Skip to main content

Decoherence: From Interpretation to Experiment

  • Chapter
  • First Online:
From Quantum to Classical

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 204))

Abstract

I offer a few selected reflections on the decoherence program, with an emphasis on Zeh’s role and views. First, I discuss Zeh’s commitment to a realistic interpretation of the quantum state, which he saw as necessary for a consistent understanding of the decoherence process. I suggest that this commitment has been more fundamental than, and prior to, his support of an Everett-style interpretation of quantum mechanics. Seen through this lens, both his defense of Everett and the genesis of his ideas on decoherence emerge as consequences of his realistic view of the quantum state. Second, I give an overview of experiments on decoherence and describe, using the study of collisional decoherence as an example, the close interplay between experimental advances and theoretical modeling in decoherence research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    My translation.

  2. 2.

    When Freitas, in his interview with Zeh [3], posed the question of the reality of the “unobserved branches of the wave function,” Zeh did not mention Vaihinger’s concept. Instead, his response was simply that this reality “is the consequence, but I think it’s also a matter of definition what you call ‘real.’ In any normal definition of the word, I would call [the branches] real.”

  3. 3.

    As for the prehistory of decoherence, there are some remarks one can find, for example, in the writings of Heisenberg that hint at the role of the environment, albeit without the all-important reference to entanglement [1]. For instance, Heisenberg suggested that “the interference terms are ... removed by the partly undefined interactions of the measuring apparatus, with the system and with the rest of the world” [17, p. 23].

  4. 4.

    Under very specific, carefully designed conditions, however, decoherence may sometimes act as a generator of controlled entanglement [31,32,33,34].

  5. 5.

    Unsurprisingly, Zeh’s own assessment of QBism was negative [8]. He saw it as an interpretation that “replaces the whole physical world by a black box, representing an abstract concept of ‘information’ about inconsistent classical variables, and assumed to be available to vaguely defined ‘agents’ rather than to observers who may be consistent parts of the physical world to be described.”

  6. 6.

    Among these early studies, one should also mention the papers by Walls and Milburn [145] and by Caldeira and Leggett [191], which investigated the influence of damping on the coherence of superpositions. In particular, the master equation derived by Caldeira and Leggett [192] has been widely used in modeling decoherence and dissipation [172, 193, 194], and Camilleri [4] has suggested that Caldeira and Leggett’s work “was of decisive importance not only for the mathematical treatment and conceptual development of environment-induced decoherence, but also for the interpretational context.” It is important to bear in mind, however, that while damping (dissipation) is always accompanied by a loss of coherence, decoherence may be substantial even when there is no loss of energy from the system, as already demonstrated by one of the first models of decoherence [195].

References

  1. K. Camilleri, M. Schlosshauer, Stud. Hist. Phil. Mod. Phys. 49, 73 (2015)

    Article  Google Scholar 

  2. H.D. Zeh, Found. Phys. 1, 69 (1970)

    Article  ADS  Google Scholar 

  3. Interview with H. Dieter Zeh, conducted at Waldhilsbach, Germany, by Fábio Freitas, July 25–26, 2008. Audio recording and transcript deposited at the American Institute of Physics

    Google Scholar 

  4. K. Camilleri, Stud. Hist. Phil. Mod. Phys. 40, pages 290 ( 2009)

    Google Scholar 

  5. O. Freire Jr., Stud. Hist. Phil. Mod. Phys.40, 280 (2009). https://doi.org/10.1016/j.shpsb.2009.09.002

  6. H.D. Zeh, Quantum Decoherence, ed. by B. Duplantier, J.-M. Raimond, V. Rivasseau (Birkhäuser, Basel, 2006), pp. 151–175

    Google Scholar 

  7. H.D. Zeh, Found. Phys. 3, 109 (1973)

    Article  ADS  Google Scholar 

  8. H. D. Zeh, Z. Naturf. 71a, 195 ( 2016)

    Google Scholar 

  9. H.D. Zeh, Found. Phys. Lett. 13, 221 (2000)

    Article  MathSciNet  Google Scholar 

  10. A. Bassi, G.C. Ghirardi, Phys. Rep. 379, 257 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  11. H.D. Zeh, Found. Phys. Lett. 12, 197 (1999)

    Article  Google Scholar 

  12. H. Vaihinger, The Philosophy of “As if”: A System of the Theoretical, Practical and Religious Fictions of Mankind, 2nd ed. (Routledge & Kegan Paul, London, 1935). (translated by C. K. Ogden)

    Google Scholar 

  13. M. Hemmo, I. Pitowsky, Stud. Hist. Phil. Mod. Phys. 38, 333 (2007). https://doi.org/10.1016/j.shpsb.2006.04.005

  14. S. Saunders, J. Barrett, A. Kent, D. Wallace (eds.), Many Worlds? Everett, Quantum Theory and Reality (Oxford University Press, Oxford, 2010)

