Skip to main content

Predicting Brain Multigraph Population from a Single Graph Template for Boosting One-Shot Classification

  • Conference paper
  • First Online:
Predictive Intelligence in Medicine (PRIME 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13564))

Included in the following conference series:

  • 561 Accesses

Abstract

A central challenge in training one-shot learning models is the limited representativeness of the available shots of the data space. Particularly in the field of network neuroscience where the brain is represented as a graph, such models may lead to low performance when classifying brain states (e.g., typical vs. autistic). To cope with this, most of the existing works involve a data augmentation step to increase the size of the training set, its diversity and representativeness. Though effective, such augmentation methods are limited to generating samples with the same size as the input shots (e.g., generating brain connectivity matrices from a single shot matrix). To the best of our knowledge, the problem of generating brain multigraphs capturing multiple types of connectivity between pairs of nodes (i.e., anatomical regions) from a single brain graph remains unsolved. In this paper, we unprecedentedly propose a hybrid graph neural network (GNN) architecture, namely Multigraph Generator Network or briefly MultigraphGNet, comprising two subnetworks: (1) a many-to-one GNN which integrates an input population of brain multigraphs into a single template graph, namely a connectional brain temple (CBT), and (2) a reverse one-to-many U-Net network which takes the learned CBT in each training step and outputs the reconstructed input multigraph population. Both networks are trained in an end-to-end way using a cyclic loss. Experimental results demonstrate that our MultigraphGNet boosts the performance of an independent classifier when trained on the augmented brain multigraphs in comparison with training on a single CBT from each class. We hope that our framework can shed some light on the future research of multigraph augmentation from a single graph. Our MultigraphGNet source code is available at https://github.com/basiralab/MultigraphGNet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://preprocessed-connectomes-project.org/abide/.

References

  1. van den Heuvel, M.P., Sporns, O.: A cross-disorder connectome landscape of brain dysconnectivity. Nat. Rev. Neurosci. 20, 435–446 (2019)

    Article  Google Scholar 

  2. Bessadok, A., Mahjoub, M.A., Rekik, I.: Brain graph synthesis by dual adversarial domain alignment and target graph prediction from a source graph. Med. Image Anal. 68, 101902 (2021)

    Article  Google Scholar 

  3. Tekin, A., Nebli, A., Rekik, I.: Recurrent brain graph mapper for predicting time-dependent brain graph evaluation trajectory. In: Albarqouni, S., et al. (eds.) DART/FAIR -2021. LNCS, vol. 12968, pp. 180–190. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87722-4_17

    Chapter  Google Scholar 

  4. Gürler, Z., Nebli, A., Rekik, I.: Foreseeing brain graph evolution over time using deep adversarial network normalizer. In: Rekik, I., Adeli, E., Park, S.H., Valdés Hernández, M.C. (eds.) PRIME 2020. LNCS, vol. 12329, pp. 111–122. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59354-4_11

    Chapter  Google Scholar 

  5. Isallari, M., Rekik, I.: Brain graph super-resolution using adversarial graph neural network with application to functional brain connectivity. Med. Image Anal. 71, 102084 (2021)

    Article  Google Scholar 

  6. Mhiri, I., Nebli, A., Mahjoub, M.A., Rekik, I.: Non-isomorphic inter-modality graph alignment and synthesis for holistic brain mapping. In: Feragen, A., Sommer, S., Schnabel, J., Nielsen, M. (eds.) IPMI 2021. LNCS, vol. 12729, pp. 203–215. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78191-0_16

    Chapter  Google Scholar 

  7. Oh, K.H., et al.: Diagnosis of schizophrenia with functional connectome data: a graph-based convolutional neural network approach. BMC Neurosci. 23, 1–11 (2022)

    Article  Google Scholar 

  8. Nebli, A., Gharsallaoui, M.A., Gürler, Z., Rekik, I., Initiative, A.D.N., et al.: Quantifying the reproducibility of graph neural networks using multigraph data representation. Neural Netw. 148, 254–265 (2022)

