Skip to main content

One Representative-Shot Learning Using a Population-Driven Template with Application to Brain Connectivity Classification and Evolution Prediction

  • Conference paper
  • First Online:
Predictive Intelligence in Medicine (PRIME 2021)

Abstract

Few-shot learning presents a challenging paradigm for training discriminative models on a few training samples representing the target classes to discriminate. However, classification methods based on deep learning are ill-suited for such learning as they need large amounts of training data –let alone one-shot learning. Recently, graph neural networks (GNNs) have been introduced to the field of network neuroscience, where the brain connectivity is encoded in a graph. However, with scarce neuroimaging datasets particularly for rare diseases and low-resource clinical facilities, such data-devouring architectures might fail in learning the target task. In this paper, we take a very different approach in training GNNs, where we aim to learn with one sample and achieve the best performance –a formidable challenge to tackle. Specifically, we present the first one-shot paradigm where a GNN is trained on a single population-driven template –namely a connectional brain template (CBT). A CBT is a compact representation of a population of brain graphs capturing the unique connectivity patterns shared across individuals. It is analogous to brain image atlases for neuroimaging datasets. Using a one-representative CBT as a training sample, we alleviate the training load of GNN models while boosting their performance across a variety of classification and regression tasks. We demonstrate that our method significantly outperformed benchmark one-shot learning methods with downstream classification and time-dependent brain graph data forecasting tasks while competing with the “train on all” conventional training strategy. Our source code can be found at https://github.com/basiralab/one-representative-shot-learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.oasis-brains.org/.

References

  1. Shen, D., Wu, G., Suk, H.I.: Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. 19, 221–248 (2017)

    Article  Google Scholar 

  2. Yi, X., Walia, E., Babyn, P.: Generative adversarial network in medical imaging: a review. Med. Image Anal. 58, 101552 (2019)

    Google Scholar 

  3. Schaefer, J., Lehne, M., Schepers, J., Prasser, F., Thun, S.: The use of machine learning in rare diseases: a scoping review. Orphanet J. Rare Dis. 15, 1–10 (2020)

    Article  Google Scholar 

  4. Piette, J.D., et al.: Impacts of e-health on the outcomes of care in low-and middle-income countries: where do we go from here? Bull. World Health Organ. 90, 365–372 (2012)

    Article  Google Scholar 

  5. Kadam, S., Vaidya, V.: Review and analysis of zero, one and few shot learning approaches. In: Abraham, A., Cherukuri, A.K., Melin, P., Gandhi, N. (eds.) ISDA 2018 2018. AISC, vol. 940, pp. 100–112. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-16657-1_10

    Chapter  Google Scholar 

  6. Sun, Q., Liu, Y., Chua, T.S., Schiele, B.: Meta-transfer learning for few-shot learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 403–412 (2019)

    Google Scholar 

  7. Li, X., Sun, Z., Xue, J.H., Ma, Z.: A concise review of recent few-shot meta-learning methods. arXiv preprint arXiv:2005.10953 (2020)

  8. Zhao, A., Balakrishnan, G., Durand, F., Guttag, J.V., Dalca, A.V.: Data augmentation using learned transformations for one-shot medical image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8543–8553 (2019)

    Google Scholar 

  9. Mondal, A.K., Dolz, J., Desrosiers, C.: Few-shot 3D multi-modal medical image segmentation using generative adversarial learning. arXiv preprint arXiv:1810.12241 (2018)

  10. Li, X., Yu, L., Jin, Y., Fu, C.-W., Xing, L., Heng, P.-A.: Difficulty-aware meta-learning for rare disease diagnosis. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 357–366. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_35

    Chapter  Google Scholar 

  11. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric deep learning: going beyond Euclidean data. IEEE Signal Process. Mag. 34, 18–42 (2017)

    Article  Google Scholar 

  12. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  13. Bessadok, A., Mahjoub, M.A., Rekik, I.: Graph neural networks in network neuroscience. arXiv preprint arXiv:2106.03535 (2021)

  14. Garcia, V., Bruna, J.: Few-shot learning with graph neural networks. arXiv preprint arXiv:1711.04043 (2017)

  15. Gori, M., Monfardini, G., Scarselli, F.: A new model for learning in graph domains. In: Proceedings of the 2005 IEEE International Joint Conference on Neural Networks, vol. 2, pp. 729–734. IEEE (2005)

    Google Scholar 

  16. Cheng, H., Zhou, J.T., Tay, W.P., Wen, B.: Attentive graph neural networks for few-shot learning. arXiv preprint arXiv:2007.06878 (2020)

  17. Nebli, A., Kaplan, U.A., Rekik, I.: Deep EvoGraphNet architecture for time-dependent brain graph data synthesis from a single timepoint. In: Rekik, I., Adeli, E., Park, S.H., Valdés Hernández, M.C. (eds.) PRIME 2020. LNCS, vol. 12329, pp. 144–155. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59354-4_14

