Skip to main content

Climate Change Hastening Heatwaves: A Pakistan Scenario

  • Chapter
  • First Online:
Climate Change

Abstract

Heatwaves originate when air is trapped in a specific area for a longer time, causing an increase in temperature, having harmful impacts on the environment and human health. The main reason for this phenomenan involves high-pressure air circulation systems that prevent the near ground air to rise. It traps warm ground air in place and results in no rain. In modern times, heatwave events are arising three times more often than they did earlier in the 1960s. Scientists claim that 80% of heatwaves are due to anthropogenic activities. In addition to the heated air, elevated humidity also causes a rise in heat wave incidents. This intensely heated air is the deadliest form of extreme weather events, causing more deaths than any other climate disaster. These heatwaves cause health illness and even deaths of young children, the elderly, livestock, and wild animals. This chapter analyzes the sources and effects of climate-driven heatwaves with special emphasis on Pakistan’s situation. Also, we have elucidated the heatwave impacts on human health. A correlation is also established to identify the possible interaction between urbanization and the increasing intensity of heatwaves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akbari H, Pomerantz M, Taha H (2001) Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas. Sol Energy 70(3):295–310

    Article  ADS  Google Scholar 

  • Alberti M (2005) The effects of urban patterns on ecosystem function. Int Reg Sci Rev 28(2):168–192

    Article  Google Scholar 

  • Alebić-Juretić A, Cvitaš T, Kezele N, Klasinc L, Pehnec G, Šorgo G (2007) Atmospheric particulate matter and ozone under heatwave conditions: do they cause an increase of mortality in Croatia? Bull Environ Contam Toxicol 79(4):468–471

    Article  PubMed  Google Scholar 

  • Alexandri E, Jones P (2008) Temperature decreases in an urban canyon due to green walls and green roofs in diverse climates. Build Environ 43(4):480–493

    Article  Google Scholar 

  • Ali A, Erenstein O (2017) Assessing farmer use of climate change adaptation practices and impacts on food security and poverty in Pakistan. Clim Risk Manag 16:183–194

    Article  Google Scholar 

  • Baloch MA, Suad S (2018) Modeling the impact of transport energy consumption on CO2 emission in Pakistan: evidence from ARDL approach. Environ Sci Pollut Res 25(10):9461–9473

    Article  Google Scholar 

  • Beckett KP, Freer-Smith P, Taylor G (1998) Urban woodlands: their role in reducing the effects of particulate pollution. Environ Pollut 99(3):347–360

    Article  CAS  PubMed  Google Scholar 

  • Bhatti MT, Balkhair KS, Masood A, Sarwar S (2018) Optimized shifts in sowing times of field crops to the projected climate changes in an agro-climatic zone of Pakistan. Exp Agric 54(2):201

    Article  Google Scholar 

  • Bolund P (1999) Hunhammar, s. Ecosystem services in urban areas. Ecolog Econ 29:293–301

    Google Scholar 

  • Bowler DE, Buyung-Ali L, Knight TM, Pullin AS (2010) Urban greening to cool towns and cities: a systematic review of the empirical evidence. Landsc Urban Plan 97(3):147–155

    Article  Google Scholar 

  • Brack CL (2002) Pollution mitigation and carbon sequestration by an urban forest. Environ Pollut 116:S195–S200

    Article  CAS  PubMed  Google Scholar 

  • Braun M, Herold M Mapping imperviousness using NDVI and linear spectral unmixing of ASTER data in the Cologne-Bonn region (Germany). In: remote sensing for environmental monitoring, gis applications, and geology iii, 2004. international society for optics and photonics, pp 274–284

    Google Scholar 

  • Cajoto V, JA (2005) DP Health impact of 2003 heat wave at Hospital de Riveira (A Coruna). In: Anales de medicina interna (Madrid, Spain: 1984), 1. pp 15–20

    Google Scholar 

  • Chan H-L, Kuo P-C, Cheng C-Y, Chen Y-S (2018) Challenges and future perspectives on electroencephalogram-based biometrics in person recognition. Front Neuroinform 12:66

    Article  PubMed  PubMed Central  Google Scholar 

  • Change IC (2007) The physical science basis. Cambridge Univ, Press

    Google Scholar 

  • Change IPOC (2014) Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press,

    Google Scholar 

  • Chaudhry Q-u-Z, Mahmood A, Rasul G, Afzaal M (2009) Climate change indicators of Pakistan. PAkistan Meterological Department

    Google Scholar 

  • Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437(7058):529–533

    Article  ADS  CAS  PubMed  Google Scholar 

  • Clarke JF (1972) Some effects of the urban structure on heat mortality. Environ Res 5(1):93–104

    Article  CAS  PubMed  Google Scholar 

  • Dematte JE, O’Mara K, Buescher J, Whitney CG, Forsythe S, McNamee T, Adiga RB, Ndukwu IM (1998) Near-fatal heat stroke during the 1995 heat wave in Chicago. Ann Intern Med 129(3):173–181

    Article  CAS  PubMed  Google Scholar 

  • Dixit S, Bushara K, Brooks B (1997) Epidemic heat stroke in a midwest community: risk factors, neurological complications and sequelae. Wis Med J 96(5):39–41

    CAS  PubMed  Google Scholar 

  • Ecosystems M (2005) human well-being: current state and trends: findings of the condition and trends. Island Press, UNEP

    Google Scholar 

  • EEA (2010) Mapping the impacts of natural hazards and technological accidents in Europe–an overview of the last decade. EEA Technical report no 13/2010

    Google Scholar 

  • Escobedo FJ, Nowak DJ (2009) Spatial heterogeneity and air pollution removal by an urban forest. Landsc Urban Plan 90(3–4):102–110

    Article  Google Scholar 

  • Filleul L, Cassadou S, Médina S, Fabres P, Lefranc A, Eilstein D, Le Tertre A, Pascal L, Chardon B, Blanchard M (2006) The relation between temperature, ozone, and mortality in nine French cities during the heat wave of 2003. Environ Health Perspect 114(9):1344–1347

    Article  PubMed  PubMed Central  Google Scholar 

  • Firestone M, Berger M, Foos B, Etzel R (2016) Two decades of enhancing children’s environmental health protection at the US Environmental Protection Agency. Environ Health Perspect 124(12):A214–A218

    Article  PubMed  PubMed Central  Google Scholar 

  • Fischer EM, Seneviratne SI, Vidale PL, Lüthi D, Schär C (2007) Soil moisture–atmosphere interactions during the 2003 European summer heat wave. J Clim 20(20):5081–5099

    Article  ADS  Google Scholar 

  • Fischer PH, Brunekreef B, Lebret E (2004) Air pollution related deaths during the 2003 heat wave in the Netherlands. Atmos Environ 38(8):1083–1085

    Article  ADS  CAS  Google Scholar 

  • Fitter A, Elmqvist T, Haines-Young R, Potschin M, Rinaldo A, Setala H, Stoll-Kleemann S, Zobel M, Murlis J (2010) An assessment of ecosystem services and biodiversity in Europe. Issues Environ Sci Technol 30:1–28

    Google Scholar 

  • Gomez F, Gaja E, Reig A (1998) Vegetation and climatic changes in a city. Ecol Eng 10(4):355–360

    Article  Google Scholar 

  • Gorst A, Dehlavi A, Groom B (2018) Crop productivity and adaptation to climate change in Pakistan. Environ Dev Econ 23(6):679–701

    Article  Google Scholar 

  • Grimmond C, Salmond J, Oke TR, Offerle B, Lemonsu A (2004) Flux and turbulence measurements at a densely built‐up site in Marseille: Heat, mass (water and carbon dioxide), and momentum. J Geophys Res: Atmospheres 109 (D24)

    Google Scholar 

  • Government of the Punjab (GOP), Pakistan. 2020. Data assessed at https://fwf.punjab.gov.pk/gpp

  • Hamada S, Ohta T (2010) Seasonal variations in the cooling effect of urban green areas on surrounding urban areas. Urban Forestry & Urban Greening 9(1):15–24

    Article  Google Scholar 

  • Harlan SL, Brazel AJ, Prashad L, Stefanov WL, Larsen L (2006) Neighborhood microclimates and vulnerability to heat stress. Soc Sci Med 63(11):2847–2863

    Article  PubMed  Google Scholar 

  • Hemon D, Jougla E (2004) La canicule du mois d’août 2003 en France. Elsevier Masson

    Google Scholar 

  • Hussain A, Zulqarnain M, Hussain J (2010) Catastrophes in the South Punjab due to climate change and the role of PIDEANS. Center for Environmental Economics and Climate Change (CEECC), Islamabad, available at: www pide org pk

    Google Scholar 

  • Hussain M, Butt AR, Uzma F, Ahmed R, Irshad S, Rehman A, Yousaf B (2020) A comprehensive review of climate change impacts, adaptation, and mitigation on environmental and natural calamities in Pakistan. Environ Monit Assess 192(1):48

    Article  Google Scholar 

  • Hussain M, Liu G, Yousaf B, Ahmed R, Uzma F, Ali MU, Ullah H, Butt AR (2018) Regional and sectoral assessment on climate-change in Pakistan: social norms and indigenous perceptions on climate-change adaptation and mitigation in relation to global context. J Clean Prod 200:791–808

    Article  Google Scholar 

  • Hussain M, Mumtaz S (2014) Climate change and managing water crisis: Pakistan’s perspective. Rev Environ Health 29(1–2):71–77

    PubMed  Google Scholar 

  • Jankowski T, Livingstone DM, Bührer H, Forster R, Niederhauser P (2006) Consequences of the 2003 European heat wave for lake temperature profiles, thermal stability, and hypolimnetic oxygen depletion: Implications for a warmer world. Limnol Oceanogr 51(2):815–819

    Article  ADS  Google Scholar 

  • Jim CY, Chen WY (2008) Assessing the ecosystem service of air pollutant removal by urban trees in Guangzhou (China). J Environ Manage 88(4):665–676

    Article  CAS  PubMed  Google Scholar 

  • Joehnk KD, Huisman J, Sharples J, Sommeijer B, Visser PM, Stroom JM (2008) Summer heatwaves promote blooms of harmful cyanobacteria. Glob Change Biol 14(3):495–512

    Article  ADS  Google Scholar 

  • Johnson H, Kovats RS, McGregor G, Stedman J, Gibbs M, Walton H, Cook L, Black E (2005) The impact of the 2003 heat wave on mortality and hospital admissions in England. Health Stat Q 25:6–11

    Google Scholar 

  • Kallis G (2008) Droughts. Ann Rev Environ Resour33

    Google Scholar 

  • Katsouyanni K, Trichopoulos D, Zavitsanos X, Touloumi G (1988) The 1987 Athens heatwave. The Lancet 332(8610):573

    Article  Google Scholar 

  • Khan MA, Khan JA, Ali Z, Ahmad I, Ahmad MN (2016) The challenge of climate change and policy response in Pakistan. Environ Earth Sci 75(5):412

    Article  Google Scholar 

  • Kilbourne E (1992) Illness due to thermal extremes. Public health and preventative medicine, 491–501

    Google Scholar 

  • Klinenberg E (2015) Heat wave: a social autopsy of disaster in Chicago. University of Chicago Press

    Google Scholar 

  • Koppe C, Jendritzky G (2005) Inclusion of short-term adaptation to thermal stresses in a heat load warning procedure. Meteorol Z 14(2):271–278

    Article  Google Scholar 

  • Koppe C, Sari Kovats R, Menne B, Jendritzky G, Wetterdienst D, Organization WH (2004) Heatwaves: risks and responses. WHO Regional Office for Europe, Copenhagen

    Google Scholar 

  • Kovats RS, Hajat S, Wilkinson P (2004) Contrasting patterns of mortality and hospital admissions during hot weather and heat waves in Greater London UK. Occupat Environ Med 61(11):893–898

    Article  CAS  Google Scholar 

  • Kreimer A, Arnold M, Carlin A (2003) Building safer cities: the future of disaster risk. The World Bank

    Google Scholar 

  • Lafortezza R, Carrus G, Sanesi G, Davies C (2009) Benefits and well-being perceived by people visiting green spaces in periods of heat stress. Urban Forestry & Urban Greening 8(2):97–108

    Article  Google Scholar 

  • LeBlanc RT, Brown RD, FitzGibbon JE (1997) Modeling the effects of land use change on the water temperature in unregulated urban streams. J Environ Manage 49(4):445–469

    Article  Google Scholar 

  • Lecomte D, de Penanster D (2004) People living in Paris, dead during the August 2003 heatwave, and examined in Medicolegal Institute. Bulletin de L’academie Nationale de Medecine 188 (3):459–469; discussion 469

    Google Scholar 

  • Leuzinger S, Zotz G, Asshoff R, Körner C (2005) Responses of deciduous forest trees to severe drought in Central Europe. Tree Physiol 25(6):641–650

    Article  PubMed  Google Scholar 

  • Lin B, Ahmad I (2017) Analysis of energy related carbon dioxide emission and reduction potential in Pakistan. J Clean Prod 143:278–287

    Article  CAS  Google Scholar 

  • Luber G, McGeehin M (2008) Climate change and extreme heat events. Am J Prev Med 35(5):429–435

    Article  PubMed  Google Scholar 

  • Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H (2004) European seasonal and annual temperature variability, trends, and extremes since 1500. Science 303(5663):1499–1503

    Article  ADS  CAS  PubMed  Google Scholar 

  • Malik SM, Awan H, Khan N (2012) Mapping vulnerability to climate change and its repercussions on human health in Pakistan. Glob Health 8(1):31

    Article  Google Scholar 

  • McPherson EG (1994) Chicago’s urban forest ecosystem: results of the Chicago Urban Forest Climate Project, vol 186. US Department of Agriculture, Forest Service, Northeastern Forest Experiment

    Google Scholar 

  • Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305(5686):994–997

    Article  ADS  CAS  PubMed  Google Scholar 

  • Ministry of Climate change (2020) Data assessed at http://www.mocc.gov.pk/frmDetails.aspx

  • Mukwada G, Manatsa D (2018) Spatiotemporal analysis of the effect of climate change on vegetation health in the Drakensberg Mountain Region of South Africa. Environ Monit Assess 190(6):358

    Article  PubMed  Google Scholar 

  • Noji EK (1997) The public health consequences of disasters. Oxford University Press, USA

    Google Scholar 

  • Nowak DJ, Civerolo KL, Rao ST, Sistla G, Luley CJ, Crane DE (2000) A modeling study of the impact of urban trees on ozone. Atmos Environ 34(10):1601–1613

    Article  ADS  CAS  Google Scholar 

  • o’Brien K, Leichenko R, Kelkar U, Venema H, Aandahl G, Tompkins H, Javed A, Bhadwal S, Barg S, Nygaard L (2004) Mapping vulnerability to multiple stressors: climate change and globalization in India. Global environmental change 14 (4):303–313

    Google Scholar 

  • Oke T, Crowther J, McNaughton K, Monteith J, Gardiner B (1989) The micrometeorology of the urban forest [and discussion], Philos. TR Soc. B 324 (1223)

    Google Scholar 

  • Oke TR (1988) The urban energy balance. Prog Phys Geogr 12(4):471–508

    Article  Google Scholar 

  • Pan L, Zhang Q, Zhang W, Sun Y, Hu P, Tu K (2016) Detection of cold injury in peaches by hyperspectral reflectance imaging and artificial neural network. Food Chem 192:134–141

    Article  CAS  PubMed  Google Scholar 

  • Panagiotakos DB, Chrysohoou C, Pitsavos C, Nastos P, Anadiotis A, Tentolouris C, Stefanadis C, Toutouzas P, Paliatsos A (2004) Climatological variations in daily hospital admissions for acute coronary syndromes. Int J Cardiol 94(2–3):229–233

    Article  PubMed  Google Scholar 

  • Parmesan C, Root TL, Willig MR (2000) Impacts of extreme weather and climate on terrestrial biota. Bull Am Meteor Soc 81(3):443–450

    Article  ADS  Google Scholar 

  • Parsons K (2014) Human thermal environments: the effects of hot, moderate, and cold environments on human health, comfort, and performance. CRC Press

    Book  Google Scholar 

  • Pelling M (2003) The vulnerability of cities: natural disasters and social resilience. Earthscan

    Google Scholar 

  • Perkins KM, Munguia N, Moure-Eraso R, Delakowitz B, Giannetti BF, Liu G, Nurunnabi M, Will M, Velazquez L (2018) International perspectives on the pedagogy of climate change. J Clean Prod 200:1043–1052

    Article  Google Scholar 

  • Piver WT, Ando M, Ye F, Portier CJ (1999) Temperature and air pollution as risk factors for heat stroke in Tokyo, July and August 1980–1995. Environ Health Perspect 107(11):911–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quayle R, Doehring F (1981) Heat stress: A comparison of indices. Weatherwise 34(3):120–124

    Article  Google Scholar 

  • Qureshi N, Ali Z (2011) Climate change, biodiversity Pakistan’s scenario. J Anim Plant Sci 21(2 Suppl):358–363

    Google Scholar 

  • Rahman MR, Lateh H (2017) Climate change in Bangladesh: a spatio-temporal analysis and simulation of recent temperature and rainfall data using GIS and time series analysis model. Theoret Appl Climatol 128(1–2):27–41

    Article  ADS  Google Scholar 

  • Rauf S, Bakhsh K, Abbas A, Hassan S, Ali A, Kächele H (2017) How hard they hit? Perception, adaptation and public health implications of heat waves in urban and peri-urban Pakistan. Environ Sci Pollut Res 24(11):10630–10639

    Article  Google Scholar 

  • Rebetez M, Mayer H, Dupont O, Schindler D, Gartner K, Kropp JP, Menzel A (2006) Heat and drought 2003 in Europe: a climate synthesis. Ann for Sci 63(6):569–577

    Article  Google Scholar 

  • Renaud V, Rebetez M (2009) Comparison between open-site and below-canopy climatic conditions in Switzerland during the exceptionally hot summer of 2003. Agric for Meteorol 149(5):873–880

    Article  ADS  Google Scholar 

  • Rodó X, Comin F (2003) Global climate: current research and uncertainties in the climate system. Springer Science & Business Media

    Google Scholar 

  • Rosenzweig C, Elliott J, Deryng D, Ruane AC, Müller C, Arneth A, Boote KJ, Folberth C, Glotter M, Khabarov N (2014) Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc Natl Acad Sci 111(9):3268–3273

    Article  ADS  CAS  PubMed  Google Scholar 

  • Salamanca A, Sierra R, Aranda R, Santos M (2017) Environmental impacts of climate change adaptation. Environ Impact Assess Rev 64:87–96

    Article  Google Scholar 

  • Schwartz J, Samet JM, Patz JA (2004) Hospital admissions for heart disease: the effects of temperature and humidity. Epidemiology 15(6):755–761

    Article  PubMed  Google Scholar 

  • Semenza JC, McCullough JE, Flanders WD, McGeehin MA, Lumpkin JR (1999) Excess hospital admissions during the July 1995 heat wave in Chicago. Am J Prev Med 16(4):269–277

    Article  CAS  PubMed  Google Scholar 

  • Shaffril HAM, Krauss SE, Samsuddin SF (2018) A systematic review on Asian’s farmers’ adaptation practices towards climate change. Sci Total Environ 644:683–695

    Article  ADS  CAS  PubMed  Google Scholar 

  • Shahvari N, Khalilian S, Mosavi SH, Mortazavi SA (2019) Assessing climate change impacts on water resources and crop yield: a case study of Varamin plain basin Iran. Environ Monitorin Assess 191(3):134

    Article  Google Scholar 

  • Shashua-Bar L, Hoffman ME (2003) Geometry and orientation aspects in passive cooling of canyon streets with trees. Energy and Buildings 35(1):61–68

    Article  Google Scholar 

  • Siebielec G, Suszek-topatka B, Maring L (2016) The impact of soil degradation on human health. Science 7:374–392

    Google Scholar 

  • Smith WH (1970) (1974) Air pollution—effects on the structure and function of the temperate forest ecosystem. Environ Pollut 6(2):111–129

    Article  Google Scholar 

  • Sohoulande Djebou DC, Singh VP (2016) Impact of climate change on precipitation patterns: a comparative approach. Int J Climatol 36(10):3588–3606

    Article  Google Scholar 

  • Tsiros IX (2010) Assessment and energy implications of street air temperature cooling by shade tress in Athens (Greece) under extremely hot weather conditions. Renew Energy 35(8):1866–1869

    Article  Google Scholar 

  • Ullah W, Nihei T, Nafees M, Zaman R, Ali M (2018) Understanding climate change vulnerability, adaptation and risk perceptions at household level in Khyber Pakhtunkhwa, Pakistan. Int J Climate Change Strateg Manag

    Google Scholar 

  • UNFPA U (2007) United Nations Population Fund. Internal Confederation of

    Google Scholar 

  • Vanhems P, Gambotti L, Fabry J (2003) Excess rate of in-hospital death in Lyons, France, during the August 2003 heat wave. N Engl J Med 349(21):2077–2078

    Article  CAS  PubMed  Google Scholar 

  • Wahid U, Muhammad N, Muhammad K, Takaaki N (2019) Assessing farmers’ perspectives on climate change for effective farm-level adaptation measures in Khyber Pakhtunkhwa, Pakistan. Environ Monitor Assess 191(9)

    Google Scholar 

  • Ward K, Lauf S, Kleinschmit B, Endlicher W (2016) Heat waves and urban heat islands in Europe: a review of relevant drivers. Sci Total Environ 569:527–539

    Article  ADS  PubMed  Google Scholar 

  • Williams AP, Funk C (2011) A westward extension of the warm pool leads to a westward extension of the Walker circulation, drying eastern Africa. Clim Dyn 37(11–12):2417–2435

    Article  Google Scholar 

  • Wong NH, Yu C (2005) Study of green areas and urban heat island in a tropical city. Habitat Int 29(3):547–558

    Article  Google Scholar 

  • Yearbook D (2007) United Nations. New York (38)

    Google Scholar 

  • Zaitchik BF, Macalady AK, Bonneau LR, Smith RB (2006) Europe’s 2003 heat wave: a satellite view of impacts and land–atmosphere feedbacks. Int J Climatol J Royal Meteorol Soc 26(6):743–769

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hussain, M.M., Qadeer, A., Farooqi, Z.U.R., Hameed, M.A. (2022). Climate Change Hastening Heatwaves: A Pakistan Scenario. In: Bandh, S.A. (eds) Climate Change. Springer, Cham. https://doi.org/10.1007/978-3-030-86290-9_7

Download citation

Publish with us

Policies and ethics