    Article  Google Scholar 

  9. Kadam, S., Vaidya, V.: Review and analysis of zero, one and few shot learning approaches. In: Abraham, A., Cherukuri, A.K., Melin, P., Gandhi, N. (eds.) ISDA 2018 2018. AISC, vol. 940, pp. 100–112. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-16657-1_10

    Chapter  Google Scholar 

  10. Sun, Q., Liu, Y., Chua, T.S., Schiele, B.: Meta-transfer learning for few-shot learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, vol. 403–412 (2019)

    Google Scholar 

  11. Li, X., Sun, Z., Xue, J.H., Ma, Z.: A concise review of recent few-shot meta-learning methods. arXiv preprint arXiv:2005.10953 (2020)

  12. Guvercin, U., Gharsallaoui, M.A., Rekik, I.: One representative-shot learning using a population-driven template with application to brain connectivity classification and evolution prediction. In: Rekik, I., Adeli, E., Park, S.H., Schnabel, J. (eds.) PRIME 2021. LNCS, vol. 12928, pp. 25–36. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87602-9_3

    Chapter  Google Scholar 

  13. Kotia, J., Kotwal, A., Bharti, R., Mangrulkar, R.: Few shot learning for medical imaging. In: Das, S.K., Das, S.P., Dey, N., Hassanien, A.-E. (eds.) Machine Learning Algorithms for Industrial Applications. SCI, vol. 907, pp. 107–132. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-50641-4_7

    Chapter  Google Scholar 

  14. Zhao, A., Balakrishnan, G., Durand, F., Guttag, J.V., Dalca, A.V.: Data augmentation using learned transformations for one-shot medical image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8543–8553 (2019)

    Google Scholar 

  15. Li, X., Yu, L., Jin, Y., Fu, C.-W., Xing, L., Heng, P.-A.: Difficulty-aware meta-learning for rare disease diagnosis. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 357–366. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_35

    Chapter  Google Scholar 

  16. Chaitanya, K., et al.: Semi-supervised task-driven data augmentation for medical image segmentation. Med. Image Anal. 68, 101934 (2021)

    Article  Google Scholar 

  17. Chaari, N., Akdag, H.C., Rekik, I.: Comparative survey of multigraph integration methods for holistic brain connectivity mapping. arXiv preprint arXiv:2204.05110 (2022)

  18. Gurbuz, M.B., Rekik, I.: Deep graph normalizer: a geometric deep learning approach for estimating connectional brain templates. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12267, pp. 155–165. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_16

    Chapter  Google Scholar 

  19. Simonovsky, M., Komodakis, N.: Dynamic edge-conditioned filters in convolutional neural networks on graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 3693–3702 (2017)

    Google Scholar 

  20. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  21. Fischl, B., et al.: Automatically parcellating the human cerebral cortex. Cereb. Cortex 14, 11–22 (2004)

    Article  Google Scholar 

  22. Fischl, B.: Freesurfer. Neuroimage 62, 774–781 (2012)

    Article  Google Scholar 

  23. Fey, M., Lenssen, J.E.: Fast graph representation learning with pytorch geometric. arXiv preprint arXiv:1903.02428 (2019)

  24. Loshchilov, I., Hutter, F.: Fixing weight decay regularization in adam (2018)

    Google Scholar 

  25. Gao, H., Ji, S.: Graph u-nets (2019)

    Google Scholar 

Download references

Acknowledgements

This work was funded by generous grants from the European H2020 Marie Sklodowska-Curie action (grant no. 101003403, http://basira-lab.com/normnets/) to I.R. and the Scientific and Technological Research Council of Turkey to I.R. under the TUBITAK 2232 Fellowship for Outstanding Researchers (no. 118C288, http://basira-lab.com/reprime/). However, all scientific contributions made in this project are owned and approved solely by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Islem Rekik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pala, F., Rekik, I. (2022). Predicting Brain Multigraph Population from a Single Graph Template for Boosting One-Shot Classification. In: Rekik, I., Adeli, E., Park, S.H., Cintas, C. (eds) Predictive Intelligence in Medicine. PRIME 2022. Lecture Notes in Computer Science, vol 13564. Springer, Cham. https://doi.org/10.1007/978-3-031-16919-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16919-9_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16918-2

  • Online ISBN: 978-3-031-16919-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics