Skip to main content

Abstract

Cyanobacteria, one of the least investigated microbes, may synthesize and generate a significant number of antimicribial secondary metabolites. As they are ubiquitous in distribution and present in all possible habitats, cyanobacteria have developed several mechanisms to survive in various extreme habitats. Also, they are compatible biocatalysts, and they can be used in the field of “white biotechnology” for increasing the sustainable manufacture of nutraceutical and pharmaceutical compounds as novel drugs and also as clean energy sources such as biodiesel and hydrogen. Cyanobacteria are known as a mother of wide categories of secondary metabolites with different biological activities, i.e., antibacterial, antitumoral, antiviral, antifungal, antialgal, antimalarial, anti-inflammatory, and anticancer properties. In this chapter, we try to uncover the application of various metabolites like phytols, free fatty acids, exopolysaccharides, phenolics, terpenoids, phytoene, sterols, carotenoids, MAAs, scytonemin, phytohormones, cyanotoxins, biocides (algicides, fungicides, bactericides, and insecticides), etc. and its various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abarzua S, Jakubowski S, Eckert S, Fuchs P (1999) Biotechnological investigation for the prevention of biofouling II. Blue-green algae as potential producers of biogenic agents for the growth inhibition of microfouling organisms. Bot Mar 42:459–465

    Article  CAS  Google Scholar 

  • Andrianasolo E, Gross EH, Goeger D, Musafija G, McPhail M, Leal K (2005) Isolation of swinholide A and related glycosylated derivatives from two field collection of marine cyanobacteria. Org Lett 7:1375–1378

    Article  CAS  PubMed  Google Scholar 

  • Asthana RK, Srivastava A, Kayastha AM, Nath G, Singh SP (2006) Antibacterial potential of γ-linolenic acid from Fischerella sp. colonizing neem bark. J Appl Phycol 22:443–448

    CAS  Google Scholar 

  • Aziz M, Hashem MA (2003) Role of cyanobacteria in improving fertility of saline soil. Pak J Biol Sci 6:1751–1752

    Article  Google Scholar 

  • Bar-Yosef Y, Sukenik A, Hadas O (2010) Enslavement in the water body by toxic Aphanizomenon ovalisporum, inducing alkaline phosphatase in phytoplanktons. Curr Biol 20:1557–1561

    Article  CAS  PubMed  Google Scholar 

  • Becher PG, Beuchat J, Gademann K, Juttner F (2005) Nostocarboline: isolation and synthesis of a new cholinesterase inhibitor from Nostoc 78-12A. J Nat Prod 68:1793–1795

    Article  CAS  PubMed  Google Scholar 

  • Berg G (2009) Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    Article  CAS  PubMed  Google Scholar 

  • Berry JP, Gantar M, Perez MH, Berry G, Noriega FG (2008) Cyanobacterial toxins as allelochemicals with potential applications as algaecides, herbicides and insecticides. Mar Drugs 6:117–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biondi N, Piccardi R, Margheri MC, Rodolfi L, Smith GD, Tredici MR (2004) Evaluation of Nostoc strain ATCC 53789 as a potential source of natural pesticides. Appl Environ Biotechnol 70:3313–3320

    CAS  Google Scholar 

  • Bokesch HR, O'Keefe BR, McKee TC, Pannell LK, Patterson GM, Gardella RS, Sowder RC, Turpin J, Watson K, Buckheit RW, Boyd MR (2003) A potent novel anti-HIV protein from the cultured cyanobacterium Scytonema varium. Biochemistry 42:2578–2584

    Article  CAS  PubMed  Google Scholar 

  • Bonjouklian R, Smitka TA, Doolin LE, Molloy RM, Debono M, Shaffer SA (1991) Tjipanazoles, new antifungal agents from the blue–green alga Tolypothrix tjipanasensis. Tetrahedron 47:7739–7750

    Article  CAS  Google Scholar 

  • Boyd MR (1999) Papuamides A-D, HIV-inhibitory and cytotoxic depsipeptides form the sponges Theonella mirabilis and Theonella swinhoei collected in Papua New Guinea. J Am Chem Soc 121:5899–5909

    Article  Google Scholar 

  • Bui TN, Jansen R, Pham TL, Mundt S (2007) Carbamidocyclophanes A-E, chlorinated paracyclophanes with cytotoxic and antibiotic activity from the Vietnamese cyanobacterium. Nostoc sp. J Nat Prod 70:499–503

    Article  CAS  PubMed  Google Scholar 

  • Burja AM, Banaigs B, Abou-Mansour E, Burgess JG, Wright PC (2001) Marine cyanobacteria—a prolific source of natural products. Tetrahedron 57:9347–9377

    Article  CAS  Google Scholar 

  • Chauhan A, Chauhan G, Gupta PC, Goyal P, Kaushik P (2010) In vitro antibacterial evaluation of Anabaena sp. against several clinically significant microflora and HPTL Canalysis of its active crude extracts. Indian J Pharmacol 42:105–107

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi H, Engene N, Smith JE, Preskitt LB, Gerwick WH (2010) Crossbyanols A-D, toxic brominated polyphenyl ethers from the Hawaiian bloom-forming Cyanobacterium Leptolyngbya crossbyana. J Nat Prod 73:517–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark BR (2008) Natural products chemistry and taxonomy of the marine cyanobacterium Blennothrix cantharidosmum. J Nat Prod 71:1530–1537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dahms HU, Xu Y, Pfeiffer C (2006) Anti fouling potential of cyanobacteria: a mini-review. Biofouling 22:317–327

    Article  CAS  PubMed  Google Scholar 

  • Dhar DW, Prasanna R, Singh BV (2007) Comparative performance of three carrier based blue green algal biofertilizers for sustainable rice cultivation. J Sustain Agric 30(2):41–50

    Article  Google Scholar 

  • Doan NT, Rickards RW, Rothschild JM, Smith GD (2000) Allelopathic actions of the alkaloid 12-epi-Hapalindole E Isonitrile and Calothrixin A from cyanobacteria of the Genera Fischerella and Calothrix. J Appl Phycol 12:409–416

    Article  CAS  Google Scholar 

  • Edwards C, Graham D, Fowler N, Lawton LA (2008) Biodegradation of microcystins and nodularin in freshwaters. Chemosphere 73:1315–1321

    Article  CAS  PubMed  Google Scholar 

  • Gademan K, Portman C (2008) Secondary metabolites from cyanobacteria: complex structures and powerful bioactivities. Curr Org Chem 12:326–341

    Article  Google Scholar 

  • Ganter M, Berry JP, Thomas S, Wang M, Perez R, Rein K (2008) Allelopathic activity among cyanobacteria and microalgae isolated from Florida freshwater habitats. FEMS Microbiol Lett 64:55–64

    Article  Google Scholar 

  • Gerwick WH, Coates RC, Engene N, Gerwick LG, Grindberg R, Jones A, Sorrels C (2008) Giant marine cyanobacteria produce exciting potential pharmaceuticals. Microbe 3:277–284

    Google Scholar 

  • Gleason FK, Baxa CA (1986) Activity of the natural algicide, cyanobacterin, on eukaryotic microorganisms. FEMS Microbiol Lett 33:85–88

    Article  CAS  Google Scholar 

  • Goldin E (2012) Biologically active microalgae and cyanobacteria in nature and marine biotechnology. Turk J Fish Aquat Sci 12:423–442

    Article  Google Scholar 

  • Gunasekera SP, Miller MW, Kwan JC, Luesch H, Paul VJ (2009) Molassamide, a depsipeptide serine protease inhibitor from the marine cyanobacterium Dichothrix utahensis. J Nat Prod 73:459–462

    Article  Google Scholar 

  • Gupta V, Prasanna R, Srivastava AK, Sharma J (2012) Purification and characterization of a novel antifungal endo-type chitosanase from Anabaena fertilissima. Ann Microbiol 62:1089–1092

    Article  CAS  Google Scholar 

  • Gustafson KR, Cardellina JH, Fuller RW, Weislow OS, Kiser RF, Snader KM (1989) AIDS-antiviral sulfolipids from cyanobacteria (blue-green algae). J Natl Cancer Inst 81:1254–1258

    Article  CAS  PubMed  Google Scholar 

  • Haggog WM, Abouziena HF, AbdEM MSA, Hoballa E, Islam AE (2015) Application of blue-green algae for integrated disease management of barley against foliar pathogens. J Chem Pharm Res 7(10):266–272

    Google Scholar 

  • Harrigan GG, Yoshida WY, Moore RE (1998) Isolation, structure determination, and biological activity of dolastatin 12 and lyngbyastatin 1 from Lyngbya majuscula/Schizothrix calcicola cyanobacterial assemblages. J Nat Prod 61:1221–1225

    Article  CAS  PubMed  Google Scholar 

  • Hartmann T (2007) From waste products to ecochemicals: fifty years research of plant secondary metabolism. Phytochemistry 68:2831–2846

    Article  CAS  PubMed  Google Scholar 

  • Hayashi K, Hayashi T, Kojima IA (1996) Natural sulfated polysaccharide, calcium spirulan, isolated from Spirulina platensis: in vitro and ex vivo evaluation of anti-herpes simplex virus and anti-human immunodeficiency virus activities. AIDS Res Hum Retrovir 12:1463–1471

    Article  CAS  PubMed  Google Scholar 

  • Healey FP (1982) Phosphte. In: Carr NG, Whitton BA (eds) The biology of the cyanobacteria. Blackwell, Oxford, p 105

    Google Scholar 

  • Hirata K, Nakagami H, Takashina J, Mahmud T, Kobayashi M, In Y, Ishida T, Miyamoto K (1996) Novel violet pigment, nostocine A, an extracellular metabolite from cyanobacterium Nostoc spongiaeforme. Heterocycles 7(43):1513–1519

    Google Scholar 

  • Hoffmann D, Hevel JM, Moore RE, Moore BS (2003) Sequence analysis and biochemical characterization of the nostopeptolide A biosynthetic gene cluster from Nostoc sp. GSV224. Gene 311:171–180

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki A, Ohno O, Sumimoto S, Ogawa H, Nguyen KA, Suenaga K (2015) Jahanyne, an apoptosis-inducing lipopeptide from the marine cyanobacterium Lyngbya sp. Org Lett 17:652–655

    Article  CAS  PubMed  Google Scholar 

  • Jaiswal P, Singh PK, Prasanna R (2008) Cyanobacterial bioactive molecules—an overview of their toxic properties. Can J Microbiol 54(9):701–717

    Article  CAS  PubMed  Google Scholar 

  • Jang MH, Ha K, Takamura N (2007) Reciprocal allelopathic responses between toxic cyanobacteria (Microcystis aeruginosa) and duckweed (Lemna japonica). Toxicon 49:727–733

    Article  CAS  PubMed  Google Scholar 

  • Jones AC, Gu LC, Sorrels CM, Sherman DH, Gerwick WH (2009) New tricks from ancient algae: natural products biosynthesis in marine cyanobacteria. Curr Opin Chem Biol 13:216–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juttner F, Todorova AK, Walch N, von Philipsborn W (2001) Nostocyclamide M: a cyanobacterial cyclic peptide with allelopathic activity from Nostoc 31. Phytochemistry 57:613–619

    Article  CAS  PubMed  Google Scholar 

  • Kajiyama SI, Kanzaki H, Kawazu K, Kobayashi A (1998) Nostofungicidine, an antifungal lipopeptide from the field grown terrestrial blue-green alga Nostoc commune. Tetrahedron Lett 39:3737–3740

    Article  CAS  Google Scholar 

  • Katircioglu H, Beyatli Y, Aslim B, Yüksekdag Z, Atici T (2006) Screening for antimicrobial agent production of some microalgae in freshwater. Int J Microbiol 2

    Google Scholar 

  • Kehr JC, Picchi DG, Dittmann E (2011) Natural product biosyntheses in cyanobacteria: a treasure trove of unique enzymes. Beilstein J Org Chem 7:1622–1635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kodani S, Ishida K, Murakami M (1998) Aeruginosin 103-A, a thrombin inhibitor from the cyanobacterium Microcystis viridis. J Nat Prod 61:1046–1048

    Article  CAS  PubMed  Google Scholar 

  • Koehn FE, Longley RE, Reed JK (1992) Microcolins A and B, new immunosuppressive peptides from the blue-green alga Lyngbya majuscula. J Nat Prod 55:613–619

    Article  CAS  PubMed  Google Scholar 

  • Koníčková R, Vaňková K, Vaníková J, Váňová K, Muchová L (2014) Anti-cancer effects of blue green alga Spirulina platensis, a natural source of bilirubin-like tetrapyrrolic compounds. Ann Hepatol 13:273–283

    Article  PubMed  Google Scholar 

  • Kulik MM (1995) The potential for using cyanobacteria (blue green algae) and algae in the cyanobacterial control of plant pathogenic bacteria and fungi. Eur J Plant Pathol 101:585–599

    Article  Google Scholar 

  • Kumar J, Singh D, Tyagi MB, Kumar A (2019) Cyanobacteria: applications in biotechnology. https://doi.org/10.1016/B978-0-12-814667-5.00016-7

  • Larsen LK, Moore RE, Patterson GM (1994) Beta-carbolines from the blue–green alga Dichothrix baueriana. J Nat Prod 57:419–421

    Article  CAS  PubMed  Google Scholar 

  • Lee JB, Hayashi K, Hirata M, Kuroda E, Suzuki E, Kubo Y, Hayashi T (2006) Antiviral sulfated polysaccharide from Navicula directa, a diatom collected from deep-sea water in Toyama Bay. Biol Pharm Bull 29:2135–2139

    Article  CAS  PubMed  Google Scholar 

  • Li WI, Berman FW, Okino T, Yokokawa F, Shioiri T, Gerwick WH, Murray TF (2001) Antillatoxin is a marine cyanobacterial toxin that potently activates voltage-gated sodium channels. Proc Natl Acad Sci USA 98:7599–7604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manjunath M, Prasanna R, Lata PD, Singh R, Kumar A, Jaggi S, Kaushik BD (2010) Bio control potential of cyanobacterial metabolites against damping off disease caused by Pythium aphanidermatum in solanaceous vegetables. Arch Phytopathol Plant Prot 43:666–677

    Article  Google Scholar 

  • Mason CP, Edwards KR, Carlson RE, Pignatello J, Gleason FK, Wood JM (1982) Isolation of chlorine-containing antibiotic from the freshwater cyanobacterium Scytonema hofmanni. Science 215:400–402

    Article  CAS  PubMed  Google Scholar 

  • McCarty MF (2015) Hypothesis: Spirulina may slow the growth and spread of ovarian cancer by interfering with growth factor activity of lysophosphatidic acid. J Mol Genet Med 9:184

    Article  Google Scholar 

  • Moore RE, Banarjee V, Bornemann V, Caplyn FR, Chen JL, Corley DJ, Larsen LK, Moore BS, Patterson GML (1989) Novel cytotoxins and fungicides from blue-green algae and marine animals possessing algal symbionts. Pure Appl Chem 61:521–524

    Article  CAS  Google Scholar 

  • Morliere P, Maziere JC, Santus R (1998) Tolyporphin: a natural product from cyanobacteria with potent photosensitizing activity against tumor cells in vitro and in vivo. Cancer Res 58:3571–3578

    CAS  PubMed  Google Scholar 

  • Mukund S, Sivasubramanian V (2014) Anticancer activity of Oscillatoria terebriformis cyanobacteria in human lung cancer cell line a:549. Int J Appl Biol Pharm 5:2

    Google Scholar 

  • Mundt S, Kreitlow S, Jansen R (2003) Fatty acids with antibacterial activity from the cyanobacterium Oscillatoria redekei HUB051. J Appl Phycol 15:263–267

    Article  CAS  Google Scholar 

  • Muniaraj S, Subramanian V, Srinivasan P, Palani M (2018) In silico and in vitro studies on Lyngbya majuscula using against lung cancer cell line (A549). Pharmacogn J 10

    Google Scholar 

  • Nagarajan M, Maruthanayagam V, Sundararaman M (2012) A review of pharmacological and toxicological potentials of marine cyanobacterial metabolites. J Appl Toxicol 32:153–185

    Article  CAS  PubMed  Google Scholar 

  • Namikoshi M, Rinehart KL (1996) Bioactive compounds produced by cyanobacteria. J Ind Microbiol 17:373–384

    CAS  Google Scholar 

  • Natarajan C, Prasanna R, Gupta V, Dureja P, Nain L (2012) Dissecting the fungicidal activity of Calothrix elenkinii using chemical analyses and microscopy. Appl Biochem Microbiol 48:51–57

    Article  CAS  Google Scholar 

  • Oku N, Yonejima K, Sugawa T, Igarashi Y (2014) Identification of the n-1 fatty acid as an antibacterial constituent from the edible freshwater cyanobacterium Nostoc verrucosum. Biosci Biotechnol Biochem 78(7):1147–1150

    Article  CAS  PubMed  Google Scholar 

  • Ouellette AJA, Wilhelm SW (2003) Toxic cyanobacteria: the evolving molecular toolbox. Front Ecol Environ 1:359–366

    Article  Google Scholar 

  • Paerl HW, Fulton RS III, Moisander PH, Dyble J (2001) Harmful freshwater algal blooms, with an emphasis on cyanobacteria. Sci World 1:76–113

    CAS  Google Scholar 

  • Panda D, Ananthnarayan V, Larson G, Shi C, Jordan MA, Wilson L (2000) Interaction of the antitumor compound cryptophycin-52 with tubulin. Biochemistry 39:14121–14127

    Article  CAS  PubMed  Google Scholar 

  • Papke U, Gross EM, Francke W (1997) Isolation, identification and determination of the absolute configuration of fischerellin B. A new algicide from the freshwater cyanobacterium Fischerella muscicola (Thuret.). Tetrahedron Lett 38:379–382

    Article  CAS  Google Scholar 

  • Patterson GM, Larsen LK, Moore RE (1994) Beta-carbolines from the blue–green alga Dichothrix baueriana. J Nat Prod 57:419–421

    Article  PubMed  Google Scholar 

  • Prasanna R, Chaudhary V, Gupta V, Babu S, Kumar A, Singh R, Shivay YS, Nain L (2013) Cyanobacteria mediated plant growth promotion and bioprotection against Fusarium wilt in tomato. Eur J Plant Pathol 136:337–353

    Article  Google Scholar 

  • Rastogi RP, Sinha RP (2009) Biotechnological and industrial significance of cyanobacterial secondary metabolites. Biotechnol Adv 27:521–539

    Article  CAS  PubMed  Google Scholar 

  • Reinert R, Donald EL, Rosi FX, Watal C, Dowzicky M (2007) Antimicrobial susceptibility among organisms from the Asia/Pacific rim, Europe and Latin and North America collected as part of TEST and the in vitro activity of tigecycline. J Antimicrob Chemother 60:1018–1029

    Article  CAS  PubMed  Google Scholar 

  • Reshef V, Mizrachi E, Maretzki T, Silberstein C, Loya S, Hizi A (1997) New acetylated known glycolipids from cyanobacteria with potential to inhibit the reverse transcriptase of HIV-1. J Nat Prod 60:1251–1260

    Article  CAS  PubMed  Google Scholar 

  • Rickards RW, Rothschild JM, Willis AC et al (1999) Calothrixins-a and B, novel pentacyclic metabolites from Calothrix sp. cyanobacteria with potent activity against malaria parasites and human cancer cells. Tetrahedron 55:13513–13520

    Article  CAS  Google Scholar 

  • Sangthongpitag K, Delaney SF, Rogers PL (1996) Evaluation of four fresh-water unicellular cyanobacteria as potential hosts for mosquitocidal toxins. Biotechnol Lett 18:175–180

    Article  CAS  Google Scholar 

  • Saxena S, Pandey AK (2001) Microbial metabolites as ecofriendly agrochemicals for the next millennium. Appl Microbiol Biotechnol 55:395–403

    Article  CAS  PubMed  Google Scholar 

  • Sharma NK, Tiwari SP, Tripathi K, Rai AK (2011) Sustainability and cyanobacteria (blue-green algae): facts and challenges. J Appl Phycol 23(6):1059–1081

    Article  CAS  Google Scholar 

  • Shishido TK, Humisto A, Jokela J, Liu L, Wahlsten M, Tamrakar A, Fewer DP, Permi P, Andreote APD, Fiore MF (2015) Antifungal compounds from cyanobacteria. Mar Drugs 13:2124–2140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh A, Shukla N, Kabadwal BC, Tewari AK, Kumar J (2018) Review on plant-Trichoderma-pathogen interaction. Int J Curr Microbiol Appl Sci 7:2382–2397

    Article  Google Scholar 

  • Singh BK (2009) Organophosphorus-degrading bacteria: ecology and industrial applications. Nat Rev Microbiol 7:156–164

    Article  CAS  PubMed  Google Scholar 

  • Singh T, Basu P, Singh TA, Boudh S, Shukla P (2020) Cyanobacteria as source of novel antimicrobials: a boon to mankind. Microorganisms Sustain Environ Health. https://doi.org/10.1016/B978-0-12-819001-2.00011-5

  • Soltani N, Khavari-Nejad RA, Tabatabaei Yazdi M, Shokravi S, Fernandez-Valiente E (2005) Screening of soil cyanobacteria for antifungal and antibacterial activity. Pharm Biol 43:455–459

    Article  Google Scholar 

  • Stevenson CS, Capper EA, Roshak AK, Marquez B, Eichman C, Jackson JR (2002) The identification and characterization of the marine natural product scytonemin as a novel antiproliferative pharmacophore. J Pharmacol Exp Ther 303:858–866

    Article  CAS  PubMed  Google Scholar 

  • Sukenik A, Eskhol R, Livne A, Hadas O, Rom M (2002) Inhibition of growth and photosynthesis of the dinoflagellate Peridinium gatunense by Microcystis sp. (cyanobacteria): a novel Allelopathic mechanism. Limnol Oceanogr 47(6):1656–1663

    Article  Google Scholar 

  • Syed S, Arasu A, Ponnuswamy I (2015) The uses of Chlorella vulgaris as antimicrobial agent and as a diet: the presence of bio-active compounds which caters the vitamins, minerals in general. Int J Biosci Biotechnol 7:185–190

    Google Scholar 

  • Tyagi R, Kaushik DB, Rastogi J (2014) Antimicrobial activity of some cyanobacteria. Mic Div Biot Food Sec:463–470

    Google Scholar 

  • Vijayakumar S, Menakha M (2015) Pharmaceutical applications of cyanobacteria. J Acute Med 5:15–23

    Article  Google Scholar 

  • Volk RB (2005) Screening of microalgal culture media for the presence of algicidal compounds and isolation and identification of two bioactive metabolites, excreted by the cyanobacteria Nostoc insulare and Nodularia harveyana. J Appl Phycol 17(4):339–347

    Article  CAS  Google Scholar 

  • Volk RB, Furkert FH (2006) Antialgal, antibacterial and antifungal activity of two metabolites produced and excreted by cyanobacteria during growth. Microbiol Res 161:180–186

    Article  CAS  PubMed  Google Scholar 

  • Welker M, Dohren HV (2006) Cyanobacterial peptides-nature’s own combinatorial biosynthesis. FEMS Microbiol Rev 30:530–563

    Article  CAS  PubMed  Google Scholar 

  • Wiederhold NP (2017) Antifungal resistance: current trends and future strategies to combat. Infect Drug Resist 10:249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wink M (1988) Plant breeding: importance of plant secondary metabolites for protection against pathogens and herbivores. Theor Appl Genet 75:225–233

    Article  CAS  Google Scholar 

  • Wu JT, Kuo-Huang LL, Lee J (1998) Algicidal effect of Peridinium bipes on Microcystis aeruginosa. Curr Microbiol 37:257–261

    Article  CAS  PubMed  Google Scholar 

  • Xiong C, O'Keefe BR, Byrd RA, McMohan JB (2006) Potent anti-HIV activity of scytovirin domain 1 peptide. Peptides 27:1668–1675

    Article  CAS  PubMed  Google Scholar 

  • Yadav S, Rai R, Shrivastava AK, Singh PK, Sen S, Chatterjee A, Rai S, Singh S, Rai LC (2018) Cyanobacterial biodiversity and biotechnology: a promising approach for crop improvement. Crop Improv Through Microbial Biotechnol:195–219

    Google Scholar 

  • Yanni YG, Abdallah FE (1990) Role of algalization in rice growth, yield and incidence of infestation with the stem borer Chilo Agamemnon Bles and the leaf miner Hydrellia prosternalis deeming in the Nile Delta. World J Microbiol Biotechnol 6:383–389

    Article  CAS  PubMed  Google Scholar 

  • Yingying S, Changhai W, Jing C (2008) Growth inhibition of the eight species of microalgae by growth inhibitor from the culture of Isochrysis galbana and its isolation and identification. J Appl Phycol 20:315–321

    Article  Google Scholar 

  • Zainuddin EN, Mentel R, Wray V, Jansen R, Nimtz M, LalkM (2007) Cyclic depsipeptides, ichthyopeptins a and B, from Microcystis ichthyoblabe. J Nat Prod 70:1084–1088

    Article  CAS  PubMed  Google Scholar 

  • Zulpa G, Zaccaro MC, Boccazzi F, Parada JL, Storni M (2003) Bioactivity of intra and extracellular substances from cyanobacteria and lactic acid bacteria on wood blue stain fungi. Biol Control 27:345–348

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Head of the Department of Botany, Banaras Hindu University, for providing infrastructure facility and the CSIR-UGC, New Delhi for providing financial support in the form of fellowship.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yadav, P., Singh, R.P., Patel, A.K., Pandey, K.D., Gupta, R.K. (2022). Cyanobacteria as a Biocontrol Agent. In: Kumar, A. (eds) Microbial Biocontrol: Food Security and Post Harvest Management. Springer, Cham. https://doi.org/10.1007/978-3-030-87289-2_6

Download citation

Publish with us

Policies and ethics