Skip to main content

Impact of Nanoparticles and Nanoparticle-Coated Biomolecules to Ameliorate Salinity Stress in Plants with Special Reference to Physiological, Biochemical and Molecular Mechanism of Action

  • Chapter
  • First Online:
Sustainable Agriculture Reviews 53

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 53))

  • 586 Accesses

Abstract

It is well known that salinity, classified among the major abiotic stresses, negatively influences the growth as well as yield of plants in the whole world. There is a serious concern among scientists to overcome crop losses due to salt stress. With the breakneck advancement in the context of nanotechnology, various engineered nanoparticles are being recognized and applied in plant science to safeguard plants from the devastating repercussions of salinity stress. Nanoparticles function as magic bullets owing to their unique physico-chemical properties. The incorporation of nanoparticles can potentially modulate physiological and biochemical approaches of plants which could possibly enhance salinity tolerance. To improve plants’ adaptation to salinity, nanoparticles encapsulated with certain biomolecules and/or signaling agents might be a more effective approach. This chapter aims to deliver an update on the utilization of different classes of nanoparticles and their mechanisms of action to manage soil salinity in plants. Additionally, the impact of nano-encapsulation on salt-stressed plants at physio-biochemical levels will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas Q, Liu G, Yousaf B, Ali MU et al (2020) Biochar-assisted transformation of engineered-cerium oxide nanoparticles: effect on wheat growth, photosynthetic traits and cerium accumulation. Ecotoxicol Environ Saf 187:109845

    CAS  PubMed  Google Scholar 

  • Abdel Latef AAH, Srivastava AK, El-sadek MSA, Kordrostami M, Tran LSP (2018) Titanium dioxide nanoparticles improve growth and enhance tolerance of broad bean plants under saline soil conditions. Land Degrad Dev 29(4):1065–1073

    Google Scholar 

  • Abdelaal KA, Mazrou YS, Hafez YM (2020) Silicon foliar application mitigates salt stress in sweet pepper plants by enhancing water status, photosynthesis, antioxidant enzyme activity and fruit yield. Plan Theory 9:733

    CAS  Google Scholar 

  • Abdoli S, Ghassemi-Golezani K, Alizadeh-Salteh S (2020) Responses of ajowan (Trachyspermum ammi L.) to exogenous salicylic acid and iron oxide nanoparticles under salt stress. Environ Sci Pollut Res 27:36939–36953

    CAS  Google Scholar 

  • Abou-Zeid H, Ismail G (2018) The role of priming with biosynthesized silver nanoparticles in the response of Triticum aestivum L to salt stress. Egypt J Bot 58:73–85

    Google Scholar 

  • Ahmad P, Jhon RJ (2005) Effect of salt stress on growth and biochemical parameters of Pisum sativum L. (Einfluss von Salzstress auf Wachstum und biochemische Parameter von Pisum sativum L.). Arch Agron Soil Sci 51(6):665–672

    CAS  Google Scholar 

  • Ahmed F, Dwivedi S, Shaalan NM, Kumar S, Arshi N, Alshoaibi A, Husain FM (2020) Development of selenium nanoparticle based agriculture sensor for heavy metal toxicity detection. Agriculture 10(12):610. https://doi.org/10.3390/agriculture10120610

    Article  CAS  Google Scholar 

  • Ahmed T, Noman M, Manzoor N, Shahid M, Abdullah M, Ali L, Wang G, Hashem A, Al-Arjani ABF, Alqarawi AA, Abd_Allah EF, Li B (2021) Nanoparticle-based amelioration of drought stress and cadmium toxicity in rice via triggering the stress responsive genetic mechanisms and nutrient acquisition. Ecotoxicol Environ Saf 209:111829. https://doi.org/10.1016/j.ecoenv.2020.111829

    Article  CAS  Google Scholar 

  • Akpinar BA, Avsar B, Lucas SJ, Budak H (2012) Plant abiotic stress signaling. Plant Signal Behav 7(11):1450–1455. https://doi.org/10.4161/psb.21894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alabdallah NM, Alzahrani HS (2020) The potential mitigation effect of ZnO nanoparticles on (Abelmoschus esculentus L. Moench) metabolism under salt stress conditions. Saudi J Biol Sci 27(11):3132–3137

    Google Scholar 

  • Alghuthaymi MA et al (2015) Myconanoparticles: synthesis and their role in phytopathogens management. Biotechnol Biotechnol Equip 29:221–236

    CAS  PubMed  PubMed Central  Google Scholar 

  • Almeida DM, Oliveira MM, Saibo NJ (2017) Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Gen Mol Biol 40:326–345

    CAS  Google Scholar 

  • An J, Hu P, Li F, Wu H, Shen Y, White JC et al (2020) Emerging investigator series: molecular mechanisms of plant salinity stress tolerance improvement by seed priming with cerium oxide nanoparticles. Environ Sci Nano 7:2214–2228

    CAS  Google Scholar 

  • Ashraf M, Foolad MRJE (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59(2):206–216

    CAS  Google Scholar 

  • Avestan S, Ghasemnezhad M, Esfahani M, Byrt CS (2019) Application of nanosilicon dioxide improves salt stress tolerance in strawberry plants. Agronomy 9:246

    CAS  Google Scholar 

  • Azooz MM, Alzahrani AM, Youssef MM (2013) The potential role of seed priming with ascorbic acid and nicotinamide and their interactions to enhance salt tolerance in broad bean (Vicia faba L.). Aust J Crop Sci 7:2091–2100

    Google Scholar 

  • Baker S et al (2013) Plants: emerging as nanofactories towards facile route in synthesis of nanoparticles. Bioimpacts 3:111–117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bar H, Bhui DK, Sahoo GP, Sarkar P, De SP, Misra A (2009) Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids Surf A Physicochem Eng Asp 339:134–139

    Google Scholar 

  • Baz H, Creech M, Chen J, Gong H, Bradford K, Huo H (2020) Water-soluble carbon nanoparticles improve seed germination and post-germination growth of lettuce under salinity stress. Agronomy 10(8):1192

    CAS  Google Scholar 

  • Bojovoic B, Markovic A (2009) Correlation between nitrogen and chlorophyll in wheat (Triticumaestivum L.). Kragujevac J Sci 31:69–74

    Google Scholar 

  • Buettner KM, Valentine AM (2012) Bioinorganic chemistry of titanium. Chem Rev 112:1863–1881

    CAS  PubMed  Google Scholar 

  • Caldelas C, Weiss DJ (2017) Zinc homeostasis and isotopic fractionation in plants: a review. Plant Soil 41:17–46

    Google Scholar 

  • Carbajal-VáZquez VH, GĂłMez-Merino FC, Herrera-Corredor JA, Contreras-Oliva A, Alcantar-Gonzalez G, Trejo-TĂ©Llez LI (2020) Effect of titanium foliar applications on tomato fruits from plants grown under salt stress conditions. Not Bot Horti Agrobot Cluj-Napoca 48:924–937

    Google Scholar 

  • Castro-González CG, Sánchez-Segura L, GĂłmez-Merino FC, Bello-Bello JJ (2019) Exposure of qwstevia (Stevia rebaudiana B.) to silver nanoparticles in vitro: transport and accumulation. Sci Rep 9:10372

    PubMed  PubMed Central  Google Scholar 

  • Castro-Longoria E et al (2011) Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids Surf B Biointerfaces 83:42–48

    CAS  PubMed  Google Scholar 

  • Ceylan A, Jastrzembski K, Shah SI (2006) Enhanced solubility Ag-Cu nanoparticles and their thermal transport properties. Metall Mater Trans A 37(7):2033–2038

    Google Scholar 

  • Chibber S, Ansari SA, Satar R (2013) New vision to CuO, ZnO, and TiO2 nanoparticles: their outcome and effects. Journal of Nanoparticle Research 15(4):1–13

    Google Scholar 

  • Chookhampaeng S (2011) The effect of salt stress on growth, chlorophyll content proline content and antioxidative enzymes of pepper (Capsicum annuum L.) seedling. Eur J Sci Res 49:103–109

    Google Scholar 

  • Crusciol CAC, Pulz AL, Lemos LB, Soratto RP, Lima GPP (2009) Effects of silicon and drought stress on tuber yield and leaf biochemical characteristics in potato. Crop Sci 49:949–954

    CAS  Google Scholar 

  • de Souza TAJ, Souza LRR, Franchi LP (2019) Silver nanoparticles: an integrated view of green synthesis methods, transformation in the environment, and toxicity. Ecotoxicol Environ Saf 171:691–700

    Google Scholar 

  • Debnath N, Das S, Seth D, Chandra R, Bhattacharya SC, Goswami A (2011) Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.). J Pest Sci 84:99–105

    Google Scholar 

  • Dikilitas M, Simsek E, Roychoudhury A (2020) Role of proline and glycine betaine in overcoming abiotic stresses. In: Protective chemical agents in the amelioration of plant abiotic stress. Hoboken, Wiley, pp 1–23. https://doi.org/10.1002/9781119552154.ch1

    Chapter  Google Scholar 

  • Djanaguiraman M, Ramadass R (2004) Effect of salinity on chlorophyll content of rice genotypes. Agric Sci Dig 24:178–181

    Google Scholar 

  • Djanaguiraman M, Nair R, Giraldo JP, Prasad PVV (2018) Cerium oxide nanoparticles decrease drought-induced oxidative damage in sorghum leading to higher photosynthesis and grain yield. ACS omega 3(10):14406–14416

    Google Scholar 

  • Duan H et al. (2015) Green chemistry for nanoparticle synthesis. Chem Soc Rev 44: 5778–5792

    Google Scholar 

  • Duhan JS et al (2017) Nanotechnology: the new perspective in precision agriculture. Biotechnol Rep 15:11–23

    Google Scholar 

  • Duncan E, O’Sullivan C, Roper M, Biggs J, Peoples M (2018) Influence of co-application of nitrogen with phosphorus, potassium and Sulphur on the apparent efficiency of nitrogen fertilizer use, grain yield and protein content of wheat: review. Field Crop Res 226:56–65

    Google Scholar 

  • Eaton ET (2015) Manganese. In: Barker Allen V, Pilbeam DJ (eds) Handbook of plant nutrition. CRC Press, Boca Raton, pp 427–485

    Google Scholar 

  • El-Kassas HY et al (2014) Cytotoxic activity of biosynthesized gold nanoparticles with an extract of the red seaweed Corallina officinalis on the MCF-7 human breast cancer cell line. Asian Pac J Cancer Prev 15:4311–4317

    PubMed  Google Scholar 

  • El-Sharkawy MS, El-Beshsbeshy TR, Mahmoud EK, Abdelkader NI, Al-Shal RM, Missaoui AM (2017) Response of alfalfa under salt stress to the application of potassium sulfate nanoparticles. Am J Plant Sci 8:1751–1773

