Skip to main content

Molecular Regulation of Synaptic Release

  • Reference work entry
  • First Online:
Neuroscience in the 21st Century
  • 147 Accesses

Abstract

The Synaptic Vesicle Cycle Governs the Release of Neurotransmitter. Synaptic transmission at chemical synapses is mediated by the release of neurotransmitters from presynaptic axonal specializations that either are interspersed along terminal axonal branches or demarcate the end point of axonal arborization (nerve terminals). At these sites, the axonal lumen is enlarged, and the cytoplasmic space is filled with numerous small membrane vesicles, termed synaptic vesicles, that serve as storage organelles for neurotransmitters. When an action potential arrives, presynaptic calcium channels open. The resulting influx of calcium ions triggers exocytosis of synaptic vesicles that, in many fast synapses, are pre-attached to specialized release sites termed active zones. The neurotransmitter then diffuses across the synaptic cleft and alters the ion permeability of the postsynaptic membrane, by activating either the ligand-gated ion channels or receptors linked to second messenger cascades.

After exocytosis, the membrane of synaptic vesicles is retrieved by endocytosis. Although the details of the endocytotic pathway are still debated (see section “Exo-endocytotic Cycling of Synaptic Vesicles”), endocytosis takes place close to the exocytotic sites, and the endocytosed membrane is used to regenerate fresh synaptic vesicles. Exo- and endocytosis are functionally coupled and allow for maintaining a steady state that is capable of adapting to a large dynamic range of activity. After endocytosis, synaptic vesicles are reloaded with neurotransmitter and become competent for another round of exo-endocytotic cycling. Synaptic vesicles are capable of recycling thousands of times, thus endowing the presynaptic compartment with a robust and versatile trafficking pathway capable of keeping up with even high levels of sustained synaptic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bruns D, Jahn R (1995) Real-time measurement of transmitter release from single synaptic vesicles. Nature 377(6544):62–65

    Article  CAS  Google Scholar 

  • Burkhardt J et al (2008) Munc18a controls SNARE assembly through its interaction with the syntaxin N-peptide. EMBO J 27(7):923–933

    Article  CAS  Google Scholar 

  • Cingolani LA, Goda Y (2008) Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy. Nat Rev Neurosci 9:344–356

    Article  CAS  Google Scholar 

  • Denker A, Rizzoli SO (2010) Synaptic vesicle pools: an update. Front Synaptic Neurosci 2:135

    PubMed  PubMed Central  Google Scholar 

  • Edwards RH (2007) The neurotransmitter cycle and quantal size. Neuron 55(6):835–858

    Article  CAS  Google Scholar 

  • Forgac M (2007) Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat Rev Mol Cell Biol 8(11):917–929

    Article  CAS  Google Scholar 

  • Jahn R, Scheller RH (2006) SNAREs-engines for membrane fusion. Nat Rev Mol Cell Biol 7:631–643

    Article  CAS  Google Scholar 

  • Jin Y, Garner CC (2008) Molecular mechanisms of presynaptic differentiation. Annu Rev Cell Dev Biol 24:237–262

    Article  CAS  Google Scholar 

  • McMahon HT, Boucrot E (2011) Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 12:517–533

    Article  CAS  Google Scholar 

  • Peter BJ et al (2004) BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 303(5657):495–499

    Article  CAS  Google Scholar 

  • Rizo J, Rosenmund C (2008) Synaptic vesicle fusion. Nat Struct Mol Biol 15(7):665–674

    Article  CAS  Google Scholar 

  • Schoch S, Gundelfinger ED (2006) Molecular organization of the presynaptic active zone. Cell Tissue Res 326(2):379–391

    Article  CAS  Google Scholar 

  • Stein A et al (2009) Helical extension of the neuronal SNARE complex into the membrane. Nature 460(7254):525–528

    Article  CAS  Google Scholar 

  • Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10:513–525

    Article  CAS  Google Scholar 

  • Südhof TC (2004) The synaptic vesicle cycle. Annu Rev Neurosci 27:509–547

    Article  Google Scholar 

  • Südhof TC, Rothman JC (2009) Membrane fusion: grappling with SNARE and SM proteins. Science 323(5913):474–477

    Article  Google Scholar 

  • Sutton RB et al (1998) Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution. Nature 395:347–353

    Article  CAS  Google Scholar 

  • Sutton RB, Ernst JA, Brunger AT (1999) Crystal structure of the cytosolic C2A-C2B domains of synaptotagmin III. Implications for Ca(+2)-independent snare complex interaction. J Cell Biol 147(3):589–598

    Article  CAS  Google Scholar 

  • SynapseWeb, Kristen M. Harris, PI, http://synapses.clm.utexas.edu/

  • Takamori S et al (2006) Molecular anatomy of a trafficking organelle. Cell 127(4):831–846

    Article  CAS  Google Scholar 

  • Toonen RF, Verhage M (2003) Vesicle trafficking: pleasure and pain from SM genes. Trends Cell Biol 13(4):177–186

    Article  CAS  Google Scholar 

  • Verhage M, Sorensen JB (2008) Vesicle docking in regulated exocytosis. Traffic 9(9):1414–1424

    Article  CAS  Google Scholar 

  • Wilbur JD, Hwang PK, Brodsky FM (2005) New faces of the familiar clathrin lattice. Traffic 6(4):346–350

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Jahn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Jahn, R., Boyken, J. (2022). Molecular Regulation of Synaptic Release. In: Pfaff, D.W., Volkow, N.D., Rubenstein, J.L. (eds) Neuroscience in the 21st Century. Springer, Cham. https://doi.org/10.1007/978-3-030-88832-9_16

Download citation

Publish with us

Policies and ethics