Skip to main content

Simulation in Advanced Open Urology Procedures

  • Chapter
  • First Online:
Practical Simulation in Urology
  • 418 Accesses

Abstract

Simulation is recognised as an important supplementary tool in surgical training. For some time, urology has been at the forefront of adopting a wide range of simulation platforms to aid in the acquisition of technical and non-technical skills. While certain facets of urology such as robotic, laparoscopic and endoscopic lend themselves particularly well to simulation training, open surgery has lagged behind. The challenges of creating a simulation model to enhance training and reduce the learning curve in advanced open urological surgery have meant only a limited number of validated models are available. Animal and cadaveric models remain the primary means by which open surgical skills are acquired. The ongoing need for open operative skills, particularly in areas of limited exposure such as emergency and trauma surgery, has resulted in simulation becoming a crucial tool in acquiring these competencies. In this chapter, the role of simulation in acquiring advanced open surgical skills in urology is described. Particular focus is applied to ileal conduit formation, ureteric re-implantation and open kidney procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sealy W. Halsted is dead: time for change in graduate surgical education. Curr Surg. 1999;56(1–2):34–9.

    Article  Google Scholar 

  2. Marron CD, Byrnes CK, Kirk SJ. An EWTD-compliant shift rota decreases training opportunities. Bull R Coll Surg Engl. 2005;87(7):246–8.

    Article  Google Scholar 

  3. Fitzgerald JE, Caesar BC. The European working time directive: a practical review for surgical trainees. Int J Surg. 2012;10(8):399–403.

    Article  CAS  PubMed  Google Scholar 

  4. Gawande AA, Zinner MJ, Studdert DM, Brennan TA. Analysis of errors reported by surgeons at three teaching hospitals. Surgery. 2003;133(6):614–21.

    Article  PubMed  Google Scholar 

  5. Reznick RK, MacRae H. Teaching surgical skills—changes in the wind. N Engl J Med. 2006;355(25):2664–9.

    Article  CAS  PubMed  Google Scholar 

  6. Scott DJ, Dunnington GL. The new ACS/APDS skills curriculum: moving the learning curve out of the operating room. J Gastrointest Surg. 2008;12(2):213–21.

    Article  PubMed  Google Scholar 

  7. Aggarwal R, Darzi A. From scalpel to simulator: a surgical journey. Surgery. 2009;145(1):1–4.

    Article  PubMed  Google Scholar 

  8. Kozan AA, Chan LH, Biyani CS. Current status of simulation training in urology: a non-systematic review. Res Rep Urol. 2020;12:111–28.

    PubMed  PubMed Central  Google Scholar 

  9. Young M, Kailavasan M, Taylor J, et al. The success and evolution of a urological “boot camp” for newly appointed UK urology registrars: incorporating simulation, nontechnical skills and assessment. J Surg Educ. 2019;76(5):1425–32.

    Article  CAS  PubMed  Google Scholar 

  10. Cashman SCK, Derbyshire L, Moon D, Jelski J, Noel J, Hughes O. Trainee experience of emergency urological procedures: a national survey of the United Kingdom and Ireland. J Clin Urol. 2019;12:82–3.

    Google Scholar 

  11. https://www.iscp.ac.uk/media/1112/urology-curriculum-aug-2021-approved-oct-20.pdf.

  12. Aydin A, Raison N, Khan MS, Dasgupta P, Ahmed K. Simulation-based training and assessment in urological surgery. Nat Rev Urol. 2016;13:503.

    Article  PubMed  Google Scholar 

  13. Siddiqui KM, Izawa JI. Ileal conduit: standard urinary diversion for elderly patients undergoing radical cystectomy. World J Urol. 2016;34:19–24.

    Article  PubMed  Google Scholar 

  14. https://cgroup2019.wpengine.com/wp-content/uploads/2016/01/TACTILITY-BMC-Face-Validity.pdf.

  15. https://sim-vivo.com/simbowel.html.

  16. Golriz M, Fonouni H, Nickkolgh A, Hafezi M, Garoussi C, Mehrabi A. Pig kidney transplantation: an up-to-date guideline. Eur Surg Res. 2012;49(3–4):121–9.

    Article  CAS  PubMed  Google Scholar 

  17. Soria F, Morcillo E, Sanz JL, Budia A, Serrano A, Sanchez-Margallo FM. Description and validation of realistic and structured endourology training model. Am J Clin Exp Urol. 2014;2(3):258–65.

    PubMed  PubMed Central  Google Scholar 

  18. Home Office. Guidance on the Operation of the Animals (Scientific Procedures) Act 1986. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/291350/Guidance_on_the_Operation_of_ASPA.pdf.

  19. Kailavasan M, Hanchanale V, Rajpal S, Morley R, Mcllhenny C, Somani B, et al. A method to evaluate trainee progression during simulation training at the Urology Simulation Boot Camp (USBC) course. J Surg Educ. 2019;76(1):215–22.

    Article  PubMed  Google Scholar 

  20. Government. UK Human Tissue Act 2004. http://www.legislation.gov.uk/ukpga/2004/30/contents.

  21. Holland JP, Waugh L, Horgan A, Paleri V, Deehan DJ. Cadaveric hands-on training for surgical specialties: is the back to the future for surgical skills development? J Surg Educ. 2011;68(2):110–6.

    Article  PubMed  Google Scholar 

  22. Sutherland LM, Middlenton PF, Anthony A, Ham-Dorf J, Cregan P, Scott D, Maddern GJ. Surgical simulation: a systematic review. Ann Surg. 2006;243(3):291–300.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ahmed K, Aydin A, Dasgupta P, Khan MS, McCabe JE. A novel cadaveric simulation program in urology. J Surg Educ. 2015;72:556–65.

    Article  PubMed  Google Scholar 

  24. Thiel W. The preservation of the whole corpse with natural color. Ann Anat. 1992;174:185–95.

    Article  CAS  PubMed  Google Scholar 

  25. Eisma R, Mahendran S, Majumdar S, et al. A comparison of Thiel and formalin embalmed cadavers for thyroid surgery training. Surgeon. 2011;9:142–6.

    Article  CAS  PubMed  Google Scholar 

  26. Cabello R, González C, Quicios C, et al. An experimental model for training in renal transplantation surgery with human cadavers preserved using W. Thiel’s embalming technique. J Surg Educ. 2015;72(2):192–7.

    Article  PubMed  Google Scholar 

  27. Kozinn SI, Canes D, Sorcini A, et al. Robotic versus open distal ureteral reconstruction and reimplantation for benign stricture disease. J Endourol. 2012;26:147–51.

    Article  PubMed  Google Scholar 

  28. Rassweiler JJ, Gozen AS, Erdogru T, et al. Ureteral reimplantation for management of ureteral strictures: a retrospective comparison of laparoscopic and open techniques. Eur Urol. 2007;51:512–22.

    Article  PubMed  Google Scholar 

  29. Schout BM, Hendrikx AJ, Scherpbier AJ, Bemelmans BL. Update on training models in endourology: a qualitative systematic review of the literature between January 1980 and April 2008. Eur Urol. 2008;54(6):1247–61.

    Article  PubMed  Google Scholar 

  30. Abboudi H, Khan MS, Aboumarzouk O, et al. Current status of validation for robotic surgery simulators e a systematic review. BJU Int. 2013;111(2):194–205.

    Article  PubMed  Google Scholar 

  31. Bullock N, Ellul T, Biers S, Armitage J, Cashman S, Narahari K, Tatarov O, Fenn N, Bose P, Featherstone J, Hughes O. Establishing a national high fidelity cadaveric emergency urology simulation course to increase trainee preparedness for independent on-call practice: a prospective observational study. BMC Med Educ. 2020;20(1):349.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yiasemidou M, Roberts D, Glassman D, Tomlinson J, Biyani S, Miskovic D. A multispecialty evaluation of Thiel cadavers for surgical training. World J Surg. 2017;41(5):1201–7.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Krouwel EM, Palacios LA, Putter H. Omissions in urology residency training regarding sexual dysfunction subsequent to prostate cancer treatment: identifying a need. Urology. 2016;90:19.

    Article  PubMed  Google Scholar 

  34. Pak JS, Silva M, Deibert CM. Male urethral, penile, and incontinence surgery: is resident exposure adequate? Urology. 2015;86:868.

    Article  PubMed  Google Scholar 

  35. Parker DC, Kocher N, Mydlo JH. Trends in urology residents’ exposure to operative urotrauma: a survey of residency program directors. Urology. 2016;87:18.

    Article  PubMed  Google Scholar 

  36. Melkonian V, Huy T, Varma CR, et al. The creation of a novel low-cost bench-top kidney transplant surgery simulator and a survey on its fidelity and educational utility. Cureus. 2020;12(11):e11427.

    PubMed  PubMed Central  Google Scholar 

  37. Yang B, Zeng Q, Yinghao S, Wang H, Wang L, Xu C, Xiao L. A novel training model for laparoscopic partial nephrectomy using porcine kidney. J Endourol. 2009;23(12):2029–33.

    Article  PubMed  Google Scholar 

  38. Ooi J, Lawrentschuk N, Murphy DL. Training model for open or laparoscopic pyeloplasty. J Endourol. 2006;20:149–52.

    Article  PubMed  Google Scholar 

  39. James HK, Chapman AW, Pattison GT, Griffin DR, Fisher JD. Systematic review of the current status of cadaveric simulation for surgical training. Br J Surg. 2019;106:1726–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Coloma L, Cabello R, González C, Quicios C, Bueno G, García JV, Arribas AB, Clascá F. Cadaveric models for renal transplant surgery education: a comprehensive review. Curr Urol Rep. 2020;21(2):10.

    Article  PubMed  Google Scholar 

  41. Faure JP, Breque C, Danion J, Delpech PO, Oriot D, Richer JP. SIM life: a new surgical simulation device using a human perfused cadaver. Surg Radiol Anat. 2017;39(2):211–7.

    Article  CAS  PubMed  Google Scholar 

  42. Smith B, Dasgupta P. 3D printing technology and its role in urological training. World J Urol. 2020;38(10):2385–91. https://doi.org/10.1007/s00345-019-02995-1.

    Article  PubMed  Google Scholar 

  43. Ghazi A, Campbell T, Melnyk R, et al. Validation of a full-immersion simulation platform for percutaneous nephrolithotomy using three-dimensional printing technology. J Endourol. 2017;31:1314–20.

    Article  PubMed  Google Scholar 

  44. Shee K, Koo K, Wu X, Ghali FM, Halter RJ, Hyams ES. A novel ex vivo trainer for robotic vesicourethral anastomosis. J Robot Surg. 2020;14(1):21–7.

    Article  PubMed  Google Scholar 

  45. van Renterghem K, Ghazi A. 3D pelvic cadaver model: a novel approach to surgical training for penile implant surgery. Int J Impot Res. 2020;32(3):261–3.

    Article  PubMed  Google Scholar 

  46. Claflin J, Waits SA. Three dimensionally printed interactive training model for kidney transplantation. J Surg Educ. 2020;77(5):1013–7.

    Article  PubMed  Google Scholar 

  47. Fida B, Cutolo F, di Franco G, Ferrari M, Ferrari V. Augmented reality in open surgery. Updat Surg. 2018;70(3):389–400.

    Article  Google Scholar 

  48. KleinJan GH, van den Berg NS, van Oosterom MN, Wendler T, Miwa M, Bex A, Hendricksen K, Horenblas S, van Leeuwen FW. Toward (hybrid) navigation of a fluorescence camera in an open surgery setting. J Nucl Med. 2016;57(10):1650–3.

    Article  PubMed  Google Scholar 

  49. van Oosterom MN, Meershoek P, KleinJan GH, Hendricksen K, Navab N, van de Velde CJH, van der Poel HG, van Leeuwen FWB. Navigation of fluorescence cameras during soft tissue surgery— is it possible to use a single navigation setup for variousopen and laparoscopic urological surgery applications? J Urol. 2018;199(4):1061–8.

    Article  PubMed  Google Scholar 

  50. Borgmann H, Rodriguez Socarras M, Salem J, Tsaur I, Gomez Rivas J, Barret E, Tortolero L. Feasibility and safety of augmented reality-assisted urological surgery using smartglass. World J Urol. 2017;35(6):967–72.

    Article  CAS  PubMed  Google Scholar 

  51. Badash I, Burtt K, Solorzano CA, Carey JN. Innovations in surgery simulation: a review of past, current and future techniques. Ann Transl Med. 2016;4(23):453.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Makiyama K, Nagasaka M, Inuiya T, Takanami K, Ogata M, Kubota Y. Development of a patient-specific simulator for laparoscopic renal surgery. Int J Urol. 2012;19(9):829–35.

    Article  PubMed  Google Scholar 

  53. Bing EG, Parham GP, Cuevas A, Fisher B, Skinner J, Mwanahamuntu M, Sullivan R. Using low-cost virtual reality simulation to build surgical capacity for cervical cancer treatment. J Glob Oncol. 2019;5:1–7.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamoun H. Elmamoun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elmamoun, M.H. (2022). Simulation in Advanced Open Urology Procedures. In: Biyani, C.S., Van Cleynenbreugel, B., Mottrie, A. (eds) Practical Simulation in Urology . Springer, Cham. https://doi.org/10.1007/978-3-030-88789-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88789-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88788-9

  • Online ISBN: 978-3-030-88789-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics