Skip to main content

Part of the book series: Food Engineering Series ((FSES))

  • 457 Accesses

Abstract

Celiac disease is one of the most continuous perpetual food prejudices prompted by ingestion of gluten protein from various foods such as wheat, barley, rye, oats, etc. The accessibility of the various analytical methods is extremely important to determine the presence of gluten in the food matrix to guarantee the affluence of gluten delicate people. Along with it in accordance to Codex, foods having below 20 mg gluten/kg can only be considered under a gluten-free label. This also sets standards for the analytical methods in gluten detection. The present chapter deals with the chemical constituents, toxicity, and tolerance limit of gluten protein along with the importance of gluten-free foods, gluten labeling, and risk management. However, the main objective is to discuss the various gluten detection methods, their applicability, challenges, and influencing factors. Removal of gluten is necessary to increase the availability of gluten-free food products which greatly depends on the selection and standard of the detection method. Thus, to ensure the consumption of gluten-free food products the detection method of gluten must be monitored carefully.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alves, T.O., D’Almeida, C. T., & Ferreira, M. S. (2017). Determination of gluten peptides associated with celiac disease by mass spectrometry. Celiac Disease and Non-Celiac Gluten Sensitivity, 43.

    Google Scholar 

  • Alves, T. O., D’Almeida, C. T., Scherf, K. A., & Ferreira, M. S. (2019). Modern approaches in the identification and quantification of immunogenic peptides in cereals by LC-MS/MS. Frontiers in Plant Science, 10.

    Google Scholar 

  • Amaya-González, S., de los Santos Álvarez, N., Miranda-Ordieres, A. J., & Lobo-Castañón, M. J. (2015). Sensitive gluten determination in gluten-free foods by an electrochemical aptamer-based assay. Analytical and Bioanalytical Chemistry, 6021–6029.

    Google Scholar 

  • Bean, S. R., & Lookhart, G. L. (2000). Electrophoresis of cereal storage proteins. Journal of Chromatography, 23–36.

    Google Scholar 

  • Besler, M. (2001). Determination of allergens in foods. Trends in Analytical Chemistry, 662–672.

    Google Scholar 

  • Bietz, J. A., & Wall, J. S. (1972). Wheat gluten subunits: Molecular weights determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.

    Google Scholar 

  • Camafeita, E., & Méndez, E. (1998). Screening of gluten avenins in foods by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Journal of Mass Spectrometry, 1023–1028.

    Google Scholar 

  • Cao, W., Watson, D., Bakke, M., Panda, R., Bedford, B., Kande, P. S., Jackson, L. S., & Garber, E. A. (2017). Detection of gluten during the fermentation process to produce soy sauce. Journal of Food Protection, 80(5), 799–808.

    Article  CAS  Google Scholar 

  • Catassi, C., & Yachha, S. K. (2016). Science of gluten-free foods and beverages (E. Arendt, & F. Dal Bello, Eds., pp. 1–11). Academic.

    Google Scholar 

  • Catassi, C., Fabiani, E., Rätsch, I. M., Coppa, G. V., Giorgi, P. L., Pierdomenico, R., Alessandrini, S., Iwanejko, G., Domenici, R., Mei, E., & Miano, A. (1996). The coeliac iceberg in Italy. A multicentreantigliadin antibodies screening for coeliac disease in school-age subjects. Actapaediatrica, 29–35.

    Google Scholar 

  • Cho, C. Y., Nowatzke, W., Oliver, K., & Garber, E. A. (2015). Multiplex detection of food allergens and gluten. Analytical and Bioanalytical Chemistry, 407(14), 4195–4206.

    Article  CAS  Google Scholar 

  • Chu, P. T., & Wen, H. W. (2013). Sensitive detection and quantification of gliadin contamination in gluten-free food with immunomagnetic beads based liposomal fluorescence immunoassay. Analytica Chimica Acta, 246–253.

    Google Scholar 

  • Chu, P. T., Lin, C. S., Chen, W. J., Chen, C. F., & Wen, H. W. (2012). Detection of gliadin in foods using a quartz crystal microbalance biosensor that incorporates gold nanoparticle. Journal of Agriculture and Food Chemistry, 6483–6492.

    Google Scholar 

  • Cimaglia, F., Potente, G., Chiesa, M., Mita, G., & Bleve, G. (2014). Study of a new gliadin capture agent and development of a protein microarray as a new approach for gliadin detection. Journal of Proteomics and Bioinformatics, 248–255.

    Google Scholar 

  • Debnath, J., Martin, A., & Gowda, L. R. (2009). A polymerase chain reaction directed to detect wheat glutenin: Implications for gluten-free labelling. Food Research International, 782–787.

    Google Scholar 

  • Denham, J. M., & Hill, I. D. (2013). Celiac disease and autoimmunity: Review and controversies. Current Allergy and Asthma Reports, 347–353.

    Google Scholar 

  • Diaz-Amigo, C. (2010). Antibody-based detection methods: From theory to practice. In Molecular biological and immunological techniques and applications for food chemists (pp. 223–245). Wiley.

    Google Scholar 

  • Dostalek, P., Gabrovska, D., Rysova, J., Mena, M. C., Hernando, A., Méndez, E., Chmelik, J., & Šalplachta, J. (2009). Determination of gluten in glucose syrups. Journal of Food Composition and Analysis, 762–765.

    Google Scholar 

  • DuPont, F. M., Chan, R., Lopez, R., & Vensel, W. H. (2005). Sequential extraction and quantitative recovery of gliadins, glutenins, and other proteins from small samples of wheat flour. Journal of Agricultural and Food Chemistry, 1575–1584.

    Google Scholar 

  • El Khoury, D., Balfour-Ducharme, S., & Joye, I. J. (2018). A review on the gluten-free diet: Technological and nutritional challenges. Nutrients, 1410.

    Google Scholar 

  • Gomaa, A., & Boye, J. I. (2013). Impact of thermal processing time and cookie size on the detection of casein, egg, gluten and soy allergens in food. Food Research International, 483–489.

    Google Scholar 

  • Haas-Lauterbach, S., Immer, U., Richter, M., & Koehler, P. (2012). Gluten fragment detection with a competitive ELISA. Journal of AOAC international, 377–381.

    Google Scholar 

  • Haraszi, R., Chassaigne, H., Maquet, A., & Ulberth, F. (2011). Analytical methods for detection of gluten in food—Method developments in support of food labeling legislation. Journal of AOAC International, 1006–1025.

    Google Scholar 

  • Harlow, E., & Lane, D. (1988). Antibodies: A laboratory manual. Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Harlow, E., & Lane, D. (1998). Using antibodies: A laboratory manual. Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Hattersley, S., Ward, R., Baka, A., & Crevel, R. W. (2014). Advances in the risk management of unintended presence of allergenic foods in manufactured food products – An overview. Food and Chemical Toxicology, 255–261.

    Google Scholar 

  • Hernando, A., Mujico, J. R., Mena, M. C., Lombardía, M., & Mendez, E. (2008). Measurement of wheat gluten and barley hordeins in contaminated oats from Europe, the United States and Canada by Sandwich R5 ELISA. European Journal of Gastroenterology & Hepatology, 545–554.

    Google Scholar 

  • Howard, G. C., & Bethell, D. R. (Eds.). (2000). Basic methods in antibody production and characterization. CRC Press.

    Google Scholar 

  • Immer, U., & Haas-Lauterbach, S. (2010). Gluten detection (Chapter 19). In B. Popping, C. Diaz-Amigo, & K. Hoenicke (Eds.), Molecular biological and immunological techniques and applications for food chemists (pp. 359–375). Wiley.

    Chapter  Google Scholar 

  • Kanerva, P. M., & Sontag-Strohm, T. S., (2006). Problems in detecting prolamins contaminants in oat-based foods by commercial ELISA kits. In 9th international gluten workshop, September (p. 33).

    Google Scholar 

  • Kanerva, P., Brinck, O., Sontag-Strohm, T., Salovaara, H., & Loponen, J. (2011). Deamidation of gluten proteins and peptides decreases the antibody affinity in gluten analysis assays. Journal of Cereal Science, 335–339.

    Google Scholar 

  • Khan, K., & Huckle, L. (1992). Use of multistacking gels in sodium dodecyl sulfate-polyacrylamide gel electrophoresis to reveal polydispersity, aggregation, and disaggregation of the glutenin protein fraction. Cereal Chemistry, 686–688.

    Google Scholar 

  • Kolster, P., Krechting, C. F., & Van Gelder, W. M. J. (1992). Quantification of individual high molecular weight subunits of wheat glutenin using SDS—PAGE and scanning densitometry. Journal of Cereal Science, 49–61.

    Google Scholar 

  • Laube, T., Kergaravat, S. V., Fabiano, S. N., Hernández, S. R., Alegret, S., & Pividori, M. I. (2011). Magneto immunosensor for gliadin detection in gluten-free foodstuff: Towards food safety for celiac patients. Biosensors and Bioelectronics, 46–52.