    MATH  Google Scholar 

  15. H.D. Zeh, in New Developments on Fundamental Problems Quantum Physics (Oviedo II). ed. by M. Ferrero, A. van der Merwe (Kluwer, Dordrecht, 1997), pp. 441–452

    Chapter  Google Scholar 

  16. E. Joos, Decoherence: Theoretical, Experimental, and Conceptual Problems, ed. by P. Blanchard, D. Giulini, E. Joos, C. Kiefer, I.-O. Stamatescu (Springer, Berlin, 2000), pp. 1–17

    Google Scholar 

  17. W. Heisenberg, Niels Bohr and the Development of Physics: Essays Dedicated to Niels Bohr on the Occasion of his Seventieth Birthday, ed. by W. Pauli, L. Rosenfeld, V. Weisskopf (McGraw Hill, New York, 1955), pp. 12–29

    Google Scholar 

  18. M. Brune, E. Hagley, J. Dreyer, X. Maître, A. Maali, C. Wunderlich, J.M. Raimond, S. Haroche, Phys. Rev. Lett. 77, 4887 (1996)

    Google Scholar 

  19. X. Maître, E. Hagley, J. Dreyer, A. Maali, C.W.M. Brune, J.M. Raimond, S. Haroche, J. Mod. Opt. 44, 2023 (1997)

    ADS  Google Scholar 

  20. J.M. Raimond, M. Brune, S. Haroche, Phys. Rev. Lett. 79, 1964 (1997)

    Article  ADS  Google Scholar 

  21. D. Howard, Phil. Sci. 71, 669 (2004)

    Article  Google Scholar 

  22. H.D. Zeh, Science and Ultimate Reality: Quantum Theory, Cosmology and Complexity, ed. by J.D. Barrow, P.C.W. Davies, C.L. Harper Jr. (Cambridge University Press, Cambridge, 2004), pp. 103–120

    Google Scholar 

  23. H.D. Zeh, in Decoherence: Theoretical, Experimental, and Conceptual Problems. ed. by P. Blanchard, D. Giulini, E. Joos, C. Kiefer, I. Stamatescu. Lecture Notes in Physics No. 538. (Springer, Berlin, 2000), pp. 19–42

    Google Scholar 

  24. H.D. Zeh, Decoherence and the Appearance of a Classical World in Quantum Theory, ed. by E. Joos, H.D. Zeh, C. Kiefer, D. Giulini, J. Kupsch, I.-O. Stamatescu, 2nd ed., Chap. 2 (Springer, New York, 2003)

    Google Scholar 

  25. C.J. Myatt, B.E. King, Q.A. Turchette, C.A. Sackett, D. Kielpinski, W.M. Itano, C. Monroe, D.J. Wineland, Nature 403, 269 (2000)

    Article  ADS  Google Scholar 

  26. W.H. Zurek, Rev. Mod. Phys. 75, 715 (2003). https://doi.org/10.1103/RevModPhys.75.715

  27. H.D. Zeh, The Physical Basis of the Direction of Time, edition, 5th edn. (Springer, Berlin, 2007)

    MATH  Google Scholar 

  28. K. Żelse Żfiyczkowski, P. Horodecki, M. Horodecki, R. Horodecki, Phys. Rev. A 65, 012101 (2001). https://doi.org/10.1103/PhysRevA.65.012101

  29. J. Lee, I. Kim, D. Ahn, H. McAneney, M.S. Kim, Phys. Rev. A 70, 024301 (2004). https://doi.org/10.1103/PhysRevA.70.024301

  30. J.T. Barreiro, P. Schindler, O. Gühne, T. Monz, M. Chwalla, C.F. Roos, M. Hennrich, R. Blatt, Nat. Phys. 6, 943 (2010)

    Article  Google Scholar 

  31. D. Braun, Phys. Rev. Lett. 89, 277901 (2002). https://doi.org/10.1103/PhysRevLett.89.277901

  32. F. Benatti, R. Floreanini, M. Piani, Phys. Rev. Lett. 91, 070402 (2003). https://doi.org/10.1103/PhysRevLett.91.070402

  33. M.S. Kim, J. Lee, D. Ahn, P.L. Knight, Phys. Rev. A 65, 040101 (2002). https://doi.org/10.1103/PhysRevA.65.040101

  34. L. Jakóbczyk,https://doi.org/10.1088/0305-4470/35/30/313 J. Phys. A: Math. Theor. 35, 6383 (2002)

  35. G. Bacciagaluppi, The Stanford Encyclopedia of Philosophy, ed. by E.N. Zalta (2012). http://plato.stanford.edu/archives/win2012/entries/qm-decoherence

  36. M. Schlosshauer, Rev. Mod. Phys. 76, 1267 (2004)

    Article  ADS  Google Scholar 

  37. W.H. Zurek, Philos. Trans. R. Soc. Lond. Ser. A 356, 1793 (1998)

    Google Scholar 

  38. J.N. Butterfield, Quantum Mechanics: Scientific Perspectives on Divine Action, ed. by R.J. Russell, P. Clayton, K. Wegter-McNelly, J. Polkinghorne (Vatican Observatory and The Center for Theology and the Natural Sciences, Vatican City State, 2001), pp. 111–140. (also available as an eprint from the Pittsburgh Philosophy of Science Archive at http://philsci-archive.pitt.edu/archive/00000203)

  39. D. Wallace, Stud. Hist. Philos. Mod. Phys. 33, 637 (2002)

    Google Scholar 

  40. D. Wallace, Stud. Hist. Philos. Mod. Phys. 34, 87 (2003)

    Google Scholar 

  41. D. Wallace, Many Worlds? Everett, Quantum Theory and Reality, ed. by S. Saunders, J. Barrett, A. Kent, D. Wallace (Oxford University Press, Oxford, 2010), pp. 53–72

    Google Scholar 

  42. W.H. Zurek, Prog. Theor. Phys. 89, 281 (1993)

    Article  ADS  Google Scholar 

  43. W.H. Zurek, Phys. Rev. A 71, 052105 (2005)

    Google Scholar 

  44. W.H. Zurek, Nat. Phys. 5, 181 (2009)

    Article  Google Scholar 

  45. W.H. Zurek, Phys. Today 67, 44 (2014)

    Article  Google Scholar 

  46. M. Zwolak, C.J. Riedel, W.H. Zurek, Sci. Rep. 6, 25277 (2016)

    Article  ADS  Google Scholar 

  47. W.H. Zurek, Phys. Rev. Lett. 90, 120404 (2003)

    Google Scholar 

  48. W.H. Zurek, Science and Ultimate Reality, ed. by J.D. Barrow, P.C.W. Davies, C.H. Harper (Cambridge University Press, Cambridge, England, 2004), pp. 121–137

    Google Scholar 

  49. W.H. Zurek, Phil. Trans. R. Soc. A 376, 20180107 (2018)

    Article  ADS  Google Scholar 

  50. R. Clifton, Br. J. Philos. Sci. 47, 371 (1996)

    Article  Google Scholar 

  51. G. Bacciagaluppi, M. Hemmo, Stud. Hist. Philos. Mod. Phys. 27, 239 (1996)

    Google Scholar 

  52. G. Bene, (2001). http://arxiv.org/abs/quant-ph/0104112quant-ph/0104112

  53. G. Bacciagaluppi, Found. Phys. 30, 1431 (2000)

    Article  MathSciNet  Google Scholar 

  54. R.B. Griffiths, J. Stat. Phys. 36, 219 (1984)

    Article  ADS  Google Scholar 

  55. R. Omnès, The Interpretation of Quantum Mechanics (Princeton University Press, Princeton, 1994)

    Book  MATH  Google Scholar 

  56. R.B. Griffiths, Consistent Quantum Theory (Cambridge University Press, Cambridge, 2002)

    MATH  Google Scholar 

  57. J.P. Paz, W.H. Zurek, Phys. Rev. D 48, 2728 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  58. A. Albrecht, Phys. Rev. D 46, 5504 (1992)

    Article  ADS  Google Scholar 

  59. A. Albrecht, Phys. Rev. D 48, 3768 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  60. J. Twamley, Phys. Rev. D 48, 5730 (1993)

    Article  ADS  Google Scholar 

  61. M. Gell-Mann, J.B. Hartle, Quantum Classical Correspondence: The 4th Drexel Symposium on Quantum Nonintegrability, ed. by D.H. Feng and B.L. Hu (International Press, Cambridge, Massachussetts, 1998), pp. 3–35

    Google Scholar 

  62. C.J. Riedel, W.H. Zurek, M. Zwolak, Phys. Rev. A 93, 032126 (2016)

    Google Scholar 

  63. H. Ollivier, D. Poulin, W.H. Zurek, Phys. Rev. Lett. 93, 220401 (2004)

    Google Scholar 

  64. H. Ollivier, D. Poulin, W.H. Zurek, Phys. Rev. A 72, 042113 (2005)

    Google Scholar 

  65. R. Blume-Kohout, W.H. Zurek, Found. Phys. 35, 1857 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  66. R. Blume-Kohout, W.H. Zurek, Phys. Rev. A 73, 062310 (2006)

    Google Scholar 

  67. C.J. Riedel, W.H. Zurek, Phys. Rev. Lett. 105, 020404 (2010)

    Google Scholar 

  68. C.J. Riedel, W.H. Zurek, New J. Phys. 13, 073038 (2011)

    Google Scholar 

  69. C.J. Riedel, W.H. Zurek, M. Zwolak, New J. Phys. 14, 083010 (2012)

    Google Scholar 

  70. A. Streltsov, W.H. Zurek, Phys. Rev. Lett. 111, 040401 (2013)

    Google Scholar 

  71. W.H. Zurek, Phys. Rev. A 87, 052111 (2013)

    Google Scholar 

  72. W.H. Zurek, Phil. Trans. R. Soc. A 376, 20170315 (2018)

    Article  ADS  Google Scholar 

  73. C.A. Fuchs, N.D. Mermin, R. Schack, Am. J. Phys. 82, 749 (2014)

    Article  ADS  Google Scholar 

  74. J.P. Paz, W.H. Zurek, Coherent Atomic Matter Waves, Les Houches Session LXXII, vol. 72, ed. by R. Kaiser, C. Westbrook, F. David. Les Houches Summer School Series (Springer, Berlin, 2001), pp. 533–614

    Google Scholar 

  75. H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002)

    MATH  Google Scholar 

  76. E. Joos, H.D. Zeh, C. Kiefer, D. Giulini, J. Kupsch, I.-O. Stamatescu, Decoherence and the Appearance of a Classical World in Quantum Theory, edition, 2nd edn. (Springer, New York, 2003)

    Book  MATH  Google Scholar 

  77. M. Schlosshauer, Decoherence and the Quantum-to-Classical Transition (Springer, Berlin/Heidelberg, 2007)

    Google Scholar 

  78. K. Hornberger, in Entanglement and Decoherence: Foundations and Modern Trends, ed. by A. Buchleitner, C. Viviescas, M. Tiersch. Lecture Notes in Physics, vol. 768 (Springer, Berlin, 2009), pp. 221–276

    Google Scholar 

  79. M. Schlosshauer, Phys. Rep. 831, 1 (2019). https://doi.org/10.1016/j.physrep.2019.10.001

  80. D.A. Lidar, K.B. Whaley, Irreversible Quantum Dynamics, vol. 622, edi. by F. Benatti, R. Floreanini. Springer Lecture Notes in Physics (Springer, Berlin, 2003), pp. 83–120. (also available as eprint quant-ph/0301032)

  81. D.A. Lidar, Adv. Chem. Phys. 154, 295 (2014)

    Google Scholar 

  82. D.A.R. Dalvit, J. Dziarmaga, W.H. Zurek, Phys. Rev. A 62, 013607 (2000)

    Google Scholar 

  83. J.F. Poyatos, J.I. Cirac, P. Zoller, Phys. Rev. Lett. 77, 4728 (1996)

    Article  ADS  Google Scholar 

  84. Q.A. Turchette, C.J. Myatt, B.E. King, C.A. Sackett, D. Kielpinski, W.M. Itano, C. Monroe, D.J. Wineland, Phys. Rev. A 62, 053807 (2000)

    Google Scholar 

  85. A.R.R. Carvalho, P. Milman, R.L. de Matos Filho, L. Davidovich, Phys. Rev. Lett. 86, 4988 (2001)

    Google Scholar 

  86. L. Viola, S. Lloyd, Phys. Rev. A 58, 2733 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  87. L. Viola, E. Knill, S. Lloyd, Phys. Rev. Lett. 82, 2417 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  88. P. Zanardi, Phys. Lett. A 258, 77 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  89. L. Viola, E. Knill, S. Lloyd, Phys. Rev. Lett. 85, 3520 (2000)

    Article  ADS  Google Scholar 

  90. L.-A. Wu, D.A. Lidar, Phys. Rev. Lett. 88, 207902 (2002)

    Google Scholar 

  91. L.-A. Wu, M.S. Byrd, D.A. Lidar, Phys. Rev. Lett. 89, 127901 (2002)

    Google Scholar 

  92. A.M. Steane, Phys. Rev. Lett. 77, 793 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  93. P.W. Shor, Phys. Rev. A 52, R2493 (1995)

    Article  ADS  Google Scholar 

  94. A.M. Steane, Decoherence and Its Implications in Quantum Computation and Information Transfer, ed. by P. Turchi, A. Gonis (IOS Press, Amsterdam, 2001), pp. 284–298. (also available as eprint quant-ph/0304016)

    Google Scholar 

  95. F. Gaitan, Quantum Error Correction and Fault Tolerant Quantum Computing (CRC Press, Boca Raton, 2008)

    MATH  Google Scholar 

  96. D.A. Lidar, T.A. Brun (eds.), Quantum Error Correction (Cambridge University Press, Cambridge, 2013)

    Google Scholar 

  97. P.G. Kwiat, A.J. Berglund, J.B. Altepeter, A.G. White, Science 290, 498 (2000)

    Article  ADS  Google Scholar 

  98. J.B. Altepeter, P.G. Hadley, S.M. Wendelken, A.J. Berglund, P.G. Kwiat, Phys. Rev. Lett. 92, 147901 (2004)

    Google Scholar 

  99. D. Kielpinski, V. Meyer, M.A. Rowe, C.A. Sackett, W.M. Itano, C. Monroe, D.J. Wineland, Science 291, 1013 (2001)

    Article  ADS  Google Scholar 

  100. C.F. Roos, G.P.T. Lancaster, M. Riebe, H. Häffner, W. Hänsel, S. Gulde, C. Becher, J. Eschner, F. Schmidt-Kaler, R. Blatt, Phys. Rev. Lett. 92, 220402 (2004). https://doi.org/10.1103/PhysRevLett.92.220402

  101. H. Häffner, F. Schmidt-Kaler, W. Hänsel, C.F. Roos, T. Körber, M. Chwalla, M. Riebe, J. Benhelm, U.D. Rapol, C. Becher, R. Blatt, Appl. Phys. B 81, 151 (2005)

    Google Scholar 

  102. C. Langer, R. Ozeri, J.D. Jost, J. Chiaverini, B. DeMarco, A. Ben-Kish, R.B. Blakestad, J. Britton, D.B. Hume, W.M. Itano, D. Leibfried, R. Reichle, T. Rosenband, T. Schaetz, P.O. Schmidt, D.J. Wineland, Phys. Rev. Lett. 95, 060502 (2005). https://doi.org/10.1103/PhysRevLett.95.060502

  103. L. Viola, E.M. Fortunato, M.A. Pravia, E. Knill, R. Laflamme, D.G. Cory, Science 293, 2059 (2001)

    Article  ADS  Google Scholar 

  104. M. Mohseni, J.S. Lundeen, K.J. Resch, A.M. Steinberg, Phys. Rev. Lett. 91, 187903 (2003)

    Google Scholar 

  105. Q. Zhang, J. Yin, T.-Y. Chen, S. Lu, J. Zhang, X.-Q. Li, T. Yang, X.-B. Wang, J.-W. Pan, Phys. Rev. A 73, 020301(R) (2006)

    Article  ADS  Google Scholar 

  106. D.A. Pushin, M.G. Huber, M. Arif, D.G. Cory, Phys. Rev. Lett. 107, 150401 (2011)

    Google Scholar 

  107. J.M. Raimond, M. Brune, S. Haroche, Rev. Mod. Phys. 73, 565 (2001)

    Article  ADS  Google Scholar 

  108. R. Kaiser, C. Westbrook, F. David (eds.), Coherent Atomic Matter Waves, Les Houches Session LXXII, Les Houches Summer School Series (Springer, Berlin, 2001)

    Google Scholar 

  109. S. Haroche, J.-M. Raimond, Exploring the Quantum: Atoms, Cavities, and Photons (Oxford University Press, Oxford, 2006)

    Book  MATH  Google Scholar 

  110. S. Deléglise, I. Dotsenko, C. Sayrin, J. Bernu, M. Brune, J.-M. Raimond, S. Haroche, Nature 455, 510 (2008)

    Article  ADS  Google Scholar 

  111. M. Arndt, O. Nairz, J. Vos-Andreae, C. Keller, G. van der Zouw, A. Zeilinger, Nature 401, 680 (1999)

    Article  ADS  Google Scholar 

  112. K. Hornberger, S. Uttenthaler, B. Brezger, L. Hackermüller, M. Arndt, A. Zeilinger, Phys. Rev. Lett. 90, 160401 (2003)

    Google Scholar 

  113. L. Hackermüller, K. Hornberger, B. Brezger, A. Zeilinger, M. Arndt, Appl. Phys. B 77, 781 (2003)

    Article  ADS  Google Scholar 

  114. L. Hackermüller, K. Hornberger, B. Brezger, A. Zeilinger, M. Arndt, Nature 427, 711 (2004)

    Article  ADS  Google Scholar 

  115. Y.Y. Fein, P. Geyer, P. Zwick, F. Kiałka, S. Pedalino, M. Mayor, S. Gerlich, M. Arndt, Nat. Phys. 15, 1242 (2019). https://doi.org/10.1038/s41567-019-0663-9

  116. I. Chiorescu, Y. Nakamura, C.J.P.M. Harmans, J.E. Mooij, Science 21, 1869 (2003)

    Article  ADS  Google Scholar 

  117. D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, M.H. Devoret, Science 296, 886 (2002)

    Article  ADS  Google Scholar 

  118. Y. Yu, S. Han, X. Chu, S.-I. Chu, Z. Wang, Science 296, 889 (2002)

    Article  ADS  Google Scholar 

  119. J.M. Martinis, S. Nam, J. Aumentado, C. Urbina, Phys. Rev. Lett. 89, 117901 (2002)

    Google Scholar 

  120. S. Schneider, G.J. Milburn, Phys. Rev. A 57, 3748 (1998)

    Article  ADS  Google Scholar 

  121. C. Miquel, J.P. Paz, W.H. Zurek, Phys. Rev. Lett. 78, 3971 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  122. A. Steane, C.F. Roos, D. Stevens, A. Mundt, D. Leibfried, F. Schmidt-Kaler, R. Blatt, Phys. Rev. A 62, 042305 (2000). https://doi.org/10.1103/PhysRevA.62.042305

  123. H. Häffner, S. Gulde, M. Riebe, G. Lancaster, C. Becher, J. Eschner, F. Schmidt-Kaler, R. Blatt, Phys. Rev. Lett. 90, 143602 (2003). https://doi.org/10.1103/PhysRevLett.90.143602

  124. D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W.M. Itano, B. Jelenković, C. Langer, T. Rosenband, D.J. Wineland, Nature 422, 412 (2003)

    Article  ADS  Google Scholar 

  125. F. Schmidt-Kaler, S. Gulde, M. Riebe, T. Deuschle, A. Kreuter, G. Lancaster, C. Becher, J. Eschner, H. Häffner, R. Blatt, J. Phys. B 36, 623 (2003)

    Article  ADS  Google Scholar 

  126. S. Brouard, J. Plata, Phys. Rev. A 70, 013413 (2004)

    Google Scholar 

  127. T. Grotz, L. Heaney, W.T. Strunz, Phys. Rev. A 74, 022102 (2006)

    Google Scholar 

  128. H. Häffner, C.F. Roos, R. Blatt, Phys. Rep. 469, 155 (2008). https://doi.org/10.1016/j.physrep.2008.09.003

  129. A.V. Kuhlmann, J. Houel, A. Ludwig, L. Greuter, D. Reuter, A.D. Wieck, M. Poggio, R.J. Warburton, Nat. Phys. 9, 570 (2013)

    Article  Google Scholar 

  130. C. Arnold, V. Loo, A. Lemaître, I. Sagnes, O. Krebs, P. Voisin, P. Senellart, L. Lanco, Phys. Rev. X 4, 021004 (2014). https://doi.org/10.1103/PhysRevX.4.021004

  131. J. Fischer, M. Trif, W.A. Coish, D. Loss, Solid State Commun. 149, 1443 (2009)

    Article  ADS  Google Scholar 

  132. B. Urbaszek, X. Marie, T. Amand, O. Krebs, P. Voisin, P. Maletinsky, A. Högele, A. Imamoglu, Rev. Mod. Phys. 85, 79 (2013)

    Article  ADS  Google Scholar 

  133. A. Delteil, W.-b. Gao, P. Fallahi, J. Miguel-Sanchez, A. Imamo ğelse ğfilu, Phys. Rev. Lett. 112, 116802 (2014). https://doi.org/10.1103/PhysRevLett.112.116802

  134. P. Tighineanu, C.L. Dreeßen, C. Flindt, P. Lodahl, A.S. Sørensen, Phys. Rev. Lett. 120, 257401 (2018)

    Google Scholar 

  135. K.Y. Fong, W.H.P. Pernice, H.X. Tang, Phys. Rev. B 85, 161410 ( 2012). https://doi.org/10.1103/PhysRevB.85.161410

  136. Y. Zhang, J. Moser, J. Güttinger, A. Bachtold, M.I. Dykman, Phys. Rev. Lett. 113, 255502 (2014). https://doi.org/10.1103/PhysRevLett.113.255502

  137. T. Miao, S. Yeom, P. Wang, B. Standley, M. Bockrath, Nano Lett. 14, 2982 (2014)

    Article  ADS  Google Scholar 

  138. J. Moser, A. Eichler, J. Güttinger, M.I. Dykman, A. Bachtold, Nat. Nanotechnol. 9, 1007 (2014)

    Article  ADS  Google Scholar 

  139. O. Maillet, F. Vavrek, A.D. Fefferman, O. Bourgeois, E. Collin, New J. Phys. 18, 073022 (2016)

    Google Scholar 

  140. K. Hornberger, J.E. Sipe, Phys. Rev. A 68, 012105 (2003)

    Google Scholar 

  141. K. Hornberger, J.E. Sipe, M. Arndt, Phys. Rev. A 70, 053608 (2004)

    Google Scholar 

  142. K. Hornberger, L. Hackermüller, M. Arndt, Phys. Rev. A 71, 023601 (2005)

    Google Scholar 

  143. K. Hornberger, Phys. Rev. A 73, 052102 (2006)

    Google Scholar 

  144. K. Hornberger, S. Gerlich, S. Nimmrichter, P. Haslinger, M. Arndt, Rev. Mod. Phys. 84, 157 (2012)

    Article  ADS  Google Scholar 

  145. D.F. Walls, G.J. Milburn, Phys. Rev. A 31, 2403 (1985)

    Article  ADS  Google Scholar 

  146. M. Brune, S. Haroche, J.M. Raimond, L. Davidovich, N. Zagury, Phys. Rev. A 45, 5193 (1992)

    Article  ADS  Google Scholar 

  147. M. Arndt, K. Hornberger, Nature Phys. 10, 271 (2014)

    Article  ADS  Google Scholar 

  148. A. Auffeves, P. Maioli, T. Meunier, S. Gleyzes, G. Nogues, M. Brune, J.M. Raimond, S. Haroche, Phys. Rev. Lett. 91, 230405 (2003)

    Google Scholar 

  149. B. Vlastakis, G. Kirchmair, Z. Leghtas, S.E. Nigg, L. Frunzio, S.M. Girvin, M. Mirrahimi, M.H. Devoret, R.J. Schoelkopf, Science 342, 607 (2013). https://doi.org/10.1126/science.1243289

  150. M.H. Devoret, R.J. Schoelkopf, Science 339, 1169 (2013)

    Article  ADS  Google Scholar 

  151. C. Rigetti, J.M. Gambetta, S. Poletto, B.L.T. Plourde, J.M. Chow, A.D. Córcoles, J.A. Smolin, S.T. Merkel, J.R. Rozen, G.A. Keefe, M.B. Rothwell, M.B. Ketchen, M. Steffen, Phys. Rev. B 86, 100506 (2012). https://doi.org/10.1103/PhysRevB.86.100506

  152. A.P. Sears, A. Petrenko, G. Catelani, L. Sun, H. Paik, G. Kirchmair, L. Frunzio, L.I. Glazman, S.M. Girvin, R.J. Schoelkopf, Phys. Rev. B 86, 180504 (2012). https://doi.org/10.1103/PhysRevB.86.180504

  153. A.J. Leggett, J. Phys. Condens. Matter 14, R415 (2002)

    Article  ADS  Google Scholar 

  154. W. Marshall, C. Simon, R. Penrose, D. Bouwmeester, Phys. Rev. Lett 91, 130401 (2003)

    Google Scholar 

  155. A. Bassi, E. Ippoliti, S.L. Adler, Phys. Rev. Lett. 94, 030401 (2005)

    Google Scholar 

  156. I. Pikovski, M.R. Vanner, M. Aspelmeyer, M.S. Kim, Č Brukner, Nat. Phys. 8, 393 (2012)

    Article  Google Scholar 

  157. C. Wan, M. Scala, G.W. Morley, A.A. Rahman, H. Ulbricht, J. Bateman, P.F. Barker, S. Bose, M.S. Kim, Phys. Rev. Lett. 117, 143003 (2016)

    Google Scholar 

  158. R. Kaltenbaek, M. Aspelmeyer, P.F. Barker, A. Bassi, J. Bateman, K. Bongs, S. Bose, C. Braxmaier, Č. Brukner, B. Christophe, M. Chwalla, P.-F. Cohadon, A.M. Cruise, C. Curceanu, K. Dholakia, L. Diósi, K. Döringshoff, W. Ertmer, J. Gieseler, N. Gürlebeck, G. Hechenblaikner, A. Heidmann, S. Herrmann, S. Hossenfelder, U. Johann, N. Kiesel, M. Kim, C. Lämmerzahl, A. Lambrecht, M. Mazilu, G.J. Milburn, H. Müller, L. Novotny, M. Paternostro, A. Peters, I. Pikovski, A. Pilan Zanoni, E.M. Rasel, S. Reynaud, C.J. Riedel, M. Rodrigues, L. Rondin, A. Roura, W.P. Schleich, J. Schmiedmayer, T. Schuldt, K.C. Schwab, M. Tajmar, G.M. Tino, H. Ulbricht, R. Ursin, V. Vedral, EPJ Q. Technol. 3, 5 (2016). https://doi.org/10.1140/epjqt/s40507-016-0043-7

  159. B.A. Stickler, B. Papendell, S. Kuhn, B. Schrinski, J. Millen, M. Arndt, K. Hornberger, New J. Phys. 20, 122001 (2018)

    Google Scholar 

  160. M. Tegmark, Found. Phys. Lett. 6, 571 (1993)

    Article  Google Scholar 

  161. S. Nimmrichter, K. Hornberger, Phys. Rev. Lett. 110, 160403 (2013)

    Google Scholar 

  162. S. Nimmrichter, K. Hornberger, P. Haslinger, M. Arndt, Phys. Rev. A 83, 043621 (2011)

    Google Scholar 

  163. O. Romero-Isart, A.C. Pflanzer, F. Blaser, R. Kaltenbaek, N. Kiesel, M. Aspelmeyer, J.I. Cirac, Phys. Rev. Lett. 107, 020405 (2011)

    Google Scholar 

  164. I. Pikovski, M. Zych, F. Costa, Č. Brukner, Nat. Phys. 668 (2015)

    Google Scholar 

  165. S.L. Adler, J. Phys. A 40, 2935 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  166. A. Bassi, D.-A. Deckert, L. Ferialdi, EPL 92, 50006 (2010)

    Article  ADS  Google Scholar 

  167. R.A. Harris, L. Stodolsky, J. Chem. Phys. 74, 2145 (1981)

    Article  ADS  Google Scholar 

  168. J. Trost, K. Hornberger, Phys. Rev. Lett. 103, 023202 (2009). https://doi.org/10.1103/PhysRevLett.103.023202

  169. M. Bahrami, A. Shafiee, A. Bassi, Phys. Chem. Chem. Phys. 14, 9214 (2012)

    Article  Google Scholar 

  170. E. Joos, H.D. Zeh, Z. Phys. B Condens. Matter 59, 223 (1985)

    Article  ADS  Google Scholar 

  171. E. Joos, Phys. Rev. D 29, 1626 (1984). https://doi.org/10.1103/PhysRevD.29.1626

  172. M.R. Gallis, G.N. Fleming, Phys. Rev. A 42, 38 (1990)

    Article  ADS  Google Scholar 

  173. L. Diósi, Europhys. Lett. 30, 63 (1995)

    Article  ADS  Google Scholar 

  174. S.L. Adler, J. Phys. A Math. Gen. 39, 14067 (2006)

    Article  ADS  Google Scholar 

  175. K. Hornberger, Phys. Rev. Lett. 97, 060601 (2006)

    Google Scholar 

  176. K. Hornberger, EPL 77, 50007 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  177. K. Hornberger, B. Vacchini, Phys. Rev. A 77, 022112 (2008)

    Google Scholar 

  178. M. Busse, K. Hornberger, J. Phys. A Math. Theor. 42, 362001 (2009)

    Google Scholar 

  179. B. Vacchini, K. Hornberger, Phys. Rep. 478, 71 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  180. M. Busse, K. Hornberger, J. Phys. A Math. Theor. 43, 015303 (2010)

    Google Scholar 

  181. M. Busse, P. Pietrulewicz, H.-P. Breuer, K. Hornberger, Phys. Rev. E 82, 026706 (2010)

    Google Scholar 

  182. M. Gring, S. Gerlich, S. Eibenberger, S. Nimmrichter, T. Berrada, M. Arndt, H. Ulbricht, K. Hornberger, M. Müri, M. Mayor, M. Böckmann, N.L. Doltsinis, Phys. Rev. A 81, 031604(R) (2010)

    Article  ADS  Google Scholar 

  183. B.A. Stickler, K. Hornberger, Phys. Rev. A 92, 023619 (2015)

    Google Scholar 

  184. K. Walter, B.A. Stickler, K. Hornberger, Phys. Rev. A 93, 063612 (2016)

    Google Scholar 

  185. B.A. Stickler, B. Papendell, K. Hornberger, Phys. Rev. A 94, 033828 (2016)

    Google Scholar 

  186. B. Papendell, B.A. Stickler, K. Hornberger, New J. Phys. 19, 122001 (2017)

    Google Scholar 

  187. B.A. Stickler, F.T. Ghahramani, K. Hornberger, Phys. Rev. Lett. 121, 243402 (2018)

    Google Scholar 

  188. B.A. Stickler, B. Schrinski, K. Hornberger, Phys. Rev. Lett. 121, 040401 (2018)

    Google Scholar 

  189. E. Schrödinger, Proc. Cambridge Philos. Soc. 31, 555 (1935)

    Article  ADS  Google Scholar 

  190. W.H. Zurek, Frontiers of Nonequilibrium Statistical Mechanics, ed. by G.T. Moore, M.O. Scully (Plenum Press, New York, 1986), pp. 145–149. (first published in 1984 as Los Alamos report LAUR 84-2750)

    Google Scholar 

  191. A.O. Caldeira, A.J. Leggett, Phys. Rev. A 31, 1059 (1985)

    Article  ADS  Google Scholar 

  192. A.O. Caldeira, A.J. Leggett, Physica A 121, 587 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  193. M.R. Gallis, Phys. Rev. A 45, 47 (1992)

    Article  ADS  Google Scholar 

  194. J.R. Anglin, J.P. Paz, W.H. Zurek, Phys. Rev. A 55, 4041 (1997)

    Article  ADS  Google Scholar 

  195. W.H. Zurek, Phys. Rev. D 26, 1862 (1982). https://doi.org/10.1103/PhysRevD.26.1862

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Schlosshauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schlosshauer, M. (2022). Decoherence: From Interpretation to Experiment. In: Kiefer, C. (eds) From Quantum to Classical. Fundamental Theories of Physics, vol 204. Springer, Cham. https://doi.org/10.1007/978-3-030-88781-0_3

Download citation

Publish with us

Policies and ethics