Skip to main content

Defect Prediction on Production Line

  • Conference paper
  • First Online:
Advances in Computational Intelligence Systems (UKCI 2021)

Abstract

Quality control has long been one of the most challenging fields of manufacturing. The development of advanced sensors and the easier collection of high amounts of data designate the machine learning techniques as a timely natural step forward to leverage quality decision support and manufacturing challenges. This paper introduces an original dataset provided by the automotive supplier company VALEO, coming from a production line, and hosted by the École Normale Supérieure (ENS) Data Challenge to predict defects using non-anonymised features, without access to final test results, to validate the part status (defective or not). We propose in this paper a complete workflow from data exploration to the modelling phase while addressing at each stage challenges and techniques to solve them, as a benchmark reference. The proposed workflow is validated in series of experiments that demonstrate the benefits, challenges and impact of data science adoption in manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wuest, T., Weimer, D., Irgens, C.: Machine learning in manufacturing: advantages, challenges, and applications. J. Prod. Manuf. Res. 4(1), 23–45 (2016)

    Google Scholar 

  2. Baturynska, I.: Statistical analysis of dimensional accuracy in additive manufacturing considering STL model properties. J. Adv. Man. Tech. 97(5), 2835–2849 (2018)

    Article  Google Scholar 

  3. Pham, D.T., Afify, A.A.: Machine-learning techniques and their applications in manufacturing. Procs. IMechE Part B: J. Eng. Manuf. 219(5), 395–412 (2005)

    Article  Google Scholar 

  4. Kusiak, A.: Data mining: manufacturing and service applications. Int. J. Prod. Res. 44(18–19), 4175–4191 (2006)

    Article  Google Scholar 

  5. Auschitzky, E., Hammer, M., Rajagopaul, A.: How big data can improve manufacturing. McKinsey Company 822 (2014)

    Google Scholar 

  6. Feldkamp, N., Bergmann, S., Strassburger, S.: Knowledge discovery in manufacturing simulations. In: 3rd ACM SIGSIM Advanced Discrete Simulation, pp. 3–12 (2015)

    Google Scholar 

  7. Zhang, D., Xu, B., Wood, J.: Predict failures in production lines: a two-stage approach with clustering and supervised learning. Big Data 2016, 2070–2074. IEEE (2016)

    Google Scholar 

  8. Bosch. Production line performance (2016)

    Google Scholar 

  9. École Normale Supérieure of Paris and Collège de France. Challenge data (2020). https://challengedata.ens.fr/challenges/year/2020

  10. Paolanti, M., Romeo, Felicetti et al: Machine learning approach for predictive maintenance in industry 4.0. In: 14th IEEE/ASME MESA, pp. 1–6. IEEE (2018)

    Google Scholar 

  11. Narciso, D.A.C., Martins, F.G.: Application of machine learning tools for energy efficiency in industry: a review. Energy Rep. 6, 1181–1199 (2020)

    Article  Google Scholar 

  12. Brunton, S.L., Noack, B.R., Koumoutsakos, P.: Machine learning for fluid mechanics. Annu. Rev. Fluid Mech. 52, 477–508 (2020)

    Article  Google Scholar 

  13. Candanedo, I.S., Nieves, E.H., González, S.R., Martín, M.T.S., Briones, A.G.: Machine learning predictive model for industry 4.0. In: Uden, L., Hadzima, B., Ting, I.-H. (eds.) Knowledge Management in Organizations, KMO 2018. CCIS, vol. 877, pp. 501–510. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95204-8_42

  14. Peres, R.S., Barata, J., Leitao, P., Garcia, G.: Multistage quality control using machine learning in the automotive industry. IEEE Access 7, 79908–79916 (2019)

    Article  Google Scholar 

  15. Thomas, L.C., Crook, J., Edelman, D.: Credit Scoring and Its Applications. Society for Industrial and Applied Mathematics, USA (2002)

    Book  Google Scholar 

  16. Kerber, R.: Chimerge: Discretization of numeric attributes. In: AAAI 92 Proceedings of the 10th National Conference on Artificial Intelligence, pp. 123–128. AAAI Press (1992)

    Google Scholar 

  17. Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuous-valued at-tributes for classification learning. In: IJCAI, pp. 1022–1029 (1993)

    Google Scholar 

  18. Hothorn, T., Hornik, K., Zeileis, A.: Unbiased recursive partitioning: a conditional inference framework. J. Comp Graph. Stat. 15(3), 651–674 (2006)

    Article  MathSciNet  Google Scholar 

  19. Navas-Palencia, G.: Optimal binning: mathematical programming formulation. CoRR,abs/2001.08025 (2020)

    Google Scholar 

  20. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 1189–1232 (2001)

    Google Scholar 

  21. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth and Brooks, Monterey, CA (1984)

    MATH  Google Scholar 

  22. Burges, C.J.C.: From Ranknet to LambdaRank to LambdaMART: an overview. Learning 11(23–58), 81 (2010)

    Google Scholar 

  23. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016)

    Google Scholar 

  24. Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R.P., Tang, J., Liu, H.: Feature selection. ACM Comput. Surv. 50(6), 1–45 (2018)

    Article  Google Scholar 

  25. Brown, C.D., Davis, H.T.: Receiver operating characteristics curves and related decision measures: a tutorial. Chems. Intell. Lab. Sys. 80(1), 24–38 (2006)

    Article  Google Scholar 

Download references

Acknowledgment

The authors thank VALEO for providing access to ENS Challenge dataset, the SAFI consortium for the opportunity to collaborate, and the following VALEO colleagues for the valuable discussions and presentations: Aitor Gonzalez, Miroslav Zima, Romain Delente, Aurele Pilloud-Passin, Benoit Veger, Fabrice Blasenhauer, Jean-Jacques Lopez, Remi Laronde, Sebastien Odouard, Stephane De-Clercq, Stephane Wysocki.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Souhaiel Khalfaoui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khalfaoui, S. et al. (2022). Defect Prediction on Production Line. In: Jansen, T., Jensen, R., Mac Parthaláin, N., Lin, CM. (eds) Advances in Computational Intelligence Systems. UKCI 2021. Advances in Intelligent Systems and Computing, vol 1409. Springer, Cham. https://doi.org/10.1007/978-3-030-87094-2_47

Download citation

Publish with us

Policies and ethics