    Chapter  Google Scholar 

  18. Bi, X., Liu, Z., He, Y., Zhao, X., Sun, Y., Liu, H.: GNEA: a graph neural network with ELM aggregator for brain network classification. Complexity 2020 (2020)

    Google Scholar 

  19. Rekik, I., Li, G., Lin, W., Shen, D.: Estimation of brain network atlases using diffusive-shrinking graphs: application to developing brains. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 385–397. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_31

    Chapter  Google Scholar 

  20. Dhifallah, S., Rekik, I., Initiative, A.D.N., et al.: Estimation of connectional brain templates using selective multi-view network normalization. Med. Image Anal. 59, 101567 (2020)

    Google Scholar 

  21. Gurbuz, M.B., Rekik, I.: Deep graph normalizer: a geometric deep learning approach for estimating connectional brain templates. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12267, pp. 155–165. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_16

    Chapter  Google Scholar 

  22. Brett, M., Christoff, K., Cusack, R., Lancaster, J., et al.: Using the Talairach atlas with the MNI template. Neuroimage 13, 85–85 (2001)

    Article  Google Scholar 

  23. Gilmore, J.H., et al.: Longitudinal development of cortical and subcortical gray matter from birth to 2 years. Cereb. Cortex 22, 2478–2485 (2012)

    Article  Google Scholar 

  24. Mills, K.L., et al.: Structural brain development between childhood and adulthood: convergence across four longitudinal samples. Neuroimage 141, 273–281 (2016)

    Article  Google Scholar 

  25. Meng, Y., Li, G., Lin, W., Gilmore, J.H., Shen, D.: Spatial distribution and longitudinal development of deep cortical sulcal landmarks in infants. Neuroimage 100, 206–218 (2014)

    Article  Google Scholar 

  26. Lohmeyer, J.L., Alpinar-Sencan, Z., Schicktanz, S.: Attitudes towards prediction and early diagnosis of late-onset dementia: a comparison of tested persons and family caregivers. Aging Mental Health 25, 1–12 (2020)

    Google Scholar 

  27. Ezzine, B.E., Rekik, I.: Learning-guided infinite network atlas selection for predicting longitudinal brain network evolution from a single observation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 796–805. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_88

    Chapter  Google Scholar 

  28. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22, 79–86 (1951)

    Article  MathSciNet  Google Scholar 

  29. Errica, F., Podda, M., Bacciu, D., Micheli, A.: A fair comparison of graph neural networks for graph classification. arXiv preprint arXiv:1912.09893 (2019)

  30. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  31. Marcus, D.S., Fotenos, A.F., Csernansky, J.G., Morris, J.C., Buckner, R.L.: Open access series of imaging studies: longitudinal MRI data in nondemented and demented older adults. J. Cogn. Neurosci. 22, 2677–2684 (2010)

    Article  Google Scholar 

  32. Loshchilov, I., Hutter, F.: Fixing weight decay regularization in adam (2018)

    Google Scholar 

  33. Mueller, S.G., et al.: The Alzheimer’s disease neuroimaging initiative. Neuroimaging Clin. 15, 869–877 (2005)

    Article  Google Scholar 

  34. Goryawala, M., Zhou, Q., Barker, W., Loewenstein, D.A., Duara, R., Adjouadi, M.: Inclusion of neuropsychological scores in atrophy models improves diagnostic classification of Alzheimer’s disease and mild cognitive impairment. Comput. Intell. Neurosci. 2015 (2015)

    Google Scholar 

  35. Mahjoub, I., Mahjoub, M.A., Rekik, I.: Brain multiplexes reveal morphological connectional biomarkers fingerprinting late brain dementia states. Sci. Rep. 8, 1–14 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by generous grants from the European H2020 Marie Sklodowska-Curie action (grant no. 101003403, http://basira-lab.com/normnets/) to I.R. and the Scientific and Technological Research Council of Turkey to I.R. under the TUBITAK 2232 Fellowship for Outstanding Researchers (no. 118C288, http://basira-lab.com/reprime/). However, all scientific contributions made in this project are owned and approved solely by the authors. M.A.G is supported by the same TUBITAK 2232 Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Islem Rekik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guvercin, U., Gharsallaoui, M.A., Rekik, I. (2021). One Representative-Shot Learning Using a Population-Driven Template with Application to Brain Connectivity Classification and Evolution Prediction. In: Rekik, I., Adeli, E., Park, S.H., Schnabel, J. (eds) Predictive Intelligence in Medicine. PRIME 2021. Lecture Notes in Computer Science(), vol 12928. Springer, Cham. https://doi.org/10.1007/978-3-030-87602-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87602-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87601-2

  • Online ISBN: 978-3-030-87602-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics