Skip to main content

Scientific and Regulatory Considerations for Development and Commercialization of Poorly Water-Soluble Drugs

  • Chapter
  • First Online:
Formulating Poorly Water Soluble Drugs

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 50))

  • 1431 Accesses

Abstract

This chapter focuses on the Chemistry, Manufacturing, and Controls (CMC) from the scientific and regulatory perspective of the development of poorly water-soluble drugs to provide insights into regulatory filing from Investigational New Drug Application (IND) to New Drug Application (NDA) submission. The chapter includes two primary sections to cover the two regulatory stages for CMC module of filing: IND and NDA. The IND section of the chapter includes the following contents: (1) brief description of general filing requirements as outlined in the Code of Federal Regulations (CFR) and relevant guidelines and (2) discussion of potential regulatory issues for developing poorly water-soluble drugs using various pharmaceutical technologies in the IND stage, i.e., solid-form selection, particle-size reduction, lipid formulation, and amorphous solid dispersion. The NDA section of the chapter includes the following: (1) general regulatory filing requirements of an NDA application; (2) potential regulatory issues associated with poorly water-soluble drugs and detailed discussions of topics including solid-form selection of the drug substance, drug product development using novel pharmaceutical technologies, development of control strategies, etc.; (3) case studies of marketed drug products of poorly water-soluble drugs in various dosage forms (this part uses the public information of the approved products as examples to support the discussions as outlined in part (2)); and (4) brief discussion on the concept of Biopharmaceutics Classification System (BCS) in the development of poorly soluble drugs. The book chapter concludes with a brief summary that emphasizes the link between regulation and science.

This book chapter reflects the views of the authors and should not be construed to represent FDA’s views or policies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Drug substance means an active ingredient that is intended to furnish pharmacological activity or other direct effect in the diagnosis, cure, mitigation, treatment, or prevention of disease or to affect the structure or any function of the human body, but does not include intermediates used in the synthesis of such ingredient (21 CFR 314.3(b)).

  2. 2.

    Drug product means a finished dosage form, for example, tablet, capsule, or solution that contains a drug substance, generally, but not necessarily, in association with one or more other ingredients (21 CFR 314.3(b)).

References

  • Amidon GL, Lennernaes H, Shah VP, et al. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12:413–20.

    Article  CAS  PubMed  Google Scholar 

  • Bauer J, Spanton S, Henry R, et al. Ritonavir: an extraordinary example of conformational polymorphism. Pharm Res. 2001;18:859–66.

    Article  CAS  PubMed  Google Scholar 

  • Bawa R. Nanopharmaceuticals for drug delivery – a review. Drug Deliv. 2009;3:122–7.

    Google Scholar 

  • Borchardt RT, Kerns EH, Lipinski CA, et al., editors. Pharmaceutical profiling in drug discovery for lead selection. Arlington: American Association of Pharmaceutical Scientists; 2004.

    Google Scholar 

  • Brittain HG, editor. Polymorphism in pharmaceutical solids. 2nd ed. New York: Informa Healthcare; 2009.

    Google Scholar 

  • Canon JB. Chemical and physical stability considerations for lipid-based drug formulations. Am Pharm Rev. 2008;11(132):134–8.

    Google Scholar 

  • Chemburkar SR, Bauer J, Deming K, et al. Dealing with the impact of ritonavir polymorphs on the late stages of bulk drug process development. Org Process Res Dev. 2000;4:413–7.

    Article  CAS  Google Scholar 

  • Cuine JF. Lipid-based oral drug delivery systems to enhance solubility and absorption of poorly water-soluble drugs. Am Pharm Rev. 2009;12:74–83.

    CAS  Google Scholar 

  • Dubin CH. Formulation strategies for poorly soluble drugs. Drug Del Technol. 2006;6:34–8.

    Google Scholar 

  • Dunitz JD, Bernstein J. Disappearing polymorphs. Acounts Chem Res. 1995;28:193–200.

    Article  CAS  Google Scholar 

  • FDA. Guideline for drug master files. 1989. https://www.fda.gov/drugs/drug-master-files-dmfs/guideline-drug-master-files-dmf. Accessed 11 Feb 2021.

  • FDA. Guidance for industry − content and format of investigational new drug applications (INDs) for Phase 1 studies of drugs, including well-characterized, therapeutic, biotechnology-derived products. Rockville: FDA; 1995.

    Google Scholar 

  • FDA. Guidance for industry − dissolution testing of immediate release solid oral dosage forms. Rockville: FDA; 1997a.

    Google Scholar 

  • FDA. Guidance for industry − extended release oral dosage forms: development, evaluation, and application of in vitro/in vivo correlation. Rockville: FDA; 1997b.

    Google Scholar 

  • FDA. Guidance for industry − analytical procedures and methods validation. Rockville: FDA; 2000.

    Google Scholar 

  • FDA. Guidance for industry − M4Q: the CTD – quality. Rockville: FDA; 2001.

    Google Scholar 

  • FDA. Guidance for industry − INDs for phase 2 and phase 3 studies chemistry, manufacturing, and controls information. Rockville: FDA; 2003.

    Google Scholar 

  • FDA. Guidance for industry – Q11 development and manufacture of drug substances. Rockville: FDA; 2012.

    Google Scholar 

  • FDA. Guidance for industry − bioavailability and bioequivalence studies submitted in NDAs or INDs – general considerations (Draft Guidance). Rockville: FDA; 2014.

    Google Scholar 

  • FDA. The FDA’s drug review process: ensuring drugs are safe and effective. 2017a. http://www.fda.gov/Drugs/ResourcesForYou/Consumers/ucm143534.htm. Accessed 10 Feb 2021.

  • FDA. Guidance for industry − waiver of in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms based on a biopharmaceutics classification system. Rockville: FDA; 2017b.

    Google Scholar 

  • FDA. Guidance for Industry – Q11 development and manufacture of drug substances (chemical entities and biotechnological/biological entities): questions and answers. Rockville: FDA; 2018.

    Google Scholar 

  • FDA. Guidance for industry − identification of manufacturing establishments in applications submitted to CBER and CDER: questions and answers. Rockville: FDA; 2019.

    Google Scholar 

  • FDA. Guidance for industry – Q3D(R1) elemental impurities. Rockville: FDA; 2020.

    Google Scholar 

  • FDA. Guidance for industry – control of nitrosamine impurities in human drugs. Rockville: FDA; 2021a.

    Google Scholar 

  • FDA. Guidances. 2021b. https://www.fda.gov/regulatory-information/search-fda-guidance-documents. Accessed 4 Mar 2021.

  • FDA. Manual of policies and procedures (CDER). 2021c. https://www.fda.gov/about-fda/center-drug-evaluation-and-research-cder/cder-manual-policies-procedures-mapp. Accessed 4 Mar 2021.

  • Flinn T, Northen J, Fernandes P. New drug development: getting to the optimal physical form. Pharm Chem. 2008;7:20–3.

    CAS  Google Scholar 

  • Florence AJ. Approaches to high-throughput physical form screening and discovery. Drugs Pharm Sci. 2009;192:139–84.

    CAS  Google Scholar 

  • Fort JJ, Krill SL, Law D, et al. Solid dispersion pharmaceutical formulations. US Patent 7,364,752. 10 Nov 2011; 2000.

    Google Scholar 

  • Gift AD, Luner PE, Luedeman L, et al. Manipulating hydrate formation during high shear wet granulation using polymeric excipients. J Pharm Sci. 2009;98:4670–83.

    Article  CAS  PubMed  Google Scholar 

  • Guarino RA, editor. New drug approval process. 4th ed. Marcel Dekker: New York; 2004.

    Google Scholar 

  • Hou T, Xu X. Recent development and application of virtual screening in drug discovery: an overview. Curr Pharm Design. 2004;10:1011–33.

    Article  CAS  Google Scholar 

  • Hu J, Johnston KP, Williams RO III. Nanoparticle engineering processes for enhancing the dissolution rates of poorly water soluble drugs. Drug Dev Ind Pharm. 2004;30:233–45.

    Article  PubMed  CAS  Google Scholar 

  • ICH. Stability testing: photostability testing of new drug substances and products Q1B. Geneva: ICH; 1996.

    Google Scholar 

  • ICH. Specifications: test procedures and acceptance criteria for new drug substances and new drug products: chemical substances Q6A. Geneva: ICH; 1999.

    Google Scholar 

  • ICH. Good manufacturing practice guide for active pharmaceutical ingredients Q7. Geneva: ICH; 2000.

    Google Scholar 

  • ICH. Stability testing of new drug substances and products Q1A(R2). Geneva: ICH; 2003a.

    Google Scholar 

  • ICH. Evaluation for stability data Q1E. Geneva: ICH; 2003b.

    Google Scholar 

  • ICH. Validation of analytical procedures: text and methodology Q2(R1). Geneva: ICH; 2005.

    Google Scholar 

  • ICH. Impurities in new drug substances Q3A(R2). Geneva: ICH; 2006a.

    Google Scholar 

  • ICH. Impurities in new drug products Q3B(R2). Geneva: ICH; 2006b.

    Google Scholar 

  • ICH. Development and manufacture of drug substances (chemical entities and biotechnological/biological entities) Q11. Geneva: ICH; 2012.

    Google Scholar 

  • ICH. Impurities: guideline for residual solvents Q3C(R6). Geneva: ICH; 2016.

    Google Scholar 

  • ICH. Assessment and control of DNA reactive (mutagenic) impurities in pharmaceuticals to limit potential carcinogenic risk M7(R1). Geneva: ICH; 2017.

    Google Scholar 

  • ICH. Guideline for elemental impurities Q3D(R1). Geneva: ICH; 2019.

    Google Scholar 

  • ICH. Quality guidelines. 2021. https://www.ich.org/page/quality-guidelines. Accessed 4 Mar 2021.

  • Intelence® (etravirine) Tablets full prescribing information. 2019. https://www.janssenlabels.com/package-insert/product-monograph/prescribing-information/INTELENCE-pi.pdf. Accessed 29 Mar 2021.

  • Kobayashi Y, Ito S, Itai S, et al. Physicochemical properties and bioavailability of carbamazepine polymorphs and dihydrate. Int J Pharm. 2000;193:137–46.

    Article  CAS  PubMed  Google Scholar 

  • Lakshman JP, Cao Y, Kowalski J, et al. Application of melt extrusion in the development of a physically and chemically stable high-energy amorphous solid dispersion of a poorly water-soluble drug. Mol Pharm. 2008;5:994–1002.

    Article  CAS  PubMed  Google Scholar 

  • Lang M, Kampf JW, Matzger AJ. Form IV of carbamazepine. J Pharm Sci. 2002;91:1186–90.

    Article  CAS  PubMed  Google Scholar 

  • Law D, Schmitt EA, Marsh KC, et al. Ritonavir-PEG 8000 amorphous solid dispersions: in vitro and in vivo evaluation. J Pharm Sci. 2004;93:563–70.

    Article  CAS  PubMed  Google Scholar 

  • Lehto P, Aaltonen J, Tenho M, et al. Solvent-mediated solid phase transformations of carbamazepine: effects of simulated intestinal fluid and fasted state simulated intestinal fluid. J Pharm Sci. 2009;98:985–96.

    Article  CAS  PubMed  Google Scholar 

  • Lipari J, Al-Razzak LA, Ghosh S, et al. Pharmaceutical composition. US Patent 6,232,333, 7 Nov 1997; 1997.

    Google Scholar 

  • Lipinski CA. Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods. 2000;44:235–49.

    Article  CAS  PubMed  Google Scholar 

  • Liversidge GG, Cundy KC, Bishop JF, et al. Surface modified drug nanoparticles. US Patent 5,145,684, 25 Jan 1991; 1991.

    Google Scholar 

  • Lowe JA, Jones P, Wilson DM. The importance of target validation in drug discovery and development. Curr Opin Drug Discov Devel. 2009;12:581–4.

    CAS  PubMed  Google Scholar 

  • Merisko-Liversidge EM, Liversidge GG. Drug nanoparticles: formulating poorly water-soluble compounds. Toxicol Pathol. 2008;36:43–8.

    Article  CAS  PubMed  Google Scholar 

  • Merisko-Liversidge E, Liversidge GG, Cooper ER. Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur J Pharm Sci. 2003;18:113–20.

    Article  CAS  PubMed  Google Scholar 

  • Meyer MC, Straughn AB, Jarvi EJ, et al. The bioinequivalence of carbamazepine tablets with a history of clinical failures. Pharm Res. 1992;9:1612–6.

    Article  CAS  PubMed  Google Scholar 

  • Norvir® Soft Gelatin Capsule prescribing information. 2020. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/020945s048lbl.pdf. Accessed 15 December 2021.

  • O’Neil MJ, editor. The Merck index: an encyclopedia of chemicals, drugs, and biologicals. 13th ed. Whitehouse Station: Merck; 2006.

    Google Scholar 

  • Orange Book: approved drug products with therapeutic equivalence evaluations. Silver Spring: U.S. Food and Drug Administration; 2011 and 2021. http://www.accessdata.fda.gov/scripts/cder/ob/default.cfm. Accessed 31 Mar 2011 and 11 Feb 2021.

  • Porter CJH, Wasan KM, Constantinides P. Lipid-based systems for the enhanced delivery of poorly water soluble drugs. Adv Drug Deliv Rev. 2008;60:615–6.

    Article  CAS  PubMed  Google Scholar 

  • Pouton CW. Formulation of poorly water-soluble drugs for oral administration: physicochemical and physiological issues and the lipid formulation classification system. Eur J Pharm Sci. 2006;29:278–87.

    Article  CAS  PubMed  Google Scholar 

  • Radomska-Soukharev A. Stability of lipid excipients in solid lipid nanoparticles. Adv Drug Deliv Rev. 2007;59:411–8.

    Article  CAS  PubMed  Google Scholar 

  • Radomska-Soukharev A, Mueller RH. Chemical stability of lipid excipients in SLN-production of test formulations, characterization and short-term stability. Pharmazie. 2006;61:425–30.

    CAS  PubMed  Google Scholar 

  • Rapamune® Oral Solution prescribing information. 2020. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/021083s067,021110s085lbl.pdf. Accessed 29 Mar 2021.

  • Rogge MC, Taft DR, editors. Preclinical drug development. 2nd ed. Taylor & Francis: Boca Raton; 2010.

    Google Scholar 

  • Rustichelli C, Gamberini G, Ferioli V, et al. Solid-state study of polymorphic drugs: carbamazepine. J Pharm Biomed Anal. 2000;23:41–54.

    Article  CAS  PubMed  Google Scholar 

  • Ryde NP, Ruddy SB. Solid dose nanoparticulate compositions comprising a synergistic combination of a polymeric surface stabilizer and dioctyl sodium sulfosuccinate. US Patent 6,375,986, 21 Sept 2000; 2000.

    Google Scholar 

  • Ryde T, Gustow EE, Ruddy SB, et al. Nanoparticulate fibrate formulations. US Patent 7,276,249, 23 May 2003; 2003a.

    Google Scholar 

  • Ryde T, Gustow EE, Ruddy SB, et al. Methods of treatment using nanoparticulate fenofibrate compositions. US Patent 7,320,802, 27 Oct 2003; 2003b.

    Google Scholar 

  • Salyer KL. Preclinical pharmacokinetic models for drug discovery and development. Drugs Pharm Sci. 2009;186:659–73.

    Google Scholar 

  • Serajuddin ATM. Solid dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs. J Pharm Sci. 1999;88:1058–66.

    Article  CAS  PubMed  Google Scholar 

  • Stahl PH, Sutter B. Salt selection. In: Hilfiker R, editor. Polymorphism: in the pharmaceutical industry. Weinheim: Wiley-VCH; 2006.

    Google Scholar 

  • Tang B, Cheng G, Gu JC, et al. Development of solid self-emulsifying drug delivery systems: preparation techniques and dosage forms. Drug Discov Today. 2008;13:606–12.

    Article  CAS  PubMed  Google Scholar 

  • Tian F, Zeitler JA, Strachan CJ, et al. Characterizing the conversion kinetics of carbamazepien polymorphs to the dihydrate in aqueous suspension using Raman spectroscopy. J Pharm Biomed Anal. 2006;40:271–80.

    Article  CAS  PubMed  Google Scholar 

  • Tong P, Zografi G. Effects of water vapor absorption on the physical and chemical stability of amorphous sodium indomethacin. AAPS PharmSciTech. 2004;5:2.

    Article  Google Scholar 

  • USP 43-NF 38. United States pharmacopeia 43/national formulary 38. Rockville: United States Pharmacopeial Convention; 2020.

    Google Scholar 

  • Verreck G, Baert L. Antiviral compositions. US Patent 7,887,845, 3 Feb 2006; 2006.

    Google Scholar 

  • Waranis, RP, Leonard TW. Rapamycin formulations for oral administration. US Patent 5,536,729, 9 Sept 1994; 1994.

    Google Scholar 

  • Weuts I, Van Dycke F, Voorspoels J, et al. Physicochemical properties of the amorphous drug, cast films, and spray dried powders to predict formulation probability of success for solid dispersions: etravirine. J Pharm Sci. 2011;100:260–74.

    Article  CAS  PubMed  Google Scholar 

  • Yang SY. Pharmacophore modeling and application in drug discovery: challenges and recent advances. Drug Discov Today. 2010;15:444–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Richard Lostritto, Dr. Christine Moore, and Dr. Stephen Moore for critically reviewing the manuscript and insightful discussions during the preparation of this book chapter for the first edition and Dr. Ramesh Raghavachari for the valuable comments during the revision of this book chapter for the third edition.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dong, Z., Patel, H. (2022). Scientific and Regulatory Considerations for Development and Commercialization of Poorly Water-Soluble Drugs. In: Williams III, R.O., Davis Jr., D.A., Miller, D.A. (eds) Formulating Poorly Water Soluble Drugs. AAPS Advances in the Pharmaceutical Sciences Series, vol 50. Springer, Cham. https://doi.org/10.1007/978-3-030-88719-3_14

Download citation

Publish with us

Policies and ethics