Skip to main content

Metabolic Pathways and Cell Signaling

  • Chapter
  • First Online:
Essential Aspects of Immunometabolism in Health and Disease
  • 884 Accesses

Abstract

This chapter overviews the basic features of metabolic pathways concerning the three main classes of energetic substrates – carbohydrates, lipids and amino acids. Also, it considers the main signaling pathways that sense these molecules as well as the general hormonal systems that integrate whole-body metabolism in the fasting and fed states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Frayn KN (2010) Metabolic regulation: a human perspective, 3rd edn. Wiley-Blackwell, Oxford

    Google Scholar 

  2. Cantó C, Menzies KJ, Auwerx J (2015) NAD+ Metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metab 22:31–53

    Article  Google Scholar 

  3. Monod J, Changeux J-P, Jacob F (1963) Allosteric proteins and cellular control systems. J Mol Biol 6:306–329

    Article  CAS  Google Scholar 

  4. Monod J, Wyman J, Changeux J-P (1965) On the nature of allosteric transitions: a plausible model. J Mol Biol 12:88–118

    Article  CAS  Google Scholar 

  5. Randle PJ, Garland PB, Hales CN, Newsholme EA (1963) The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 281(7285):785–789

    Google Scholar 

  6. Husted AS, Trauelsen M, Rudenko O, Hjorth SA, Schwartz TW (2017) GPCR-mediated signaling of metabolites. Cell Metab 25:777–796

    Article  CAS  Google Scholar 

  7. Haro D, Marrero PF, Relat J (2019) Nutritional regulation of gene expression: carbohydrate-, fat- and amino acid-dependent modulation of transcriptional activity. Int J Molec Sci 20:1386

    Article  CAS  Google Scholar 

  8. Sugden MC, Caton PW, Holness MJ (2010) PPAR control: it’s SIRTainly as easy as PGC. J Endocrinol 204:93–104

    Article  CAS  Google Scholar 

  9. Thirupathi A, Souza CT (2017) Multi-regulatory network of ROS: the interconnection of ROS, PGC-1 alpha, and AMPK-SIRT1 during exercise. J Physiol Biochem 73:487–494

    Article  CAS  Google Scholar 

  10. Watson E, Yilmaz LS, Walhout AJM (2015) Understanding metabolic regulation at a systems level: metabolite sensing, mathematical predictions, and model organisms. Annu Rev Genet 49:553–575

    Article  CAS  Google Scholar 

  11. Burkewitz K, Zhang Y, Mair WB (2014) AMPK at the nexus of energetics and aging. Cell Metab 20:10–25

    Article  CAS  Google Scholar 

  12. Carling D, Viollet B (2015) Beyond energy homeostasis: the expanding role of AMP-activated protein kinase in regulating metabolism. Cell Metab 21:799–804

    Article  CAS  Google Scholar 

  13. Hardie DG (2014) AMP-activated protein kinase: a key regulator of energy balance with many roles in human disease. J Intern Med 276:543–559

    Article  Google Scholar 

  14. Hardie DG (2014) AMPK-sensing energy while talking to other signaling pathways. Cell Metab 20:939–951

    Article  CAS  Google Scholar 

  15. Hindupur SK, González A, Hall MN (2015) The opposing actions of target of rapamycin and AMP-activated protein kinase in cell growth control. Cold Spring Harb Perspect Biol 7:a019141

    Google Scholar 

  16. Boutant M, Canto C (2014) SIRT1 metabolic actions: integrating recent advances from mouse models. Mol Metab 3:5–18

    Article  CAS  Google Scholar 

  17. Lin S-C, Hardie DH (2018) AMPK: sensing glucose as well as cellular energy status. Cell Metab 27:299–313

    Article  CAS  Google Scholar 

  18. Schwer B, Verdin E (2008) Conserved metabolic regulatory functions of sirtuins. Cell Metab 7:104–112

    Article  CAS  Google Scholar 

  19. Yu Q, Dong L, Li Y, Liu G (2018) SIRT1 and HIF1a signaling in metabolism and immune responses. Cancer Lett 418:20e26

    Google Scholar 

  20. Choudhry H, Harris AL (2018) Advances in hypoxia-inducible factor biology. Cell Metab 27:281–298

    Article  CAS  Google Scholar 

  21. Metzen E, Ratcliffe PJ (2004) HIF hydroxylation and cellular oxygen sensing. Biol Chem 385:223–230

    Article  CAS  Google Scholar 

  22. Semenza GL (2004) Hydroxylation of HIF-1: oxygen sensing at the molecular level. Physiology 19:176–182

    Article  CAS  Google Scholar 

  23. Shoag J, Arany Z (2010) Regulation of hypoxia-inducible genes by PGC-1α. Arterioscler Thromb Vasc Biol 30:662–666

    Article  CAS  Google Scholar 

  24. Vercesi AE, Castilho RF, Kowaltowski AJ, Oliveira HCF, Souza-Pinto NC, Figueira TR, Busanello ENB (2018) Mitochondrial calcium transport and the redox nature of the calcium-induced membrane permeability transition. Free Radic Biol Med 129:1–24

    Article  CAS  Google Scholar 

  25. Ang Z, Xiong D, Wu M, Ding JL (2018) FFAR2-FFAR3 receptor heteromerization modulates short-chain fatty acid sensing. FASEB J 32:289–303

    Article  CAS  Google Scholar 

  26. Kimura I, Ichimura A, Ohue-Kitano R, Igarashi M (2020) Free fatty acid receptors in health and disease. Physiol Rev 100:171–210

    Article  CAS  Google Scholar 

  27. Charo IF (2007) Macrophage polarization and insulin resistance: PPARg in control. Cell Metab 6:96–98

    Article  CAS  Google Scholar 

  28. Dubois V, Eeckhoute J, Lefebvre P, Staels B (2017) Distinct but complementary contributions of PPAR isotypes to energy homeostasis. J Clin Invest 127(4):1202–1214

    Article  Google Scholar 

  29. Hong F, Pan S, Guo Y, Xu P, Zhai Y (2019) PPARs as nuclear receptors for nutrient and energy metabolism. Molecules 24:2545

    Article  CAS  Google Scholar 

  30. Zechner R, Zimmermann R, Eichmann TO, Kohlwein SD, Haemmerle G, Lass A, Madeo F (2012) FAT SIGNALS—lipases and lipolysis in lipid metabolism and signaling. Cell Metab 15:279–291

    Article  CAS  Google Scholar 

  31. Besseiche A, Riveline J-P, Gautier J-F, Bréant B, Blondeau B (2015) Metabolic roles of PGC-1α and its implications for type 2 diabetes. Diabetes Metab 41(5):347–357

    Article  CAS  Google Scholar 

  32. Martínez-Redondo V, Petterson AT, Ruas JL (2015) The hitchhiker’s guide to PGC-1α isoform structure and biological functions. Diabetologia 58:1969–1977

    Article  Google Scholar 

  33. Supruniuk E, Mikłosz A, Chabowski A (2017) The implication of PGC-1a on fatty acid transport across plasma and mitochondrial membranes in the insulin sensitive tissues. Front Physiol 8:923

    Article  Google Scholar 

  34. Shao W, Espenshade P (2012) Expanding roles for SREBP in metabolism. Cell Metab 16:414–419

    Article  CAS  Google Scholar 

  35. Lamming DW, Sabatini DM (2013) A central role for mTOR in lipid homeostasis. Cell Metab 18:465–469

    Article  CAS  Google Scholar 

  36. Liu GY, Sabatini DM (2020) mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol 21(4):183–203

    Article  CAS  Google Scholar 

  37. Singh R, Cuervo AM (2011) Autophagy in the cellular energetic balance. Cell Metab. 13:495–504

    Google Scholar 

  38. Baker RG, Hayden MS, Ghosh S (2011) NF-κB, inflammation, and metabolic disease. Cell Metab 13:11–22

    Article  CAS  Google Scholar 

  39. Vitale I, Manic G, Coussens LM, Kroemer G, Galluzzi L (2019) Macrophages and metabolism in the tumor microenvironment. Cell Metab 30:36–50

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Abdulkader .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abdulkader, F. (2022). Metabolic Pathways and Cell Signaling. In: Camara, N.O.S., Alves-Filho, J.C., Moraes-Vieira, P.M.M.d., Andrade-Oliveira, V. (eds) Essential Aspects of Immunometabolism in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-86684-6_2

Download citation

Publish with us

Policies and ethics