    CAS  Google Scholar 

  • Etefagh R, Azhir E, Shahtahmasebi N (2013) Synthesis of CuO nanoparticles and fabrication of nanostructural layer biosensors for detecting Aspergillus niger fungi. Sci Iran 20(3):1055–1058

    Google Scholar 

  • Fan TX, Chow SK, Zhang D (2009) Biomorphic mineralization: from biology to materials. Prog Mater Sci 54(5):542–659

    CAS  Google Scholar 

  • Farag AA (2009) Increasing tolerance of Vigna sinensis L. to salt stress using an organic acid and a polyamine. M.Sc. thesis. Ain Shams University, Cairo

    Google Scholar 

  • Farhangi-Abriz S, Torabian S (2018) Nano-silicon alters antioxidant activities of soybean seedlings under salt toxicity. Protoplasma 255:953–962

    CAS  PubMed  Google Scholar 

  • Farouk S, Al-Amri SM (2019) Exogenous zinc forms counteract NaCl-induced damage by regulating the antioxidant system, osmotic adjustment substances, and ions in canola (Brassica napus L. Cv. Pactol). Plants J Soil Sci Plant Nutr 19:887–899

    CAS  Google Scholar 

  • Frantz JM, Locke JC, Datnoff L, Omer M, Widrig A, Sturtz D, Horst L, Krause CR (2008) Detection, distribution, and quantification of silicon in floricultural crops utilizing three distinct analytical methods. Commun Soil Sci Plant Anal 39:2734–2751

    CAS  Google Scholar 

  • Ghidan AY, Al Antary TM (2019) Applications of nanotechnology in agriculture. Appl Nanobiotechnol. https://doi.org/10.5772/intechopen.88390

  • Gohari G, Mohammadi A, Akbari A, Panahirad S, Dadpour MR, Fotopoulos V, Kimura S (2020a) Titanium dioxide nanoparticles (TiO2 NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica. Sci Rep 10:1–14. https://doi.org/10.1038/s41598-020-57794-1

  • Gohari G, Safai F, Panahirad S, Akbari A, Rasouli F, Dadpour MR, Fotopoulos V (2020b) Modified multiwall carbon nanotubes display either phytotoxic or growth promoting and stress protecting activity in Ocimum basilicum L. in a concentration-dependent manner. Chemosphere 249:126171

    CAS  PubMed  Google Scholar 

  • Golinska P et al (2014) Biogenic synthesis of metal nanoparticles from actinomycetes: biomedical applications and cytotoxicity. Appl Microbiol Biotechnol 98:8083–8097

    CAS  PubMed  Google Scholar 

  • Gomathi R, Rakkiyapan P (2011) Comparative lipid peroxidation, leaf membrane thermostability, and antioxidant system in four sugarcane genotypes differing in salt tolerance. Inter J Plant Physiol Biochem 3:67–74

    CAS  Google Scholar 

  • Govorov AO, Carmeli I (2007) Hybrid structures composed of photosynthetic system and metal nanoparticles: plasmon enhancement effect. Nano Lett 7(3):620–625

    CAS  PubMed  Google Scholar 

  • Haghighi M, Pessarakli M (2013) Influence of silicon and nano-silicon on salinity tolerance of cherry tomatoes (Solanum lycopersicum L.) at early growth stage. Sci Hortic 161:111–117

    CAS  Google Scholar 

  • Hänsch R, Mendel RR (2009) Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr Opin Plant Biol 12(3):259–266

    PubMed  Google Scholar 

  • Hasanuzzaman M, Bhuyan MHM, Anee TI, Parvin K, Nahar K, Mahmud JA, Fujita M (2019) Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants 8:384

    CAS  PubMed Central  Google Scholar 

  • Hassanein RA, Hassanein AA, Haider AS, Hashem HA (2009) Improving salt tolerance of Zea mays L. plant by presoaking their grains in glycine betaine. Aust J Basic Appl Sci 3:928–942

    CAS  Google Scholar 

  • Hassanein RA, Hashem HA, Khalil RR (2012) Stigmasterol treatment increases salt stress tolerance of faba bean plants by enhancing antioxidant systems. Plant Osmics J 5:476–485

    CAS  Google Scholar 

  • Helaly MN, El-Metwally MA, El-Hoseiny H, Omar SA, El-Sheery NI (2014) Effect of nanoparticles on biological contamination of in vitro cultures and organogenic regeneration of banana. Aust J Crop Sci 8:612–624

    CAS  Google Scholar 

  • Hellal FA, Abdelhameid M, Abo-Basha DM, Zewainy RM (2012) Alleviation of the adverse effects of soil salinity stress by foliar application of silicon on faba bean (Vica faba L.). J Appl Sci Res 8:4428–4433

    CAS  Google Scholar 

  • Hernández-Hernández H, González-Morales S, Benavides-Mendoza A, Ortega-Ortiz H, Cadenas-Pliego G, Juárez-Maldonado A (2018a) Effects of chitosan–PVA and Cu nanoparticles on the growth and antioxidant capacity of tomato under saline stress. Molecules 23(1):178

    PubMed Central  Google Scholar 

  • Hernández-Hernández H, JĂşarez-Maldonado A, Benavides-Mendoza A, Ortega-Ortiz H, Cadenas-Pliego G, Sánchez-Aspeytia D, González-Morales S (2018b) Chitosan-PVA and copper nanoparticles improve growth and overexpress the SOD and JA genes in tomato plants under salt stress. Agronomy 8:175

    Google Scholar 

  • Hezaveh TA, Pourakbar L, Rahmani F, Alipour H (2019) Interactive effects of salinity and ZnO nanoparticles on physiological and molecular parameters of rapeseed (Brassica napus L.) Commun. Soil Sci Plant Anal 50:698–715

    CAS  Google Scholar 

  • Hojjat SS, Mozumder C, Bora T, Hornyak GL (2019) Polyvinylpyrrolidone-coated silver nanoparticle mitigation of salinity on germination and seedling parameters of bitter vetch (Vicia ervilia L.) plants. Nanotechnol Russ 14(11):582–587

    Google Scholar 

  • Hossain MA, Mostofa MG, Fujita MJ (2013) Cross protection by cold-shock to salinity and drought stress-induced oxidative stress in mustard (Brassica campestris L.) seedlings. Mol Plant Breed 4:50–70

    Google Scholar 

  • Hurtado AC, Chiconato DA, de Mello PR et al (2020) Different methods of silicon application attenuate salt stress in sorghum and sunflower by modifying the antioxidative defense mechanism. Ecotoxicol Environ Saf 203:110964

    Google Scholar 

  • Husen A, Siddiqi KS (2014) Carbon and fullerene nanomaterials in plant system. J Nanobiotechnol 12(1):1–10

    Google Scholar 

  • Hussain I, Singh A, Singh NB, Singh P (2019) Plant-nanoceria interaction: toxicity, accumulation, translocation and biotransformation. South Afr J Bot 121:239–247

    CAS  Google Scholar 

  • Iqbal MN, Rasheed R, Ashraf MY, Ashraf MA, Hussain I (2018) Exogenously applied zinc and copper mitigate salinity effect in maize (Zea mays L.) by improving key physiological and biochemical attributes. Environ Sci Pollut Res 25:23883–23896

    CAS  Google Scholar 

  • Jan AU, Hadi F, Nawaz MA, Rahman K (2017) Potassium and zinc increase tolerance to salt stress in wheat (Triticum aestivum L.). Plant Physiol Biochem 116:139–149

    CAS  PubMed  Google Scholar 

  • Jha AK, Prasad K (2010) Green synthesis of silver nanoparticles using Cycas leaf. Int J Green Nanotechnol Phys Chem 1:110–117

    Google Scholar 

  • Jo JH et al. (2015) Pseudomonas deceptionensis DC5-mediated synthesis of extracellular silver nanoparticles. Artif Cells Nanomed Biotechnol. Published online July 31, 2015. https://doi.org/10.3109/21691401.2015.1068792

  • Junggwon Y, Kyoungah C, Byoungjun P, Ho-Chul K, Byeong-Kwon J, Sangsig KJ (2008) Optical heating of ink-jet printable Ag and Ag–Cu nanoparticles. J Appl Phys 47:5070

    Google Scholar 

  • Kalaiselvi A et al (2015) Synthesis and characterization of palladium nanoparticles using Catharanthus roseus leaf extract and its application in the photo-catalytic degradation. Spectrochim Acta A Mol Biomol Spectrosc 135:116–119

    CAS  PubMed  Google Scholar 

  • Karthik L et al (2014) Streptomyces sp. LK3 mediated synthesis of silver nanoparticles and its biomedical application. Bioprocess Biosyst Eng 37:261–267

    CAS  PubMed  Google Scholar 

  • Kashyap PL, Xiang X, Heiden P (2015) Chitosan nanoparticle based delivery systems for sustainable agriculture. Int J Biol Macromol 77:36–51

    CAS  PubMed  Google Scholar 

  • Kashyap PL, Rai P, Sharma S, Chakdar H, Kumar S, Pandiyan K, Srivastava AK (2016) Nanotechnology for the detection and diagnosis of plant pathogens. Sustain Agric Rev:253–276. https://doi.org/10.1007/978-3-319-39306-3_8

  • Kataria S, Jain M, Rastogi A, Zivcak M, Brestic M, Liu S, Tripathi DK (2019) Role of nanoparticles on photosynthesis: avenues and applications. In: Nanomaterials in plants, algae, and microorganisms. Academic Press, Cambridge, MA, pp 103–127

    Google Scholar 

  • Khan MN, Mobin M, Abbas ZK, Al Mutairi KA, Siddiqui ZH (2017) Role of nanomaterials in plants under challenging environments. Plant Physiol Biochem 110:194–209

    CAS  PubMed  Google Scholar 

  • Khan I, Raza MA, Awan SA, Shah GA et al (2020) Amelioration of salt induced toxicity in pearl millet by seed priming with silver nanoparticles (AgNPs): the oxidative damage, antioxidant enzymes and ions uptake are major determinants of salt tolerant capacity. Plant Physiol Biochem 156:221–232

    CAS  PubMed  Google Scholar 

  • Kim SA, Guerinot ML (2007) Mining iron: iron uptake and transport in plants. FEBS Lett 581:2273–2280

    CAS  PubMed  Google Scholar 

  • Kumar S, Nehra M, Dilbaghi N, Marrazza G, Hassan AA, Kim KH (2019) Nano-based smart pesticide formulations: emerging opportunities for agriculture. J Control Release 294:131–153. https://doi.org/10.1016/j.jconrel.2018.12.01

    Article  CAS  PubMed  Google Scholar 

  • Li X et al (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater 16:270974

    Google Scholar 

  • Liang Y, Sun W, Zhu YG, Christie P (2007) Mechanisms of silicon mediated alleviation of abiotic stresses in higher plants: a review. Environ Poll 147:422–428

    CAS  Google Scholar 

  • Liang W, Ma X, Wan P, Liu L (2018a) Plant salt-tolerance mechanism: a review. Biochem Biophys Res Commun 495(1):286–291

    CAS  PubMed  Google Scholar 

  • Liang W, Yu A, Wang G, Zheng F, Jia J, Xu H (2018b) Chitosan-based nanoparticles of avermectin to control pine wood nematodes. Int J Biol Macromol 112:258–263. https://doi.org/10.1016/j.ijbiomac.2018.01.174

    Article  CAS  PubMed  Google Scholar 

  • Lu L, Huang M, Huang Y, Corvini PFX, Ji R, Zhao L (2020) Mn3O4 nanozymes boost endogenous antioxidant metabolites in cucumber (Cucumis sativus) plant and enhance resistance to salinity stress. Environ Sci Nano 7(6):1692–1703

    CAS  Google Scholar 

  • Lwalaba JLW, Louis LT, Zvobgo G, Richmond MEA et al (2020) Physiological and molecular mechanisms of cobalt and copper interaction in causing phytotoxicity to two barley genotypes differing in Co tolerance. Ecotoxicol Environ Saf 187:109866

    CAS  PubMed  Google Scholar 

  • Lyu S, Wei X, Chen J, Wang C, Wang X, Pan D (2017) Titanium as beneficial element for crop production. Front Plant Sci 8:597

    PubMed  PubMed Central  Google Scholar 

  • Mahmoud AWM, Abdelaziz SM, El-mogy MM, Abdeldaym EA (2019) Effect of foliar zno and feo nanoparticles application on growth and nutritional quality of red radish and assessment of their accumulation on human health. Agriculture 65(1):16–29

    Google Scholar 

  • Mahmoud AWM, Abdeldaym EA, Abdelaziz SM, El-Sawy MB, Mottaleb SA (2020) Synergetic effects of zinc, boron, silicon, and zeolite nanoparticles on confer tolerance in potato plants subjected to salinity. Agronomy 10:19

    Google Scholar 

  • Makarov VV et al (2014) “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Nat 6:35–44

    CAS  Google Scholar 

  • Mao G, Xu X, Xu ZJ (2004) Advances in physiological and biochemical research of salt tolerance in plant. Chin J Eco-Agic 12(1):43–46

    Google Scholar 

  • MartĂ­nez-Ballesta MC, Zapata L, Chalbi N et al (2016) Multi-walled carbon nanotubes enter broccoli cells enhancing growth and water uptake of plants exposed to salinity. J Nanobiotechnol 14:42

    Google Scholar 

  • Mohamed AKS, Qayyum MF, Abdel-Hadi AM, Rehman RA, Ali S, Rizwan M (2017) Interactive effect of salinity and silver nanoparticles on photosynthetic and biochemical parameters of wheat. Arch Agron Soil Sci 63:1736–1747

    CAS  Google Scholar 

  • Mohl M, Dobo D, Kukovecz A, Konya Z, Kordas K, Wei J, Vajtai R, Ajayan PM (2011) J Phys Chem C 115:9403

    CAS  Google Scholar 

  • Molnar A, Papp M, Kovacs DZ, Belteky P et al (2020) Nitro-oxidative signalling induced by chemically synthetized zinc oxide nanoparticles (ZnO NPs) in Brassica species. Chemosphere 251:126419

    CAS  PubMed  Google Scholar 

  • Mourato A et al (2011) Biosynthesis of crystalline silver and gold nanoparticles by extremophilic yeasts. Bioinorg Chem Appl 2011:546074

    PubMed  PubMed Central  Google Scholar 

  • Mozafari A, Ghadakchi Asl A, Ghaderi N (2017) Grape response to salinity stress and role of iron nanoparticle and potassium silicate to mitigate salt induced damage under in vitro conditions. Physiol Mol Biol Plants 24(1):25–35. https://doi.org/10.1007/s12298-017-0488-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    CAS  PubMed  Google Scholar 

  • Mushtaq A, Rizwan S, Jamil N, Ishtiaq T, Irfan S, Ismail T, Malghani MN, Shahwani MN (2019) Influence of silicon sources and controlled release fertilizer on the growth of wheat cultivars of Balochistan under salt stress. Pak J Bot 51:1561–1567

    CAS  Google Scholar 

  • Nabil M, Motaweh HA (2015) Silica nanoparticles preparation using alkali etching process. In Applied Mechanics and Materials. Trans Tech Publications Ltd. 749:155–158)

    Google Scholar 

  • Nair R, Mohamed MS, Gao W, Maekawa T, Yoshida Y, Ajayan PM, Kumar DS (2012) Effect of carbon nanomaterials on the germination and growth of rice plants. J Nanosci Nanotechnol 12(3):2212–2220. https://doi.org/10.1166/jnn.2012.5775

    Article  CAS  PubMed  Google Scholar 

  • Najafi S, Razavi SM, Khoshkam M, Asadi A (2020) Effects of green synthesis of sulfur nanoparticles from Cinnamomum zeylanicum barks on physiological and biochemical factors of Lettuce (Lactuca sativa). Physiol Mol Biol Plants 26:1–12

    Google Scholar 

  • Nam KT et al (2006) Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312:885–888

    CAS  PubMed  Google Scholar 

  • Naseem T et al (2015) Antibacterial activity of green synthesis of iron nanoparticles using Lawsonia inermis and Gardenia jasminoides leaves extract. J Chem 2015:912342

    Google Scholar 

  • Nasrollahzadeh M et al (2015) Green synthesis of copper nano-particles using Ginkgo biloba L. leaf extract and their catalytic activity for the Huisgen [3+2] cycloaddition of azides and alkynes at room temperature. J Colloid Interface Sci 457:141–147

    CAS  PubMed  Google Scholar 

  • Nazarbeygi E, Yazdi HL, Naseri R, Soleimani R (2011) The effects of different levels of salinity on proline and A-, B- chlorophylls in canola. Am-Eurasian J Agric Environ Sci 10:70–74

    Google Scholar 

  • Noruzi M (2015) Biosynthesis of gold nanoparticles using plant extracts. Bioprocess Biosyst Eng 38:1–14

    CAS  PubMed  Google Scholar 

  • Oliveira HC, Gomes BC, Pelegrino MT, Seabra AB (2016) Nitric oxide-releasing chitosan nanoparticles alleviate the effects of salt stress in maize plants. Nitric Oxide 61:10–19

    CAS  PubMed  Google Scholar 

  • PĂ©rez-Labrada F, LĂłpez-Vargas ER, Ortega-Ortiz H, Cadenas-Pliego G, Benavides-Mendoza A, JĂşarez-Maldonado A (2019) Responses of tomato plants under saline stress to foliar application of copper nanoparticles. Plan Theory 8(6):151

    Google Scholar 

  • Philip D et al (2011) Murraya Koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 78:899–904

    PubMed  Google Scholar 

  • Pinedo-Guerrero ZH, Cadenas-Pliego G, Ortega-Ortiz H, González-Morales S, Benavides-Mendoza A, Valdes-Reyna J, Juárez-Maldonado A (2020) Form of silica improves yield, fruit quality and antioxidant defense system of tomato plants under salt stress. Agriculture 10:367

    CAS  Google Scholar 

  • Poopathi S et al (2015) Synthesis of silver nanoparticles from Azadirachta indica–a most effective method for mosquito control. Environ Sci Pollut Res Int 22:2956–2963

    CAS  PubMed  Google Scholar 

  • Postek MT (1981) The occurrence of silica in the leaves of Magnolia grandiflora L. Bot Gaz 142:124–134

    CAS  Google Scholar 

  • Qados AMA (2015) Mechanism of nanosilicon-mediated alleviation of salinity stress in faba bean (Vicia faba L.) plants. Journal of Experimental Agriculture International, 78–95

    Google Scholar 

  • Qados AMA, Moftah AE (2015) Influence of silicon and nano-silicon on germination, growth and yield of faba bean (Vicia faba L.) under salt stress conditions. Journal of Experimental Agriculture International, 509–524

    Google Scholar 

  • Rahimi R, Mohammakhani A, Roohi V, Armand N (2012) Effects of salt stress and silicon nutrition on cholorophyll content, yield and yield components in fennel (Foeniculum vulgar Mill.). Int J Agric Crop Sci 4:1591–1595

    Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83

    Google Scholar 

  • Rossi L, Zhang W, Ma X (2017) Cerium oxide nanoparticles alter the salt stress tolerance of Brassica napus L. by modifying the formation of root apoplastic barriers. Environ Pollut 229:132–138

    CAS  PubMed  Google Scholar 

  • Rossi L, Bagheri M, Zhang W, Chen Z, Burken JG, Ma X (2019) Using artificial neural network to investigate physiological changes and cerium oxide nanoparticles and cadmium uptake by Brassica napus plants. Environ Pollut 246:381–389

    CAS  PubMed  Google Scholar 

  • Salama DM, Osman SA, Abd El-Aziz ME, Abd Elwahed MSA, Shaaban EA (2019) Effect of zinc oxide nanoparticles on the growth, genomic DNA, production, and the quality of common dry bean (Phaseolus vulgaris). Biocatal Agric Biotechnol 18:101083

    Google Scholar 

  • Salehi H, Chehregani A, Lucini L, Majd A, Gholami M (2018) Morphological, proteomic and metabolomic insight into the effect of cerium dioxide nanoparticles to Phaseolus vulgaris L. under soil or foliar application. Sci Total Environ 616:1540–1551

    PubMed  Google Scholar 

  • Salem NM, Albanna LS, Abdeen AO, Ibrahim QI, Awwad AM (2016) Sulfur nanoparticles improves root and shoot growth of tomato. J Agric Sci 8(4):179

    Google Scholar 

  • Seshadri S et al (2011) Green synthesis of lead sulfide nanoparticles by the lead resistant marine yeast, Rhodosporidium diobovatum. Biotechnol Prog 27:1464–1469

    CAS  PubMed  Google Scholar 

  • Shabala S, Cuin TA (2008) Potassium transport and plant salt tolerance. Physiol Plant 133(4):651–669

    CAS  PubMed  Google Scholar 

  • Shafiq F, Iqbal M, Ali M, Ashraf MA (2019) Seed pre-treatment with polyhydroxy fullerene nanoparticles confer salt tolerance in wheat through upregulation of H2O2 neutralizing enzymes and phosphorus uptake. J Soil Sci Plant Nutr 19:734–742

    CAS  Google Scholar 

  • Shahi S, Srivastava M (2018) Influence of foliar application of manganese on growth, pigment content, and nitrate reductase activity of Vigna radiata (L.) R. Wilczek under salinity. J Plant Nutr 41:1397–1404

    CAS  Google Scholar 

  • Shankar SS, Rai A, Ankamwar B, Singh A, Ahmad A, Sastry M (2004) Biological synthesis of triangular gold nanoprisms. Nat Mater 3:482–488

    Google Scholar 

  • Shankramma K, Yallappa S, Shivanna MB, Manjanna J (2016) Fe2O3 magnetic nanoparticles to enhance S. lycopersicum (tomato) plant growth and their biomineralization. Appl Nanosci 6(7):983–990

    CAS  Google Scholar 

  • Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interf Sci 145(1–2):83–96

    CAS  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH (2014) Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum Mill.) seeds. Saudi J Biol Sci 21:13–17

    CAS  PubMed  Google Scholar 

  • Singh N, Bhatla SC (2016) Nitric oxide and iron modulate heme oxygenase activity as a long distance signaling response to salt stress in sunflower seedling cotyledons. Nitric Oxide 53:54–64

    CAS  PubMed  Google Scholar 

  • Singh A, Singh N, Hussain I, Singh H, Singh SJ (2015a) Plant-nanoparticle interaction: an approach to improve agricultural practices and plant productivity. Int J Pharm Sci Invent 4(8):25–40

    CAS  Google Scholar 

  • Singh P et al (2015b) A strategic approach for rapid synthesis of gold and silver nanoparticles by Panax ginseng leaves. Artif Cells Nanomed Biotechnol 44(8):1–9

    Google Scholar 

  • Singh P et al (2015c) Biosynthesis of anisotropic silver nanoparticles by Bhargavaea indica and their synergistic effect with antibiotics against pathogenic microorganisms. J Nanomater 1–10

    Google Scholar 

  • Singh P et al (2015d) Biosynthesis, characterization, and antimicrobial applications of silver nanoparticles. Int J Nanomedicine 10:2567–2577

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh P et al. (2015e) Microbial synthesis of flower-shaped gold nanoparticles. Artif Cells Nanomed Biotechnol. Published online May 6, 2015. https://doi.org/10.3109/21691401.2015.1041640

  • Singh P et al. (2015f) Weissella oryzae DC6-facilitated green synthesis of silver nanoparticles and their antimicrobial potential. Artif Cells Nanomed Biotechnol. Published online July 27 https://doi.org/10.3109/21691401.2015.1064937

  • Sofy MR, Elhindi KM, Farouk S, Alotaibi MA (2020) Zinc and paclobutrazol mediated regulation of growth, upregulating antioxidant aptitude and plant productivity of pea plants under salinity. Plan Theory 9:1197

    CAS  Google Scholar 

  • Soliman M, Qari SH, Abu-Elsaoud A et al (2020) Rapid green synthesis of silver nanoparticles from blue gum augment growth and performance of maize, fenugreek, and onion by modulating plants cellular antioxidant machinery and genes expression. Acta Physiol Plant 42:148

    CAS  Google Scholar 

  • Sun L, Song F, Guo J, Zhu X, Liu S, Liu F, Li X (2020) Nano-ZnO-induced drought tolerance is associated with melatonin synthesis and metabolism in maize. Int J Mol Sci 21(3):782. https://doi.org/10.3390/ijms21030782

    Article  CAS  PubMed Central  Google Scholar 

  • Suresh D et al. (2015) Artocarpus gomezianus aided green synthesis of ZnO nanoparticles: luminescence, photocatalytic and antioxidant properties. Spectrochim Acta A Mol Biomol Spectrosc 141:128–134

    Google Scholar 

  • Suriyaprabha R, Karunakaran G, Yuvakkumar R, Rajendran V, Kannan N (2012) Silica nanoparticles for increased silica availability in maize (Zea mays L) seeds under hydroponic conditions. Curr Nanosci 8:1–7

    Google Scholar 

  • Tang X, Mu X, Shao H (2015) Global plant-responding mechanisms to salt stress: physiological and molecular levels and implications in biotechnology. Crit Rev Biotechnol 35:425–437

    PubMed  Google Scholar 

  • Tanveer M, Shabala S (2018) Targeting redox regulatory mechanisms for salinity stress tolerance in crops, salinity responses and tolerance in plants, vol 1. Springer, Cham, pp 213–234

    Google Scholar 

  • Tanveer M, Shah AN (2017) An insight into salt stress tolerance mechanisms of Chenopodium album. Environ Sci Pollut Res 24:16531–16535

    CAS  Google Scholar 

  • Tijen D, Ismail T (2005) Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ Exp Bot 53:247–257

    Google Scholar 

  • Tomar A, Garg G (2013) Short review on application of gold nanoparticles. Global Journal of Pharmacology 7(1):34–38

    Google Scholar 

  • Torabian S, Farhangi-Abriz S, Zahedi M (2018) Efficacy of FeSO4 nano formulations on osmolytes and antioxidative enzymes of sunflower under salt stress. Indian J Plant Physiol 23:305–315

    CAS  Google Scholar 

  • Tortella GR, Rubilar O, Duran N, Diez MC, MartĂ­nez M, Parada J, Seabra AB (2020) Silver nanoparticles: toxicity in model organisms as an overview of its hazard for human health and the environment. J Hazard Mater 390:121974

    CAS  PubMed  Google Scholar 

  • Tripathi S, Sonkar SK, Sarkar S (2011) Growth stimulation of gram (Cicer arietinum) plant by water soluble carbon nanotubes. Nanoscale 3(3):1176. https://doi.org/10.1039/c0nr00722f

    Article  CAS  PubMed  Google Scholar 

  • Tripathi DK, Singh S, Gaur S, Singh S, Yadav V, Liu S, Dubey NK (2018) Acquisition and homeostasis of iron in higher plants and their probable role in abiotic stress tolerance. Front Environ Sci 5:86

    Google Scholar 

  • Tripathy BC, OelmĂĽller R (2012) Reactive oxygen species generation and signaling in plants. Plant Signal Behav 7(12):1621–1633. https://doi.org/10.4161/psb.22455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • VaculĂ­k M, LukÄŤová Z, Bokor B, Martinka M, Tripathi DK, Lux A (2020) Alleviation mechanisms of metal (loid) stress in plants by silicon: a review. J Exp Bot. https://doi.org/10.1093/jxb/eraa288

  • Venkatachalam P, Priyanka N, Manikandan K, Ganeshbabu I, Indiraarulselvi P, Geetha N, Muralikrishna K, Bhattacharya RC, Tiwari M, Sharma N, Sahi SV (2017) Enhanced plant growth promoting role of phycomolecules coated zinc oxide nanoparticles with P supplementation in cotton (Gossypium hirsutum L.). plant Physiol. Biochemist 110:118–127

    CAS  Google Scholar 

  • Waghmare SR et al (2015) Ecofriendly production of silver nanoparticles using Candida utilis and its mechanistic action against pathogenic microorganisms. 3 Biotech 5:33–38

    PubMed  Google Scholar 

  • Wahid I, Kumari S, Ahmad R, Hussain SJ, Alamri S, Siddiqui MH, Khan MIR (2020) Silver nanoparticle regulates salt tolerance in wheat through changes in ABA concentration, ion homeostasis, and defense systems. Biomol Ther 10(11):1506. https://doi.org/10.3390/biom10111506

    Article  CAS  Google Scholar 

  • Wang C et al (2015) Green synthesis of silver nanoparticles by Bacillus methylotrophicus, and their antimicrobial activity. Artif Cells Nanomed Biotechnol. Published online March 6. https://doi.org/10.3109/21691401.2015.1011805

  • Xu X, Du X, Wang F, Sha J et al (2020) Effects of potassium levels on plant growth, accumulation and distribution of carbon, and nitrate metabolism in apple dwarf rootstock seedlings. Front Plant Sci 11:904

    PubMed  PubMed Central  Google Scholar 

  • Yang J, Duan G, Li C, Liu L, Han G, Zhang Y, Wang C (2019) The crosstalks between jasmonic acid and other plant hormone signaling highlight the involvement of jasmonic acid as a Core component in plant response to biotic and abiotic stresses. Front Plant Sci 10. https://doi.org/10.3389/fpls.2019.01349

  • Yao KS, Li SJ, Tzeng KC, Cheng TC, Chang CY, Chiu CY, Liao CY, Hsu JJ, Lin ZP (2009) Fluorescence silica nanoprobe as a biomarker for rapid detection of plant pathogens. Adv Mater Res 79–82:513–516. https://doi.org/10.4028/www.scientific.net/amr.79-82.513

    Article  Google Scholar 

  • Yasar F, Ellialtioglu S, Yildiz K (2008) Effect of salt stress on antioxidant defense systems, lipid peroxidation, and chlorophyll content in green bean. Russ J Plant Physiol 55:782–786

    CAS  Google Scholar 

  • Ye Y, Cota-Ruiz K, Hernandez-Viezcas JA, Valdes C, Medina-Velo IA, Turley RS, Peralta-Videa JR, Gardea-Torresdey JL (2020) Manganese nanoparticles control salinity-modulated molecular responses in Capsicum annuum L. through priming: a sustainable approach for agriculture. ACS Sustain Chem Eng 8:1427–1436

    Google Scholar 

  • Younes N, Nassef D (2015) Effect of silver nanoparticles on salt tolerance of tomato transplants (solanum Lycopersicum, mill.). Assiut J Agric Sci 46(6):76–85

    Google Scholar 

  • Zahir AA et al (2015) Green synthesis of silver and titanium dioxide nanoparticles using Euphorbia prostrata extract shows shift from apoptosis to G0/G1 arrest followed by necrotic cell death in Leishmania donovani. Antimicrob. Agents Chemother 59:4782–4799

    CAS  Google Scholar 

  • Zaytseva O, Neumann G (2016) Carbon nanomaterials: production, impact on plant development, agricultural and environmental applications. Chem Biol Technol Agric 3(1):1–26

    Google Scholar 

  • Zhang X et al (2011) Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere 82:489–494

    CAS  PubMed  Google Scholar 

  • Zhao G, Zhao Y, Lou W, Su J, Wei S, Yang X, Wang R, Guan R, Pu H, Shen W (2019) Nitrate reductase-dependent nitric oxide is crucial for multi-walled carbon nanotube-induced plant tolerance against salinity. Nanoscale 11:10511–10523

    CAS  PubMed  Google Scholar 

  • Zhao C, Zhang H, Song C, Zhu JK, Shabala S (2020) Mechanisms of plant responses and adaptation to soil salinity. Innovations 1:100017

    Google Scholar 

  • Zhou GJ et al (2014) Biosynthesis of CdS nanoparticles in banana peel extract. J Nanosci Nanotechnol 14:4437–4442

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guru, A., Sahoo, S.K., Saha, P., Dwivedi, P. (2021). Impact of Nanoparticles and Nanoparticle-Coated Biomolecules to Ameliorate Salinity Stress in Plants with Special Reference to Physiological, Biochemical and Molecular Mechanism of Action. In: Faizan, M., Hayat, S., Yu, F. (eds) Sustainable Agriculture Reviews 53. Sustainable Agriculture Reviews, vol 53. Springer, Cham. https://doi.org/10.1007/978-3-030-86876-5_8

Download citation

Publish with us

Policies and ethics