Skip to main content

Impact of Habitat Loss and Fragmentation in Assemblages, Populations, and Individuals of American marsupials

  • Living reference work entry
  • First Online:
American and Australasian Marsupials

Abstract

Habitat loss and fragmentation are considered primary causes of biodiversity loss worldwide, with predicted increasing impacts in terrestrial ecosystems. Species richness of New World marsupials are usually studied as part of small mammal assemblages, including rodents, showing the same overall negative effects of habitat loss in multi-taxa analyses. The effects of fragmentation per se are generally weaker, but controversial. Actually, the process of habitat loss and fragmentation have a variety of other effects on landscapes, creating thresholds of species loss, changing habitat quality in forest fragments by edge effects, creating matrices of varied resistances to species movements, which interacts with disturbances such as fire and logging. These combined sources of disturbances should affect population dynamics and persistence, demography, habitat selection, diet, and fitness of individuals in fragmented landscapes. In this chapter the current understanding of these effects is reviewed considering responses that are common to small mammals as a group, and responses that are potentially particular to New World marsupials, indicating directions for future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aisengart-Menezes A (2010) Demografia do marsupial Philander frenatus (Mammalia, Didelphimorphia) em dois fragmentos de Mata Atlântica (Cachoeiras de Macacu, RJ). Dissertation, Universidade Federal do Rio de Janeiro

    Google Scholar 

  • Aragão LE, Anderson LO, Fonseca MG et al (2018) 21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nat Commun 9(1):1–12

    Article  Google Scholar 

  • Astúa D, Cherem JJ, Cáceres NC et al (2022) Checklist of New World marsupials. In: Cáceres NC, Dickman CR (eds) American and Australasian marsupials: an evolutionary, biogeographical, and ecological approach. Springer Nature, Cham

    Google Scholar 

  • Balkenhol N, Pardini R, Cornelius C et al (2013) Landscape-level comparison of genetic diversity and differentiation in a small mammal inhabiting different fragmented landscapes of the Brazilian Atlantic Forest. Conserv Genet 14:355–367

    Article  Google Scholar 

  • Banks SC, Lindenmayer DB, Ward J et al (2005) The effects of habitat fragmentation via forestry plantation establishment on spatial genotypic structure in the small marsupial carnivore, Antechinus agilis. Mol Ecol 14:1667–1680

    Article  CAS  PubMed  Google Scholar 

  • Barlow J, Berenguer E, Carmenta R et al (2020) Clarifying Amazonia’s burning crisis. Glob Chang Biol 26(2):319–321

    Article  PubMed  Google Scholar 

  • Barros CS, Crouzeilles R, Fernandez FA (2008) Reproduction of the opossums Micoureus paraguayanus and Philander frenata in a fragmented Atlantic Forest landscape in Brazil: is seasonal reproduction a general rule for Neotropical marsupials? Mamm Biol 73:463–467

    Article  Google Scholar 

  • Barros CS, Püttker T, Pardini R (2015) Timing and environmental cues associated with triggering of reproductive activity in Atlantic Forest marsupials. Mamm Biol 80(2):141–147

    Article  Google Scholar 

  • Bergallo HG (1994) Ecology of a small mammal community in an Atlantic Forest area in southeastern Brazil. Stud Neotrop Fauna Environ 29(4):197–217

    Article  Google Scholar 

  • Berry LE, Lindenmayer DB, Dennis TE et al (2016) Fire severity alters spatio-temporal movements and habitat utilization by an arboreal marsupial, the mountain brushtail possum (Trichosurus cunninghami). Int J Wildland Fire 25(12):1291–1302

    Article  Google Scholar 

  • Bonecker ST, Portugal LG, Costa-Neto SF, Gentile R (2009) A long term study of small mammal populations in a Brazilian agricultural landscape. Mamm Biol 74(6):467–477

    Article  Google Scholar 

  • Bovendorp RS, Brum FT, McCleery RA et al (2019) Defaunation and fragmentation erode small mammal diversity dimensions in tropical forests. Ecography 42(1):23–35

    Article  Google Scholar 

  • Bowers MA, Gregario K, Brame CJ et al (1996) Use of space and habitats by meadow voles at the home range, patch and landscape scales. Oecologia 105(1):107–115

    Article  PubMed  Google Scholar 

  • Bradshaw SD (2018) Ecophysiology of Australian arid-zone marsupials. In: Lambers H (ed) On the ecology of Australia’s arid zone. Springer, Cham, pp 103–132

    Chapter  Google Scholar 

  • Brandão MV, Rossi RV, Semedo TBF et al (2015) Diagnose e distribuição geográfica dos marsupiais da Amazônia brasileira. In: Mendes-Oliveira AC, Miranda CL (eds) Pequenos mamíferos não-voadores da Amazônia brasileira. Sociedade Brasileira de Mastozoologia, Rio de Janeiro, pp 95–148

    Google Scholar 

  • Briani DC (2006) Energética alimentar de Gracilinanus microtarsus (Didelphimorphia: Didelphidae). Dissertation, Universidade Estadual Paulista

    Google Scholar 

  • Brito D, Fonseca GAB (2007) Demographic consequences of population subdivision on the long-furred woolly mouse opossum (Micoureus paraguayanus) from the Atlantic Forest. Acta Oecol 31:60–68

    Article  Google Scholar 

  • Cáceres NC (2002) Food habits and seed dispersal by the White-eared opossum, Didelphis albiventris, in Southern Brazil. Stud Neotrop Fauna E 37:1–8

    Google Scholar 

  • Cáceres NC (2004) Diet of three didelphid marsupials (Mammalia, Didelphimorphia) in southern Brazil. Mamm Biol 69:430–433

    Google Scholar 

  • Cáceres NC, Monteiro-Filho ELA (2001) Food habits, home range and activity of Didelphis aurita (Mammalia, Marsupialia) in a forest fragment of southern Brazil. Stud Neotrop Fauna Environ 36(2):85–92

    Article  Google Scholar 

  • Cáceres NC, Ghizoni-Jr IR, Graipel ME (2002) Diet of two marsupials, Lutreolina crassicaudata and Micoureus demerarae, in a coastal Atlantic Forest island of Brazil. Mammalia 66:331–340

    Article  Google Scholar 

  • Cáceres NC, Delciellos AC, Prevedello JA et al (2022) Movement, habitat selection, and home range of American marsupials. In: Cáceres NC, Dickman CR (eds) American and Australasian marsupials: an evolutionary, biogeographical, and ecological approach. Springer Nature, Cham

    Chapter  Google Scholar 

  • Camargo ACL, Barrio ROL, Camargo NF et al (2018) Fire affects the occurrence of small mammals at distinct spatial scales in a Neotropical savanna. Eur J Wildl Res 64(6):63

    Article  Google Scholar 

  • Cantor M, Ferreira LA, Silva WR, Setz EZF (2010) Potential seed dispersal by Didelphis albiventris (Marsupialia, Didelphidae) in highly disturbed environment. Biota Neotrop 10:45–51

    Article  Google Scholar 

  • Carmignotto AP, Astúa D (2017) Mammals of the Caatinga: diversity, ecology, biogeography, and conservation. In: Silva JMC, Leal IR, Tabarelli M (eds) Caatinga: the largest tropical dry forest region in South America. Springer, Cham, pp 211–254

    Chapter  Google Scholar 

  • Carmignotto AP, Vivo MD, Langguth A (2012) Mammals of the Cerrado and Caatinga: distribution patterns of the tropical open biomes of Central South America. In: Patterson BD, Costa LP (eds) Bones, clones and biomes. The history and geography of recent Neotropical mammals. University of Chicago Press, Chicago, pp 307–350

    Chapter  Google Scholar 

  • Carvalho FMV, Pinheiro PS, Fernandez FAZ et al (1999) Diet of small mammals on Atlantic Forest fragments in southeastern Brazil. Rev Bras Zoo 1(1):91–100

    Google Scholar 

  • Carvalho FMV, Fernandez FAS, Nessimian JL (2005) Food habitats of sympatric opossums coexisting in small Atlantic Forest fragments in Brazil. Mamm Biol 70:366–375

    Article  Google Scholar 

  • Carvalho WD, Mustin K, Hilário RR et al (2019) Deforestation control in the Brazilian Amazon: A conservation struggle being lost as agreements and regulations are subverted and bypassed. Perspect Ecol Cons 17:122–130

    Google Scholar 

  • Castro EB, Fernandez FAS (2004) Determinants of differential extinction vulnerabilities of small mammals in Atlantic Forest fragments in Brazil. Biol Conserv 119:73–80

    Article  Google Scholar 

  • Celis-Diez JL, Hetz J, Marín-Vial PA et al (2012) Population abundance, natural history, and habitat use by the arboreal marsupial Dromiciops gliroides in rural Chiloé Island. Chile J Mammal 93(1):134–148

    Article  Google Scholar 

  • Ceotto P, Finotti R, Santori R, Cerqueira R (2009) Diet variation of the marsupials Didelphis aurita and Philander frenatus (Didelphimorphia, Didelphidae) in a rural area of Rio de Janeiro, Brazil. Mastozool Neotrop 16:49–58

    Google Scholar 

  • Cerqueira R, Gentile R, Fernandez FAS, D’andrea PS (1993) A five-year population study of an assemblage of small mammals in Southeastern Brazil. Mammalia 57(4):507–518

    Article  Google Scholar 

  • D’Andrea PS, Gentile R, Maroja LS et al (2007) Small mammal populations of an agroecosystem in the Atlantic Forest domain, southeastern Brazil. Braz J Biol 67(1):179–186

    Google Scholar 

  • Dambros C, Cáceres N, Baselga A (2022) The prevalence of temperature and dispersal limitation as drivers of diversity in Neotropical small mammals. Austral Ecol 47(3):567–579

    Google Scholar 

  • DeGabriel JL, Moore BD, Foley WJ et al (2009) The effects of plant defensive chemistry on nutrient availability predict reproductive success in a mammal. Ecology 90(3):711–719

    Article  PubMed  Google Scholar 

  • Delciellos AC (2016) Mammals of four Caatinga areas in northeastern Brazil: inventory, species biology, and community structure. Check List 12(3):1916

    Article  Google Scholar 

  • Delciellos AC, Vieira MV, Grelle CE et al (2016) Habitat quality versus spatial variables as determinants of small mammal assemblages in Atlantic Forest fragments. J Mammal 97(1):253–265

    Article  Google Scholar 

  • Delciellos AC, Ribeiro SE, Vieira MV (2017) Habitat fragmentation effects on fine-scale movements and space use of an opossum in the Atlantic Forest. J Mammal 98(4):1129–1136

    Article  Google Scholar 

  • Delciellos AC, Barros CS, Prevedello JA et al (2018) Habitat fragmentation affects individual condition: evidence from small mammals of the Brazilian Atlantic Forest. J Mammal 99(4):936–945

    Article  Google Scholar 

  • Delciellos AC, Prevedello JA, Figueiredo MSL et al (2022) Species richness and endemism of marsupials in the Atlantic Forest: spatial patterns and drivers. In: Cáceres NC, Dickman CR (eds) American and Australasian marsupials: an evolutionary, biogeographical, and ecological approach. Springer Nature, Cham

    Google Scholar 

  • Di Napoli RP, Cáceres NC (2012) Absence of edge effect on small mammals in woodland-savannah remnants in Brazil. Community Ecol 13:11–20

    Article  Google Scholar 

  • Fahrig L (2013) Rethinking patch size and isolation effects: the habitat amount hypothesis. J Biogeogr 40(9):1649–1663

    Article  Google Scholar 

  • Fahrig L (2017) Ecological responses to habitat fragmentation per se. Annu Rev Ecol Evol Syst 48:1–23

    Article  Google Scholar 

  • Fletcher-Jr RJ, Didham RK, Banks-Leite C et al (2018) Is habitat fragmentation good for biodiversity? Biol Conserv 226:9–15

    Article  Google Scholar 

  • Fonseca JLG (2017) Estrutura genética do marsupial Marmosops incanus em paisagens de Mata Atlântica no Espírito Santo. Dissertation, Universidade Federal do Espírito Santo

    Google Scholar 

  • Fontúrbel FE, Silva-Rodríguez EA, Cárdenas NH, Jiménez JE (2010) Spatial ecology of monito del monte (Dromiciops gliroides) in a fragmented landscape of southern Chile. Mamm Biol 75(1):1–9

    Article  Google Scholar 

  • Fontúrbel FE, Franco M, Rodríguez-Cabal MA et al (2012) Ecological consistency across space: a synthesis of the ecological aspects of Dromiciops gliroides in Argentina and Chile. Naturwissenschaften 99(11):873–881

    Article  PubMed  Google Scholar 

  • Fontúrbel FE, Candia AB, Salazar DA et al (2014) How forest marsupials are affected by habitat degradation and fragmentation? A meta-analysis. Naturwissenschaften 101(7):599–602

    Article  PubMed  Google Scholar 

  • Freitas SR, Astúa De Moraes D, Santori RT et al (1997) Habitat preference and food use by Metachirus nudicaudatus and Didelphis aurita (Didelphimorphia, Didelphidae) in a restinga forest at Rio de Janeiro. Rev Bras Biol 57(1):93–98

    Google Scholar 

  • Fritz SA, Bininda-Emonds ORP, Purvis A (2009) Geographical variation in predictors of mammalian extinction risk: big is bad, but only in the tropics. Ecol Lett 12(6):538–549

    Article  PubMed  Google Scholar 

  • Fuentes-Montemayor E, Cuarón AD, Vázquez-Domínguez E et al (2009) Living on the edge: roads and edge effects on small mammal populations. J Anim Ecol 78:857–865

    Article  PubMed  Google Scholar 

  • Galetti M, Rodarte RR, Neves CL et al (2016) Trophic niche differentiation in rodents and marsupials revealed by stable isotopes. PLOS ONE 11(4):e0152494

    Google Scholar 

  • Gardiner R, Bain G, Hamer R et al (2018) Habitat amount and quality, not patch size, determine persistence of a woodland-dependent mammal in an agricultural landscape. Landsc Ecol 33(11):1837–1849

    Article  Google Scholar 

  • Gaui TD, Costa FRC, Souza FC et al (2019) Long-term effect of selective logging on floristic composition: a 25 year experiment in the Brazilian Amazon. For Ecol Manag 440:258–266

    Article  Google Scholar 

  • Gentile R, D’Andrea PS, Cerqueira R et al (2000) Population dynamics and reproduction of marsupials and rodents in a Brazilian rural area: a five-year study. Stud Neotrop Fauna Environ 35(1):1–9

    Article  Google Scholar 

  • Graipel ME, Santos-Filho M (2006) Reprodução e dinâmica populacional de Didelphis aurita Wied-Neuwied (Mammalia: Didelphimorphia) em ambiente periurbano na Ilha de Santa Catarina. Sul do Brasil Biotemas 19(1):65–73

    Google Scholar 

  • Hillman A (2016) Urbanisation and small marsupials in the greater Perth region, Western Australia. Dissertation, Murdoch University

    Google Scholar 

  • Hingst E, D’Andrea PS, Santori R, Cerqueira R (1994) Breeding of Philander frenata (Didelphimorphia, Didelphidade) in captivity. Lab Anim 32:434–438

    Article  Google Scholar 

  • Holland GJ, Bennett AF (2007) Occurrence of small mammals in a fragmented landscape: the role of vegetation heterogeneity. Wildl Res 34(5):387–397

    Article  Google Scholar 

  • Honorato R, Crouzeilles R, Ferreira MS, Grelle CE (2015) The effects of habitat availability and quality on small mammals abundance in the Brazilian Atlantic Forest. Nat Conserv 13(2):133–138

    Article  Google Scholar 

  • Hossler RJ, McAninch JB, Harder JD (1994) Maternal denning behavior and survival of juveniles in opossums in Southeastern New York. J Mammal 75(1):60–70

    Article  Google Scholar 

  • ICMBio (2018) Livro vermelho da fauna brasileira ameaçada de extinção – Volume ii – Mamíferos. O Instituto Chico Mendes de Conservação da Biodiversidade, Brasília, DF

    Google Scholar 

  • Isaac JL, Johnson CN (2005) Terminal reproductive effort in a marsupial. Biol Lett 1:271–275

    Article  PubMed  PubMed Central  Google Scholar 

  • Jackson ND, Fahrig L (2016) Habitat amount, not habitat configuration, best predicts population genetic structure in fragmented landscapes. Landsc Ecol 31:951–968

    Article  Google Scholar 

  • Johnstone CP, Lill A, Reina RD (2012) Does habitat fragmentation cause stress in the agile antechinus? A haematological approach. J Comp Physiol B 182(1):139–155

    Article  PubMed  Google Scholar 

  • Jones KL, Rafferty C, Hing S et al (2018) Perturbations have minor impacts on parasite dynamics and body condition of an endangered marsupial. J Zool 305(2):124–132

    Article  Google Scholar 

  • Kajin M, Cerqueira R, Vieira MV et al (2008) Nine-year demography of the black-eared opossum Didelphis aurita (Didelphimorphia: Didelphidae) using life tables. Rev Bras Zool 25(2):206–213

    Article  Google Scholar 

  • Lambert TD, Malcolm JR, Zimmerman BL (2005) Effects of mahogany (Swietenia macrophylla) logging on small mammal communities, habitat structure, and seed predation in the southeastern Amazon Basin. For Ecol Manag 206(1–3):381–398

    Article  Google Scholar 

  • Lancaster M, Cooper SJB, Carthew SM (2016) Genetic consequences of forest fragmentation by agricultural land in an arboreal marsupial. Landsc Ecol 31:655–667

    Article  Google Scholar 

  • Law B, Chidel M, Britton A et al (2013) Response of eastern pygmy possums, Cercartetus nanus, to selective logging in New South Wales: home range, habitat selection and den use. Wildl Res 40(6):470–481

    Article  Google Scholar 

  • Leiner NO, Silva WR (2007) Seasonal variation in the diet of the Brazilian slender opossum (Marmosops paulensis) in a montane Atlantic Forest area, southeastern Brazil. J Mammal 88(1):158–164

    Google Scholar 

  • Leiner NO, Setz EZF, Silva WR (2008) Semelparity and factors affecting the reproductive activity of the Brazilian slender opossum (Marmosops paulensis) in southeastern Brazil. J Mammal 89:153–158

    Article  Google Scholar 

  • Leite YLR, Costa LP, Stallings JR (1996) Diet and vertical space use of three sympatric opossums in a Brazilian Atlantic forest reserve. J Trop Ecol 12(3):435–440

    Google Scholar 

  • Macedo J (2007) Reprodução, fator de condição e dinâmica temporal de uma população do marsupial Didelfídeo Marmosops incanus na Serra dos Órgãos. Dissertation, Universidade Federal do Rio de Janeiro

    Google Scholar 

  • Macedo L, Fernandez FAZ, Nessimian JL (2010) Feeding ecology of the marsupial Philander frenatus in a fragmented landscape in Southeastern Brazil. Mamm Biol 75:363–369

    Article  Google Scholar 

  • Martins EG, Bonato V (2004) On the diet of Gracilinanus microtarsus (Marsupialia, didelphidae) in an Atlantic Rainforest fragment in southeastern Brazil. Mamm Biol 69:58–60

    Article  Google Scholar 

  • Matthews TJ, Triantis KA, Whittaker RJ et al (2019) sars: An R package for fitting, evaluating and comparing species–area relationship models. Ecography 42:1446–1455

    Article  Google Scholar 

  • McAllan BM, Geiser F (2006) Photoperiod and the timing of reproduction in Antechinus flavipes (Dasyuridae, Marsupialia). Mamm Biol 71:129–138

    Article  Google Scholar 

  • Melo GL (2022) Habitat loss and fragmentation per se effect in Didelphidae of the Atlantic Forest. In: Cáceres NC, Dickman CR (eds) American and Australasian marsupials: an evolutionary, biogeographical, and ecological approach. Springer Nature, Cham

    Google Scholar 

  • Melo GL, Sponchiado J, Cáceres NC, Fahrig L (2017) Testing the habitat amount hypothesis for South American small mammals. Biol Conserv 209:304–314

    Article  Google Scholar 

  • Meyer-Lucht Y, Otten C, Püttker T et al (2010) Variety matters: adaptive genetic diversity and parasite load in two mouse opossums from the Brazilian Atlantic Forest. Conserv Genet 11:2001–2013

    Article  Google Scholar 

  • Miranda HS, Bustamante MMC, Miranda AC (2002) The fire factor. In: Oliveira PS, Marquis RJ (eds) The Cerrados of Brazil: ecology and natural history of a Neotropical savanna. Columbia University Press, New York, pp 51–68

    Google Scholar 

  • Mortelliti A, Amori G, Boitani L (2010) The role of habitat quality in fragmented landscapes: a conceptual overview and prospectus for future research. Oecologia 163(2):535–547

    Article  PubMed  Google Scholar 

  • Moss GL, Croft DB (1999) Body condition of the red kangaroo (Macropus rufus) in arid Australia: the effect of environmental condition, sex and reproduction. Aust J Ecol 24(2):97–109

    Article  Google Scholar 

  • Moura MC, Caparelli AC, Freitas SR et al (2005) Scale-dependent habitat selection in three didelphid marsupials using the spool-and-line technique in the Atlantic forest of Brazil. J Trop Ecol 21:337–342

    Article  Google Scholar 

  • Moura MC, Grelle CEV, Bergallo HG (2008) How does sampling protocol affect the richness and abundance of small mammals recorded in tropical forest? An example from the Atlantic Forest, Brazil. Neotrop Biol Conserv 3(2):51–58

    Google Scholar 

  • Murcia C (1995) Edge effects in fragmented forests: implications for conservation. Trends Ecol Evol 10(2):58–62

    Article  CAS  PubMed  Google Scholar 

  • Nupp TE, Swihart RK (1998) Effects of forest fragmentation on population attributes of white-footed mice and eastern chipmunks. J Mammal 79:1234–1243

    Article  Google Scholar 

  • Palmeirim AF, Figueiredo MS, Grelle CEV et al (2019) When does habitat fragmentation matter? A biome-wide analysis of small mammals in the Atlantic Forest. J Biogeogr 46(12):2811–2825

    Article  Google Scholar 

  • Palmeirim AF, Santos-Filho M, Peres CA (2020) Marked decline in forest-dependent small mammals following habitat loss and fragmentation in an Amazonian deforestation frontier. PLoS One 15(3):e0230209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pardini R (2004) Effects of forest fragmentation on small mammals in an Atlantic Forest landscape. Biodivers Conserv 13(13):2567–2586

    Article  Google Scholar 

  • Pardini R, Souza SM, Braga-Neto R et al (2005) The role of forest structure, fragment size and corridors in maintaining small mammal abundance and diversity in an Atlantic forest landscape. Biol Conserv 124(2):253–266

    Article  Google Scholar 

  • Pardini R, Bueno AA, Gardner TA et al (2010) Beyond the fragmentation threshold hypothesis: regime shifts in biodiversity across fragmented landscapes. PLoS One 5(10):e13666

    Article  PubMed  PubMed Central  Google Scholar 

  • Passamani M (2000) Análise da comunidade de marsupiais em Mata Atlântica de Santa Teresa, Espírito Santo. Bol Mus Biol Mello Leitão 11(12):215–228

    Google Scholar 

  • Peters SL, Malcolm JR, Zimmerman BL (2006) Effects of selective logging on bat communities in the southeastern Amazon. Conserv Biol 20(5):1410–1421

    Article  PubMed  Google Scholar 

  • Pinotti BT, Naxara L, Pardini R (2011) Diet and food selection by small mammals in an old-growth Atlantic forest of south-eastern Brazil. Stud Neotrop Fauna Environ 46(1):1–9

    Article  Google Scholar 

  • Pires AS, Lira PK, Fernandez FAS et al (2002) Frequency of movements of small mammals among Atlantic Coastal Forest fragments in Brazil. Biol Conserv 108:229–237

    Article  Google Scholar 

  • Pires AS, Fernandez FA, Freitas D et al (2005) Influence of edge and fire-induced changes on spatial distribution of small mammals in Brazilian Atlantic Forest fragments. Stud Neotrop Fauna Environ 40(1):7–14

    Article  Google Scholar 

  • Prevedello JA, Vieira MV (2010) Does the type of matrix matter? A quantitative review of the evidence. Biodivers Conserv 19(5):1205–1223

    Article  Google Scholar 

  • Prevedello JA, Forero-Medina G, Vieira MV (2011) Does land use affect perceptual range? Evidence from two marsupials of the Atlantic Forest. J Zool 284:53–59

    Article  Google Scholar 

  • Prevedello JA, Almeida-Gomes M, Lindenmayer DB (2018) The importance of scattered trees for biodiversity conservation: a global meta-analysis. J Appl Ecol 55(1):205–214

    Article  Google Scholar 

  • Püttker T, Pardini R, Meyer-Lucht Y et al (2008) Responses of five small mammal species to micro-scale variations in vegetation structure in secondary Atlantic Forest remnants, Brazil. BMC Ecology 8(1):9

    Article  PubMed  PubMed Central  Google Scholar 

  • Püttker T, Bueno AA, Barros CS et al (2011) Immigration rates in fragmented landscapes – empirical evidence for the importance of habitat amount for species persistence. PLoS One 6(11):e27963

    Article  PubMed  PubMed Central  Google Scholar 

  • Püttker T, Martins TK, Bueno AA et al (2012) Respostas de marsupiais da Mata Atlântica à perda e fragmentação de habitat – um índice de vulnerabilidade baseado em padrões de ocupação. In: Cáceres NC (ed) Os marsupiais do Brasil. Editora UFMS, Campo Grande, pp 455–469

    Google Scholar 

  • Püttker T, Bueno AA, Prado PI et al (2015) Ecological filtering or random extinction? Beta-diversity patterns and the importance of niche-based and neutral processes following habitat loss. Oikos 124(2):206–215

    Article  Google Scholar 

  • Püttker T, Crouzeilles R, Almeida-Gomes M et al (2020) Indirect effects of habitat loss via habitat fragmentation: a cross-taxa analysis of forest-dependent species. Biol Conserv 241:108368

    Article  Google Scholar 

  • Quental TB, Fernandez FAS, Dias ATC et al (2001) Population dynamics of the marsupial Micoureus demerarae in small fragments of Atlantic Coastal Forest in Brazil. J Trop Ecol 17(3):339–352

    Article  Google Scholar 

  • Rezende CL, Scarano FR, Assad ED et al (2018) From hotspot to hopespot: an opportunity for the Brazilian Atlantic Forest. Perspect Ecol Conserv 16(4):208–214

    Google Scholar 

  • Ribeiro SE, Prevedello JA, Delciellos AC et al (2016) Edge effects and geometric constraints: a landscape-level empirical test. J Anim Ecol 85(1):97–105

    Article  PubMed  Google Scholar 

  • Rickard LG, Black SS, Rashmir-Raven A et al (2001) Risk factors associated with the presence of Sarcocystis neurona sporocysts in opossums (Didelphis virginiana). Vet Parasitol 102:179–184

