Himalayas. Journal of Mountain Science, 15(6), 1241–1253.

    Article  Google Scholar 

  • Ming, J., Xiao, C., Cachier, H., Qin, D., Qin, X., Li, Z., & Pu, J. (2009). Black Carbon (BC) in the snow of glaciers in west China and its potential effects on albedos. Atmospheric Research, 92(1), 114–123.

    Article  CAS  Google Scholar 

  • Mir, R. A., & Majeed, Z. (2016). Frontal recession of Parkachik Glacier between 1971-2015, Zanskar Himalaya using remote sensing and feild data. Geocarto International, 16, 1–15.

    Google Scholar 

  • Mir, R. A., Jain, S. K., Saraf, A. K., & Goswami, A. (2014). Glacier changes using satellite data and effect of climate in Tirungkhad basin located in western Himalaya. Geocarto International, 29, 293–313.

    Article  Google Scholar 

  • Muhammad, S., Tian, L., & Khan, A. (2019). Early twenty-first century glacier mass losses in the Indus Basin constrained by density assumptions. Journal of Hydrology, 574, 467–475.

    Article  Google Scholar 

  • Murtaza, K. O., & Romshoo, S. A. (2017). Recent glacier changes in the Kashmir alpine Himalayas, India. Geocarto International, 32(2), 188–205.

    Google Scholar 

  • Muslim, M., Romshoo, S. A., & Rather, A. Q. (2015). Paddy crop yield estimation in Kashmir Himalayan rice bowl using remote sensing and simulation model. Environmental Monitoring and Assessment, 187, 316.

    Article  Google Scholar 

  • Nagai, H., Fujita, K., Nuimura, T., & Sakai, A. (2013). Southwest-facing slopes control the formation of debris-covered glaciers in the Bhutan Himalaya. The Cryosphere, 7, 1303–1314.

    Article  Google Scholar 

  • Nuimura, T., Fujita, K., Yamaguchi, S., & Sharma, R. R. (2012). Elevation changes of glaciers revealed by multi temporal digital elevation models calibrated by GPS survey in the Khumbu region, Nepal Himalaya, 1992-2008. Journal of Glaciology, 58, 648–656.

    Article  Google Scholar 

  • Nuimura, T., Sakai, K., Taniguchi, H., Nagai, D., Lamsal, S., Tsutaki, A., et al. (2015). The GAMDAM glacier inventory: a quality-controlled inventory of Asian glaciers. The Cryosphere, 9(3), 849–864.

    Article  Google Scholar 

  • Oerlemans, J., & Reichert, B. K. (2000). Relating glacier mass balance to meteorological data by using a seasonal sensitivity characteristic. Journal of Glaciology, 46(152), 1–6.

    Article  Google Scholar 

  • Pankaj, A., Kumar, P., & Mishra, A. (2012). Extraction of glacio-geomorphological units of tons river watershed based on remote sensing techniques. Journal of the Indian Society of Remote Sensing, 40(4), 725–734.

    Article  Google Scholar 

  • Patel, L. K., Sharma, P., Fathima, T. N., & Thamban, M. (2018). Geospatial observations of topographical control over the glacier retreat, Miyar basin, Western Himalaya, India. Environmental Earth Sciences, 77(5), 190.

    Article  CAS  Google Scholar 

  • Paul, F., Kääb, A., Maisch, M., Kellenberger, T., & Haeberli, W. (2002). The new remote-sensing-derived Swiss glacier inventory: I Methods. Annals of Glaciology, 34(1), 355–361.

    Article  Google Scholar 

  • Pfeffer, W. T., Arendt, A. A., Bliss, A., Bolch, T., Cogley, J. G., Gardner, A. S., Hagen, J. O., Hock, R., Kaser, G., Kienholz, C., Miles, E. S., Moholdt, G., Mölg, N., Paul, F., Radić, V., Rastner, P., Raup, B. H., Rich, J., Sharp, M. J., & The Randolph Consortium. (2014). The Randolph Glacier Inventory: a globally complete inventory of glaciers. Journal of Glaciology, 60(221), 537–552.

    Article  Google Scholar 

  • Pratap, B., Dobhal, D. P., Bhambri, R., Mehta, M., & Tewari, V. C. (2016). Four decades of glacier mass balance observations in the Indian Himalaya. Regional Environmental Change, 16(3), 643–658.

    Article  Google Scholar 

  • Racoviteanu, A., Paul, F., Raup, B., Khalsa, S. J. S., & Armstrong, R. (2009). Challenges and recommendations in mapping of glacier parameters from space: results of the 2008 Global Land Ice Measurements from Space (GLIMS) workshop, Boulder, Colorado, USA. Annals of Glaciology, 50, 53–69.

    Article  Google Scholar 

  • Rashid, I., Romshoo, S. A., Abdullah, T., & Hajam, J. A. (2016). A semi-automated approach for mapping geomorphology in mountainous terrain, Ferozpora watershed (Kashmir Himalayas). Journal of the Geological Society of India, 88(2), 206–212.

    Article  Google Scholar 

  • Rees, H. G., & Collins, D. N. (2006). Regional differences in response of flow in glacier-fed Himalayan rivers to climatic warming. Hydrological Processes, 20(10), 2157–2169.

    Article  Google Scholar 

  • Ren, J., Jing, Z., Pu, J., & Qin, X. (2006). Glacier variations and climate change in the central Himalaya over the past few decades. Annals of Glaciology, 43(1), 218–222.

    Article  Google Scholar 

  • Romshoo, S. A. (2012). Indus River Basin. Common concerns and the roadmap to resolution. New Delhi: European Union sponsored publication, Centre for Dialogue and Reconciliation (CDR).

    Google Scholar 

  • Romshoo, S. A., & Rashid, I. (2014) Assessing the impacts of changing land cover and climate on Hokersar wetland in Indian Himalayas. Arabian Journal of Geosciences, 7(1), 143–160.

  • Romshoo, S. A., Dar, R. A., Rashid, I., Marazi, A., Ali, N., & Zaz, S. N. (2015). Implications of shrinking cryosphere under changing climate on the streamflows in the Lidder catchment in the Upper Indus Basin, India. Arctic, Antarctic, and Alpine research, 47(4), 627–644.

    Article  Google Scholar 

  • Romshoo, S. A., Rashid, I., Abdullah, T., & Fayaz, M. (2017a). Observed changes in the Himalayan glaciers: multiple driving factors. In EGU General Assembly Conference Abstracts, 19, 966.

    Google Scholar 

  • Romshoo, S. A., Zaz, S., & Ali, N. (2017b). Recent climate variability in Kashmir Valley, India and its impact on streamflows of the Jhelum River. Journal of Research and Development, 17(2017), 01–22.

    Google Scholar 

  • Romshoo, S. A., Bashir, J., & Rashid, I. (2020). Twenty-first century-end climate scenario of Jammu and Kashmir Himalaya, India, using ensemble climate models. Climatic Change. https://doi.org/10.1007/s10584-020-02787-2.

  • Salerno, F., Thakuri, S., Tartari, G., Nuimura, T., Sunako, S., Sakai, A., & Fujita, K. (2017). Debris-covered glacier anomaly? Morphological factors controlling changes in the mass balance, surface area, terminus position, and snow line altitude of Himalayan glaciers. Earth and Planetary Science Letters, 471, 19–31.

    Article  CAS  Google Scholar 

  • Sarikaya, M. A., Bishop, M. P., Shroder, J. F., & Olsenholler, J. A. (2012). Space-based observations of Eastern Hindu Kush glaciers between 1976 and 2007, Afghanistan and Pakistan. Remote Sensing Letters, 3(1), 77–84.

    Article  Google Scholar 

  • Scherler, D., Bookhagen, B., & Strecker, M. R. (2011). Hillslope-glacier coupling: the interplay of topography and glacial dynamics in High Asia. Journal of Geophysical Research: Earth Surface, 116(F2).

  • Schmidt, S., & Nüsser, M. (2012). Changes of high altitude glaciers from 1969 to 2010 in the Trans-Himalayan Kang Yatze Massif, Ladakh. Arctic, Antarctic and Alpine Research, 44(1), 107–121.

    Article  Google Scholar 

  • Scott, D., Hall, C.M., Gössling, S., (2012). Tourism and climate change: Impacts, adaptation and mitigation (Vol. 10). Routledge.

  • Shekhar, M. S., Chand, H., Kumar, S., Srinivasa, K., & Ganju, A. (2010). Climate-change studies in the western Himalaya. Annals of Glaciology, 51(54), 105–112.

    Article  Google Scholar 

  • Shukla, A., & Qadir, J. (2016). Differential response of glaciers with varying debris cover extent: evidence from changing glacier parameters. International Journal of Remote Sensing, 37(11), 2453–2479.

    Article  Google Scholar 

  • Shukla, A., Ali, I., Hasan, N., & Romshoo, S. A. (2017). Dimensional changes in the Kolahoi glacier from 1857 to 2014. Environmental monitoring and assessment, 189(1), 5.

    Article  Google Scholar 

  • Venkatesh, T. N., Kulkarni, A. V., & Srinivasan, J. (2012). Relative effect of slope and equilibrium line altitude on the retreat of Himalayan glaciers. Cryosphere, 6, 301–311.

    Article  Google Scholar 

  • Wagnon, P., Linda, A., Arnaud, Y., Kumar, R., Sharma, P., & Vincent, C. (2007). Four years of mass balance on Chhota Shigri Glacier, Himachal Pradesh, India, a new benchmark glacier in the western Himalaya. Journal of Glaciology, 53(183), 603–611.

    Article  Google Scholar 

  • Wang, Y., Hou, S., & Liu, Y. (2009). Glacier changes in the Karlik Shan, eastern Tien Shan, during 1971/72– 2001/02. Annals of Glaciology, 50, 39–45.

    Article  Google Scholar 

  • Wang, W., Xiang, Y., Gao, Y., Lu, A., & Yao, T. (2015). Rapid expansion of glacial lakes caused by climate and glacier retreat in the Central Himalayas. Hydrological Processes, 29(6), 859–874.

  • Williams Jr., R. S., Hall, D. K., Sigurbsson, O., & Chien, J. Y. L. (1997). Comparison of satellite-derived with ground-based measurements of the fluctuations of the margins of Vatnajokull, Iceland, 1973-92. Annals of Glaciology, 24, 72–80.

    Article  Google Scholar 

  • Zaz, S. N., Romshoo, S. A., Ramkumar, T. K., & Babu, V. Y. (2019). Analyses of temperature and precipitation in the Indian Jammu and Kashmir region for the 1980–2016 period: implications for remote influence and extreme events. Atmospheric Chemistry and Physics, 19, 15–37.

    Article  CAS  Google Scholar 

  • Zhou, Y., Li, Z., & Li, J. (2017). Slight glacier mass loss in the Karakoram region during the 1970s to 2000 revealed by KH-9 images and SRTM DEM. Journal of Glaciology, 63, 331–342.

    Article  Google Scholar 

Download references

Acknowledgments

The research work was conducted as part of the research project titled “Integrated Studies on Himalayan Cryosphere” sponsored by the Space Application Centre, Indian Space Research organization (ISRO), Department of Space, and Government of India. The financial assistance received under the project to accomplish this research is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shakil Ahmad Romshoo.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romshoo, S.A., Fayaz, M., Meraj, G. et al. Satellite-observed glacier recession in the Kashmir Himalaya, India, from 1980 to 2018. Environ Monit Assess 192, 597 (2020). https://doi.org/10.1007/s10661-020-08554-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08554-1

Keywords

Navigation