    Google Scholar 

  • Lee, H. J., Anderson, Z., & Ryu, D. (2014). Gluten contamination in foods labeled as “gluten free” in the United States. Journal of Food Protection, 1830–1833.

    Google Scholar 

  • Leszczynska, J., Łącka, A., Szemraj, J., Lukamowicz, J., & Zegota, H. (2003). The influence of gamma irradiation on the immunoreactivity of gliadin and wheat flour. European Food Research and Technology, 143–114.

    Google Scholar 

  • Liao, Y. S., Kuo, J. H., Chen, B. L., Tsuei, H. W., Lin, C. Y., Lin, H. Y., & Cheng, H. F. (2017). Development and validation of the detection method for wheat and barley glutens using mass spectrometry in processed foods. Food Analytical Methods, 10(8), 2839–2847.

    Article  Google Scholar 

  • Lock, S. (2014). Gluten detection and speciation by liquid chromatography mass spectrometry (LC-MS/MS). Food, 13–29.

    Google Scholar 

  • Lock, S., Lane, C., Jackson, P., & Serna, A. (2010). The detection of allergens in bread and pasta by liquid chromatography tandem mass spectrometry. Application Note SCIEX.

    Google Scholar 

  • Lookhart, G. L., & Wrigley, C. W. (1995). Identification of food grain varieties (C.W. Wrigley, Ed., pp. 55–71). AACC International.

    Google Scholar 

  • López-López, L., Miranda-Castro, R., de Los Santos Alvarez, N., Miranda-Ordieres, A. J., & Lobo-Castañón, M. J. (2017). Disposable electrochemical aptasensor for gluten determination in food. Sensors and Actuators B: Chemical, 522–527.

    Google Scholar 

  • Malvano, F., Albanese, D., Pilloton, R., & Di Matteo, M. (2017). A new label-free impedimetricaptasensor for gluten detection. Food Control, 200–206.

    Google Scholar 

  • Marín-Barroso, E., Messina, G. A., Bertolino, F. A., Raba, J., & Pereira, S. V. (2019). Electrochemical immunosensor modified with carbon nanofibers coupled to a paper platform for the determination of gliadins in food samples. Analytical Methods, 2170–2178.

    Google Scholar 

  • Martín-Fernández, B., Costa, J., Oliveira, M. B. P., López-Ruiz, B., & Mafra, I. (2015). Screening new gene markers for gluten detection in foods. Food Control, 56, 57–63.

    Article  Google Scholar 

  • Martín-Yerga, D., & Costa-García, A. (2014). Electrochemical immunosensors for celiac disease detection. International Journal, 139–141.

    Google Scholar 

  • Melini, F., & Melini, V. (2018). Immunological methods in gluten risk analysis: A snapshot. Safety, 56.

    Google Scholar 

  • Mena, M. C., Lombardía, M., Hernando, A., Méndez, E., & Albar, J. P. (2012). Comprehensive analysis of gluten in processed foods using a new extraction method and a competitive ELISA based on the R5 antibody. Talanta, 91, 33–40.

    Article  CAS  Google Scholar 

  • Miranda-Castro, R., De-los-Santos-Álvarez, N., Miranda-Ordieres, A. J., & Lobo-Castañón, M. J. (2016). Harnessing aptamers to overcome challenges in gluten detection. Biosensors, 16.

    Google Scholar 

  • Mothes, T., & Stern, M. (2003). How gluten-free is gluten-free, and what does this mean to coeliac patients? European Journal of Gastroenterology & Hepatology, 15(5), 461–463.

    Article  CAS  Google Scholar 

  • Nassef, H. M., Bermudo Redondo, M. C., Ciclitira, P. J., Ellis, H. J., Fragoso, A., & O’Sullivan, C. K. (2008). Electrochemical immunosensor for detection of celiac disease toxic gliadin in foodstuff. Analytical Chemistry, 9265–9271.

    Google Scholar 

  • Neves, M. M., González-García, M. B., Nouws, H. P., & Costa-García, A. (2012). Celiac disease detection using a transglutaminase electrochemical immunosensor fabricated on nanohybrid screen-printed carbon electrodes. Biosensors and Bioelectronics, 95–100.

    Google Scholar 

  • Newberry, C., McKnight, L., Sarav, M., & Blakely, O. P. (2017). Going gluten free: The history and nutritional implications of today’s Most popular diet. Current Gastroenterology Reports, 54.

    Google Scholar 

  • Niewinski, M. M. (2008). Advances in celiac disease and gluten free diet. Journal of American Dietetic Association, 661–672.

    Google Scholar 

  • Osorio, C. E., Mejías, J. H., & Rustgi, S. (2019). Gluten detection methods and their critical role in assuring safe diets for celiac patients. Nutrients, 2920.

    Google Scholar 

  • Panda, R., & Garber, E. A. (2019). Detection and quantitation of gluten in fermented-hydrolyzed foods: Challenges, progress and potential path forward (p. 97). Frontiers in Nutrition.

    Google Scholar 

  • Panda, R., Boyer, M., & Garber, E. A. (2017). A multiplex competitive ELISA for the detection and characterization of gluten in fermented-hydrolyzed foods. Analytical and Bioanalytical Chemistry, 6959–6973.

    Google Scholar 

  • Park, S. H., Bean, S. R., Chung, O. K., & Seib, P. A. (2006). Levels of protein and protein composition in hard winter wheat flours and the relationship to breadmaking. Cereal Chemistry, 418–423.

    Google Scholar 

  • Payne, P. I., Corfield, K. G., & Blackman, J. A. (1979). Identification of a high-molecular-weight subunit of glutenin whose presence correlates with bread-making quality in wheats of related pedigree. Theoretical and Applied Genetics, 153–159.

    Google Scholar 

  • Pedersen, R. O., Nowatzke, W. L., Cho, C. Y., Oliver, K. G., & Garber, E. A. (2018). Cross-reactivity by botanicals used in dietary supplements and spices using the multiplex xMAP food allergen detection assay (xMAP FADA). Analytical and Bioanalytical Chemistry, 5791–5806.

    Google Scholar 

  • Poms, R. E., Anklam, E., & Kuhn, M. (2004). Polymerase chain reaction techniques for food allergen detection. Journal of AOAC International, 1391–1397.

    Google Scholar 

  • Popping, B. (2009). Challenges in detecting food allergens—Analytical methods in the legal context. In The Science of Gluten-Free Foods and Beverages. AACC International Press.

    Google Scholar 

  • Righetti, P. G., & Bosisio, A. B. (1981). Applications of isoelectric focusing to the analysis of plant and food proteins. Electrophoresis, 65–75.

    Google Scholar 

  • Rosell, C. M., Barro, F., Sousa, C., & Mena, M. C. (2014). Cereals for developing gluten-free products and analytical tools for gluten detection. Journal of Cereal Science, 354–364.

    Google Scholar 

  • Saghatelian, A., & Cravatt, B. F. (2005). Global strategies to integrate the proteome and metabolome. Current Opinion in Chemical Biology, 62–68.

    Google Scholar 

  • Sandberg, M., Lundberg, L., Ferm, M., & Yman, I. M. (2003). Real time PCR for the detection and discrimination of cereal contamination in gluten free foods. European Food Research and Technology, 344–349.

    Google Scholar 

  • Scherf, K. A., & Poms, R. E. (2016). Recent developments in analytical methods for tracing gluten. Journal of Cereal Science, 112–122.

    Google Scholar 

  • Sharma, G. M., & Rallabhandi, P. (2015). The effects of processing on gluten from wheat, rye, and barley, and its detection in foods. In Processing and impact on active components in food. Academic.

    Google Scholar 

  • Sharma, G. M., Pereira, M., & Williams, K. M. (2014). Gluten detection in foods available in the United States - A market survey. Food Chemistry, 120–126.

    Google Scholar 

  • Sharma, G. M., Pereira, M., & Williams, K. M. (2015). Gluten detection in foods available in the United States–A market survey. Food Chemistry, 120–126.

    Google Scholar 

  • Shefcheck, K. J., & Musser, S. M. (2004). Confirmation of the allergenic peanut protein, Ara h 1, in a model food matrix using liquid chromatography/tandem mass spectrometry (LC/MS/MS). Journal of Agricultural and Food Chemistry, 2785–2790.

    Google Scholar 

  • Shewry, P. R. (2007). Improving the protein content and composition of cereal grain. Journal of Cereal Science, 239–250.

    Google Scholar 

  • Shewry, P. R. (2009). Wheat. Journal of Experimental Botany, 1537–1553.

    Google Scholar 

  • Shewry, P. R., & Halford, N. G. (2002). Cereal seed storage proteins: Structures, properties and role in grain utilization. Journal of Experimental Botany, 947–958.

    Google Scholar 

  • Skerritt, J. H., & Hill, A. S. (1990). Monoclonal antibody sandwich enzyme immunoassays for determination of gluten in foods. Journal of Agriculture Food Chemistry, 1771–1778.

    Google Scholar 

  • Skerritt, J. H., Diment, J. A., & Wrigley, C. W. (1985). A sensitive monoclonal – Antibody- based test for gluten detection: Choice of primary and secondary bodies. Journal of Science and Food Agriculture, 995–1003.

    Google Scholar 

  • Slot, I. D. B., Fels-Klerx, H. J. V. D., Bremer, M. G. E. G., & Hamer, R. J. (2016). Immunochemical detection methods for gluten in food products: Where do we go from here. Critical Reviews in Food Science and Nutrition, 2455–2466.

    Google Scholar 

  • Thompson, T., & Méndez, E. (2008). Commercial assays to assess gluten content of gluten-free foods: Why they are not created equal. Journal of the American Dietetic Association, 1682–1687.

    Google Scholar 

  • Toufeili, I. M. A. D., Dagher, S. H. A. W. K. Y., Shadarevian, S. O. S. S. Y., Noureddine, A. B. I. R., Sarakbi, M., & Farran, M. T. (1994). Formulation of gluten-free pocket-type flat breads: Optimization of methylcellulose, gum Arabic, and egg albumen levels by response surface methodology. Cereal Chemistry, 594–600.

    Google Scholar 

  • Victorio, V. C. M., Souza, G. H., Santos, M. C. B., Vega, A. R., Cameron, L. C., & Ferreira, M. S. L. (2018). Differential expression of albumins and globulins of wheat flours of different technological qualities revealed by nanoUPLC-UDMSE. Food Chemistry, 1027–1036.

    Google Scholar 

  • Weng, X., Gaur, G., & Neethirajan, S. (2016). Rapid detection of food allergens by microfluidics ELISA-based optical sensor. Biosensors, 6(2), 24.

    Article  Google Scholar 

  • Werner, W. E., Wiktorowicz, J. E., & Kasarda, D. D. (1994). Wheat varietal identification by capillary electrophoresis of gliadins and high molecular weight glutenin subunits. Cereal Chemistry, 397–402.

    Google Scholar 

  • Wieser, H. (2003). The use of redox agents. In S. P. Cauvain (Ed.), Bread making-improving quality (pp. 424–446). Woodhead Publishing Ltd.

    Chapter  Google Scholar 

  • Wieser, H. (2008). Detection of gluten. Chapter 3. In E. K. Arendt & F. Dal Bello (Eds.), Gluten-free cereal products and beverages (pp. 47–80). Academic Press.

    Chapter  Google Scholar 

  • Windemann, H., Fritschy, F., & Baumgartner, E. (1982). Enzyme-linked immunosorbent assay for wheat α-gliadin and whole gliadin. Biochimicaet Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 110–121.

    Google Scholar 

  • Woychik, J. H., Boundy, J. A., & Dimler, R. J. (1961). Starch gel electrophoresis of wheat gluten proteins with concentrated urea. Archives of Biochemistry and Biophysics, 477–482.

    Google Scholar 

  • Wrigley, C. W. (1996). Giant proteins with flour power. Nature, 738–739.

    Google Scholar 

  • Xhakollari, V., Canavari, M., & Osman, M. (2018). Factors affecting consumer’s adherence to gluten free diet, a systematic review. Trends in Food Science and Technology, 23–33.

    Google Scholar 

  • Yman, I. M., Eriksson, A., Everitt, G., Yman, L., & Karlsson, T. (1994). Analysis of food proteins for verification of contamination or mislabelling. Food and Agricultural Immunology, 167–172.

    Google Scholar 

  • Zhang, J., Portela, S. B., Horrell, J. B., Leung, A., Weitmann, D. R., Artiuch, J. B., Wilson, S. M., Cipriani, M., Slakey, L. K., Burt, A. M., & Lourenco, F. J. D. (2019). An integrated, accurate, rapid, and economical handheld consumer gluten detector. Food Chemistry, 446–456.

    Google Scholar 

  • Žilić, S. (2013). Wheat gluten: Composition and health effects. Gluten, 71-86.

    Google Scholar 

  • Zuidmeer, L., Goldhahn, K., Rona, R. J., Gislason, D., Madsen, C., Summers, C., Sodergren, E., Dahlstrom, J., Lindner, T., Sigurdardottir, S. T., & McBride, D. (2008). The prevalence of plant food allergies: A systematic review. Journal of Allergy and Clinical Immunolog, 1210–1218.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Munshi, M., Deb, S. (2022). Gluten Detection in Foods. In: Singh Deora, N., Deswal, A., Dwivedi, M. (eds) Challenges and Potential Solutions in Gluten Free Product Development. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-030-88697-4_7

Download citation

Publish with us

Policies and ethics