    Article  CAS  PubMed  Google Scholar 

  • Ries L, Sisk TD (2004) A predictive model of edge effects. Ecology 85(11):2917–2926

    Article  Google Scholar 

  • Rosenzweig ML (1981) A theory of habitat selection. Ecology 62(2):327–335

    Article  Google Scholar 

  • Santori RT, Astúa de Moraes D, Cerqueira R (1995) Diet composition of Metachirus nudicautaus and Didelphis aurita (Didelphimorphia, Didelphidae) in southeastern Brazil. Mammalia 59(4):511–516

    Article  Google Scholar 

  • Santori RT, Astúa de Moraes D, Grelle CE et al (1997) Natural diet at a Restinga forest and laboratory food preferences of the opossum Philander frenata in Brazil. Stud Neotrop Fauna Environ 32:12–16

    Article  Google Scholar 

  • Stevens SM, Husband TP (1998) The influence of edge on small mammals: evidence from Brazilian Atlantic forest fragments. Biol Conserv 85(1–2):1–8

    Article  Google Scholar 

  • Umetsu F, Pardini R (2007) Small mammals in a mosaic of forest remnants and anthropogenic habitats - evaluating matrix quality in an Atlantic forest landscape. Landsc Ecol 22:517–530

    Article  Google Scholar 

  • Umetsu F, Metzger JP, Pardini R (2008) Importance of estimating matrix quality for modeling species distribution in complex tropical landscapes: a test with Atlantic forest small mammals. Ecography 31(3):359–370

    Article  Google Scholar 

  • Uzêda MC, Fidalgo ECC, Moreira RVDS et al (2016) Eutrofização de solos e comunidade arbórea em fragmentos de uma paisagem agrícola. Pesq. Agrop. Brasileira 51(9):1120–1130

    Article  Google Scholar 

  • Van Wagtendonk JW, Lutz JA (2007) Fire regime attributes of wildland fires in Yosemite National Park, USA. Fire Ecol 3(2):34–52

    Article  Google Scholar 

  • Vieira EM, Izar P (1999) Interaction between aroids and arboreal mammals in the Brazilian Atlantic rainforest. Plant Ecol 145:75–82

    Article  Google Scholar 

  • Vieira EM, Pizo MA, Izar P (2003) Fruit and seed exploitation by small rodents of the Brazilian Atlantic Forest. Mammalia 67:533–539

    Article  Google Scholar 

  • Vieira MV, Almeida-Gomes M, Delciellos AC et al (2018) Fair tests of the habitat amount hypothesis require appropriate metrics of patch isolation: an example with small mammals in the Brazilian Atlantic Forest. Biol Conserv 226:264–270

    Article  Google Scholar 

  • Villard MA, Metzger JP (2014) Beyond the fragmentation debate: a conceptual model to predict when habitat configuration really matters. J Appl Ecol 51(2):309–318

    Article  Google Scholar 

  • Watling JI, Arroyo-Rodríguez V, Pfeifer M et al (2020) Support for the habitat amount hypothesis from a global synthesis of species density studies. Ecol Lett 23(4):674–681

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Marcus V. Vieira is supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq (grants 426.925/2018-1, 312465/2019-0) and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro – FAPERJ (E-203.045/2017). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001; Ana C. Delciellos has a postdoctoral scholarship from CAPES (PNPD-PPGEE/UERJ, project number 1631/2018). Camila S. Barros (PNPD-PPGE/UFRJ) has postdoctoral scholarship from CAPES- Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus V. Vieira .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Vieira, M.V., Barros, C.S., Delciellos, A.C. (2022). Impact of Habitat Loss and Fragmentation in Assemblages, Populations, and Individuals of American marsupials. In: Cáceres, N.C., Dickman, C.R. (eds) American and Australasian Marsupials. Springer, Cham. https://doi.org/10.1007/978-3-030-88800-8_26-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88800-8_26-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88800-8

  • Online ISBN: 978-3-030-88800-8

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics