Skip to main content

Natural Course (Stages/Evidence-Based Discussion)

  • Chapter
  • First Online:
Diabetes and Kidney Disease

Abstract

Changes in kidney function can be noted right at the diagnosis of diabetes mellitus (DM). This chapter describes the similarities and differences of the five stages of natural course of diabetic kidney disease (DKD) in type 1 DM (T1DM) and type 2 DM (T2DM). Stage 1 is called hyperfiltration-hypertrophy phase. Stage 2 is named as the silent or normoalbuminuric stage as it is not detected clinically. Stage 3 is termed microalbuminuria or incipient diabetic nephropathy and it is detected clinically. Stage 4 is called macroalbuminuria or overt diabetic nephropathy (ODN) and the UAE is in macroalbuminuria range. Although GFR can be within normal range early in this phase, it continues to decline as the stage progresses. Lastly, stage 5 is called end-stage renal disease (ESRD) or uremia. This stage is due to advanced diabetic nephropathy and requires initiation of renal replacement therapy for survival.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Williams RH, Melmed S, Elsevier Science (Firm). Williams textbook of endocrinology. Philadelphia: Elsevier/Saunders; 2016. p. 1516–25.

    Google Scholar 

  2. Mogensen CE, Christensen CK. Predicting diabetic nephropathy in insulin-dependent patients. N Engl J Med. 1984;311(2):89–93.

    Article  CAS  PubMed  Google Scholar 

  3. Gardner DG, et al. Greenspan’s basic & clinical endocrinology. In: Greenspan’s basic and clinical endocrinology. New York: McGraw-Hill Medical; 2011.

    Google Scholar 

  4. CDC, National Center for Health Statistics. National diabetes fact sheet: national estimates and general information on diabetes and prediabetes in the United States; 2017.

    Google Scholar 

  5. Burrows NR, Hora I, Geiss LS, Gregg EW, Albright A. Incidence of end-stage renal disease attributed to diabetes among persons with diagnosed diabetes — United States and Puerto Rico, 2000–2014. MMWR Morb Mortal Wkly Rep. 2017;66:1165–70.

    Article  PubMed  PubMed Central  Google Scholar 

  6. CDC, National Diabetes Statistics Report 2020. Estimates of diabetes and its burden in the United States; 2020.

    Google Scholar 

  7. Ismail N, et al. Renal disease and hypertension in non-insulin-dependent diabetes mellitus. Kidney Int. 1999;55(1):1–28.

    Article  CAS  PubMed  Google Scholar 

  8. McCullough KP, et al. Projecting ESRD incidence and prevalence in the United States through 2030. J Am Soc Nephrol. 2019;30(1):127.

    Article  PubMed  Google Scholar 

  9. KDOQI. Clinical practice guidelines and clinical practice recommendations for diabetes and chronic kidney disease. Am J Kidney Dis. 2007;49(2 Suppl 2):S12–154.

    Google Scholar 

  10. Eknoyan G, et al. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. 2013;3(1):5–14.

    Google Scholar 

  11. Mogensen CE, Christensen CK, Vittinghus E. The stages in diabetic renal disease. With emphasis on the stage of incipient diabetic nephropathy. Diabetes. 1983;32(Suppl 2):64–78.

    Article  PubMed  Google Scholar 

  12. Ditzel J, Junker K. Abnormal glomerular filtration rate, renal plasma flow, and renal protein excretion in recent and short-term diabetics. Br Med J. 1972;2(5804):13–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Osterby R, et al. Diabetic glomerulopathy. Structural characteristics of the early and advanced stages. Diabetes. 1983;32(Suppl 2):79–82.

    Article  PubMed  Google Scholar 

  14. Østerby R. Early phases in the development of diabetic glomerulopathy. Acta Med Scand Suppl. 1974;574:3–82.

    PubMed  Google Scholar 

  15. Seyer-Hansen K. Renal hypertrophy in streptozotocin-diabetic rats. Clin Sci Mol Med. 1976;51(6):551–5.

    CAS  PubMed  Google Scholar 

  16. Christiansen JS, et al. Increased kidney size, glomerular filtration rate and renal plasma flow in short-term insulin-dependent diabetics. Diabetologia. 1981;20(4):451–6.

    Article  CAS  PubMed  Google Scholar 

  17. Molitch ME, RA DF, Franz MJ, Keane WF, Mogensen CE, Parving HH, Steffes MW, American Diabetes Association. Nephropathy in diabetes. Diabetes Care. 2004;27(suppl 1):s79.

    PubMed  Google Scholar 

  18. National Kidney Foundation. KDOQI clinical practice guideline for diabetes and CKD: 2012 update. Am J Kidney Dis. 2012;60(5):850–86.

    Article  Google Scholar 

  19. Mogensen CE, Schmitz A, Christensen CK. Comparative renal pathophysiology relevant to IDDM and NIDDM patients. Diabetes Metab Rev. 1988;4(5):453–83.

    Article  CAS  PubMed  Google Scholar 

  20. de Boer IH, et al. Long-term renal outcomes of patients with type 1 diabetes mellitus and microalbuminuria: an analysis of the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications cohort. Arch Intern Med. 2011;171(5):412–20.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Schmitz A, Christensen T, Taagehoej Jensen F. Glomerular filtration rate and kidney volume in normoalbuminuric non-insulin-dependent diabetics–lack of glomerular hyperfiltration and renal hypertrophy in uncomplicated NIDDM. Scand J Clin Lab Invest. 1989;49(2):103–8.

    Article  CAS  PubMed  Google Scholar 

  22. Adler AI, et al. Development and progression of nephropathy in type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS 64). Kidney Int. 2003;63(1):225–32.

    Article  PubMed  Google Scholar 

  23. National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis. 2002;39(2 Suppl 1):S1–S266.

    Google Scholar 

  24. Mogensen CE, et al. Functional and morphological renal manifestations in diabetes mellitus. Diabetologia. 1981;21(2):89–93.

    Article  CAS  PubMed  Google Scholar 

  25. Brown DM, et al. Kidney complications. Diabetes. 1982;31(Suppl 1 Pt 2):71–81.

    Article  CAS  PubMed  Google Scholar 

  26. Christiansen JS, et al. Kidney function and size in diabetics before and during initial insulin treatment. Kidney Int. 1982;21(5):683–8.

    Article  CAS  PubMed  Google Scholar 

  27. Mogensen CE. Kidney function and glomerular permeability to macromolecules in juvenile diabetes with special reference to early changes. Dan Med Bull. 1972;19(Suppl 3):1–40.

    Google Scholar 

  28. Mogensen CE. Glomerular filtration rate and renal plasma flow in short-term and long-term juvenile diabetes mellitus. Scand J Clin Lab Invest. 1971;28(1):91–100.

    Article  CAS  PubMed  Google Scholar 

  29. Mogensen CE, Andersen MJ. Increased kidney size and glomerular filtration rate in early juvenile diabetes. Diabetes. 1973;22(9):706–12.

    Article  CAS  PubMed  Google Scholar 

  30. Mogensen CE. Diabetes mellitus and the kidney. Kidney Int. 1982;21(5):673–5.

    Article  CAS  PubMed  Google Scholar 

  31. Gerich JE, et al. Normalization of fasting hyperglucagonemia and excessive glucagon responses to intravenous arginine in human diabetes mellitus by prolonged infusion of insulin. J Clin Endocrinol Metab. 1975;41(06):1178–80.

    Article  CAS  PubMed  Google Scholar 

  32. Allen TJ, Cooper ME, Lan HY. Use of genetic mouse models in the study of diabetic nephropathy. Curr Diab Rep. 2004;4(6):435–40.

    Article  PubMed  Google Scholar 

  33. Thomson SC, Vallon V, Blantz RC. Kidney function in early diabetes: the tubular hypothesis of glomerular filtration. Am J Physiol Renal Physiol. 2004;286(1):F8–15.

    Article  CAS  PubMed  Google Scholar 

  34. Mogensen CE, Andersen MJ. Increased kidney size and glomerular filtration rate in untreated juvenile diabetes: normalization by insulin-treatment. Diabetologia. 1975;11(3):221–4.

    Article  CAS  PubMed  Google Scholar 

  35. Hostetter TH, Troy JL, Brenner BM. Glomerular hemodynamics in experimental diabetes mellitus. Kidney Int. 1981;19(3):410–5.

    Article  CAS  PubMed  Google Scholar 

  36. Sharma K, et al. Neutralization of TGF-beta by anti-TGF-beta antibody attenuates kidney hypertrophy and the enhanced extracellular matrix gene expression in STZ-induced diabetic mice. Diabetes. 1996;45(4):522–30.

    Article  CAS  PubMed  Google Scholar 

  37. Cortes P, et al. Effect of diabetes mellitus on renal metabolism. Miner Electrolyte Metab. 1983;9(4–6):306–16.

    CAS  PubMed  Google Scholar 

  38. Arison RN, et al. Light and electron microscopy of lesions in rats rendered diabetic with streptozotocin. Diabetes. 1967;16(1):51–6.

    Article  CAS  PubMed  Google Scholar 

  39. Cortes P, et al. Alterations in glomerular RNA in diabetic rats: roles of glucagon and insulin. Kidney Int. 1981;20(4):491–9.

    Article  CAS  PubMed  Google Scholar 

  40. Cortes P, et al. Uridine triphosphate and RNA synthesis during diabetes-induced renal growth. Am J Phys. 1980;238(4):E349–57.

    CAS  Google Scholar 

  41. Parving HH, et al. Effect of metabolic regulation on renal leakiness to dextran molecules in short-term insulin-dependent diabetics. Diabetologia. 1979;17(3):157–60.

    Article  CAS  PubMed  Google Scholar 

  42. Thomas MC, Burns WC, Cooper ME. Tubular changes in early diabetic nephropathy. Adv Chronic Kidney Dis. 2005;12(2):177–86.

    Article  CAS  PubMed  Google Scholar 

  43. Christiansen JS, et al. Kidney function and size in normal subjects before and during growth hormone administration for one week. Eur J Clin Investig. 1981;11(6):487–90.

    Article  CAS  Google Scholar 

  44. Hostetter TH. Renal microcirculation in diabetes mellitus. Acta Endocrinol Suppl (Copenh). 1981;242:22–4.

    CAS  Google Scholar 

  45. Jensen PK, et al. Renal function in diabetic rats. Acta Endocrinol Suppl (Copenh). 1981;242:25.

    CAS  Google Scholar 

  46. Corvilain J, Abramow M, Bergans A. Some effects of human growth hormone on renal hemodynamics and on tubular phosphate transport in man. J Clin Invest. 1962;41(6):1230–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fox M, et al. Impaired renal tubular function induced by sugar infusion in man. J Clin Endocrinol Metab. 1964;24:1318–27.

    Article  CAS  PubMed  Google Scholar 

  48. Brochner-Mortensen J. The glomerular filtration rate during moderate hyperglycemia in normal man. Acta Med Scand. 1973;1-2(1):31–7.

    CAS  PubMed  Google Scholar 

  49. Christiansen JS, Frandsen M, Parving HH. Effect of intravenous glucose infusion on renal function in normal man and in insulin-dependent diabetics. Diabetologia. 1981;21(4):368–73.

    Article  CAS  PubMed  Google Scholar 

  50. Mogensen CE, Christensen NJ, Gundersen HJ. The acute effect of insulin on renal haemodynamics and protein excretion in diabetics. Diabetologia. 1978;15(3):153–7.

    Article  CAS  PubMed  Google Scholar 

  51. Palatini P. Glomerular hyperfiltration: a marker of early renal damage in pre-diabetes and pre-hypertension. Nephrol Dial Transplant. 2012;27:1708–14.

    Article  PubMed  Google Scholar 

  52. Mogensen CE, et al. Prevention of diabetic renal disease with special reference to microalbuminuria. Lancet. 1995;346(8982):1080–4.

    Article  CAS  PubMed  Google Scholar 

  53. Mogensen CE, et al. Renal and glycemic determinants of glomerular hyperfiltration in normoalbuminuric diabetics. J Diabet Complications. 1990;4(4):159–65.

    Article  CAS  PubMed  Google Scholar 

  54. Christiansen JS. On the pathogenesis of the increased glomerular filtration rate in short-term insulin-dependent diabetes. Dan Med Bull. 1984;31(5):349–61.

    CAS  PubMed  Google Scholar 

  55. Mauer SM, et al. Structural-functional relationships in diabetic nephropathy. J Clin Invest. 1984;74(4):1143–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Caramori ML, Fioretto P, Mauer M. Low glomerular filtration rate in normoalbuminuric type 1 diabetic patients: an indicator of more advanced glomerular lesions. Diabetes. 2003;52(4):1036–40.

    Article  CAS  PubMed  Google Scholar 

  57. Hansen KW, et al. Normoalbuminuria ensures no reduction of renal function in type 1 (insulin-dependent) diabetic patients. J Intern Med. 1992;232(2):161–7.

    Article  CAS  PubMed  Google Scholar 

  58. Poulsen PL, Hansen KW, Mogensen CE. Ambulatory blood pressure in the transition from normo- to microalbuminuria. A longitudinal study in IDDM patients. Diabetes. 1994;43(10):1248–53.

    Article  CAS  PubMed  Google Scholar 

  59. Vittinghus E, Mogensen CE. Graded exercise and protein excretion in diabetic man and the effect of insulin treatment. Kidney Int. 1982;21(5):725–9.

    Article  CAS  PubMed  Google Scholar 

  60. Vittinghus E, Mogensen CE. Albumin excretion and renal haemodynamic response to physical exercise in normal and diabetic man. Scand J Clin Lab Invest. 1981;41(7):627–32.

    Article  CAS  PubMed  Google Scholar 

  61. Koivisto VA, Huttunen NP, Vierikko P. Continuous subcutaneous insulin infusion corrects exercise-induced albuminuria in juvenile diabetes. Br Med J (Clin Res Ed). 1981;282(6266):778–9.

    Article  CAS  Google Scholar 

  62. Viberti G, et al. Correction of exercise-induced microalbuminuria in insulin-dependent diabetics after 3 weeks of subcutaneous insulin infusion. Diabetes. 1981;30(10):818–23.

    Article  CAS  PubMed  Google Scholar 

  63. Comper WD, et al. Earlier detection of microalbuminuria in diabetic patients using a new urinary albumin assay. Kidney Int. 2004;65(5):1850–5.

    Article  CAS  PubMed  Google Scholar 

  64. Daneman D, et al. Plasma prorenin as an early marker of nephropathy in diabetic (IDDM) adolescents. Kidney Int. 1994;46(4):1154–9.

    Article  CAS  PubMed  Google Scholar 

  65. Cherney DZ, et al. Ability of cystatin C to detect acute changes in glomerular filtration rate provoked by hyperglycaemia in uncomplicated Type 1 diabetes. Diabet Med. 2010;27(12):1358–65.

    Article  CAS  PubMed  Google Scholar 

  66. Allen TJ, et al. Serum total renin is increased before microalbuminuria in diabetes. Kidney Int. 1996;50(3):902–7.

    Article  CAS  PubMed  Google Scholar 

  67. Lloyd CE, et al. A comparison of renal disease across two continents; the epidemiology of diabetes complications study and the EURODIAB IDDM Complications Study. Diabetes Care. 1996;19(3):219–25.

    Article  CAS  PubMed  Google Scholar 

  68. Stephenson J, Fuller JH, EUROBIAB IDDM Complications Study Group. Microvascular and acute complications in IDDM patients: the EURODIAB IDDM Complications study. Diabetologia. 1994;37(3):278–85.

    Article  Google Scholar 

  69. Marshall SM, Alberti KG. Comparison of the prevalence and associated features of abnormal albumin excretion in insulin-dependent and non-insulin-dependent diabetes. Q J Med. 1989;70(261):61–71.

    CAS  PubMed  Google Scholar 

  70. Mogensen CE. Microalbuminuria and hypertension with focus on type 1 and type 2 diabetes. J Intern Med. 2003;254(1):45–66.

    Article  CAS  PubMed  Google Scholar 

  71. American Diabetes Association. 11. Microvascular complications and foot care: standards of medical care in diabetes-2020. Diabetes Care. 2020;43(Suppl 1):S135–s151.

    Article  Google Scholar 

  72. Perkins BA, et al. Regression of microalbuminuria in type 1 diabetes. N Engl J Med. 2003;348(23):2285–93.

    Article  CAS  PubMed  Google Scholar 

  73. Hovind P, et al. Predictors for the development of microalbuminuria and macroalbuminuria in patients with type 1 diabetes: inception cohort study. BMJ. 2004;328(7448):1105.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Levey AS, et al. National Kidney Foundation practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Ann Intern Med. 2003;139(2):137–47.

    Article  PubMed  Google Scholar 

  75. Lurbe E, et al. Increase in nocturnal blood pressure and progression to microalbuminuria in type 1 diabetes. N Engl J Med. 2002;347(11):797–805.

    Article  CAS  PubMed  Google Scholar 

  76. Mogensen CE. Antihypertensive treatment inhibiting the progression of diabetic nephropathy. Acta Endocrinol Suppl (Copenh). 1980;238:103–8.

    CAS  Google Scholar 

  77. Kitzmiller JL, et al. Diabetic nephropathy and perinatal outcome. Am J Obstet Gynecol. 1981;141(7):741–51.

    Article  CAS  PubMed  Google Scholar 

  78. Christensen NJ, et al. Intravenous insulin decreases urinary albumin excretion in long-term diabetics with nephropathy. Diabetologia. 1980;18(4):285–8.

    Article  CAS  PubMed  Google Scholar 

  79. Marre M, et al. Relationships between angiotensin I converting enzyme gene polymorphism, plasma levels, and diabetic retinal and renal complications. Diabetes. 1994;43(3):384–8.

    Article  CAS  PubMed  Google Scholar 

  80. Christensen CK, Mogensen CE. Antihypertensive treatment: long-term reversal of progression of albuminuria in incipient diabetic nephropathy. A longitudinal study of renal function. J Diabet Complications. 1987;1(2):45–52.

    Article  CAS  PubMed  Google Scholar 

  81. Feldt-Rasmussen B, Mathiesen ER, Deckert T. Effect of two years of strict metabolic control on progression of incipient nephropathy in insulin-dependent diabetes. Lancet. 1986;2(8519):1300–4.

    Article  CAS  PubMed  Google Scholar 

  82. Steinke JM, et al. The early natural history of nephropathy in Type 1 Diabetes: III. Predictors of 5-year urinary albumin excretion rate patterns in initially normoalbuminuric patients. Diabetes. 2005;54(7):2164–71.

    Article  CAS  PubMed  Google Scholar 

  83. Deckert T, et al. Course of diabetic nephropathy. Factors related to development. Acta Endocrinol Suppl (Copenh). 1981;242:14–5.

    CAS  Google Scholar 

  84. de Boer IH, et al. Renal outcomes in patients with type 1 diabetes and macroalbuminuria. J Am Soc Nephrol: JASN. 2014;25(10):2342–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Turin TC, et al. Proteinuria and life expectancy. Am J Kidney Dis. 2013;61(4):646–8.

    Article  PubMed  Google Scholar 

  86. Bilous RW, et al. Mean glomerular volume and rate of development of diabetic nephropathy. Diabetes. 1989;38(9):1142–7.

    Article  CAS  PubMed  Google Scholar 

  87. Parving HH, et al. Diabetic nephropathy and arterial hypertension. The effect of antihypertensive treatment. Diabetes. 1983;32(Suppl 2):83–7.

    Article  PubMed  Google Scholar 

  88. Parving HH, et al. Early aggressive antihypertensive treatment reduces rate of decline in kidney function in diabetic nephropathy. Lancet. 1983;1(8335):1175–9.

    Article  CAS  PubMed  Google Scholar 

  89. Viberti GC, et al. Long term correction of hyperglycaemia and progression of renal failure in insulin dependent diabetes. Br Med J (Clin Res Ed). 1983;286(6365):598–602.

    Article  CAS  Google Scholar 

  90. Mogensen CE. Long-term antihypertensive treatment inhibiting progression of diabetic nephropathy. Br Med J (Clin Res Ed). 1982;285(6343):685–8.

    Article  CAS  Google Scholar 

  91. Retnakaran R, et al. Risk factors for renal dysfunction in type 2 diabetes. Diabetes. 2006;55(6):1832.

    Article  CAS  PubMed  Google Scholar 

  92. Knowler WC, et al. Diabetes incidence and prevalence in Pima Indians: a 19-fold greater incidence than in Rochester, Minnesota. Am J Epidemiol. 1978;108(6):497–505.

    Article  CAS  PubMed  Google Scholar 

  93. Myers BD, et al. Glomerular function in Pima Indians with noninsulin-dependent diabetes mellitus of recent onset. J Clin Invest. 1991;88(2):524–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Pavkov ME, et al. Changing patterns of type 2 diabetes incidence among Pima Indians. Diabetes Care. 2007;30(7):1758.

    Article  PubMed  Google Scholar 

  95. Pavkov ME, et al. Predominant effect of kidney disease on mortality in Pima Indians with or without type 2 diabetes. Kidney Int. 2005;68(3):1267–74.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Vora JP, et al. Renal hemodynamics in newly presenting non-insulin dependent diabetes mellitus. Kidney Int. 1992;41(4):829–35.

    Article  CAS  PubMed  Google Scholar 

  97. Vora JP, et al. Longitudinal evaluation of renal function in non-insulin-dependent diabetic patients with early nephropathy: effects of angiotensin-converting enzyme inhibition. J Diabetes Complicat. 1996;10(2):88–93.

    Article  CAS  Google Scholar 

  98. Nowack R, et al. Renal hemodynamics in recent-onset type II diabetes. Am J Kidney Dis. 1992;20(4):342–7.

    Article  CAS  PubMed  Google Scholar 

  99. Schmitz A, Hansen HH, Christensen T. Kidney function in newly diagnosed type 2 (non-insulin-dependent) diabetic patients, before and during treatment. Diabetologia. 1989;32(7):434–9.

    Article  CAS  PubMed  Google Scholar 

  100. Weidmann P, Trost BN. Pathogenesis and treatment of hypertension associated with diabetes. Horm Metab Res Suppl. 1985;15:51–8.

    CAS  PubMed  Google Scholar 

  101. Schmitz A, Gundersen HJ, Osterby R. Glomerular morphology by light microscopy in non-insulin-dependent diabetes mellitus. Lack of glomerular hypertrophy. Diabetes. 1988;37(1):38–43.

    Article  CAS  PubMed  Google Scholar 

  102. Araki S, et al. Factors associated with frequent remission of microalbuminuria in patients with type 2 diabetes. Diabetes. 2005;54(10):2983–7.

    Article  CAS  PubMed  Google Scholar 

  103. Lane PH, Steffes MW, Mauer SM. Glomerular structure in IDDM women with low glomerular filtration rate and normal urinary albumin excretion. Diabetes. 1992;41(5):581–6.

    Article  CAS  PubMed  Google Scholar 

  104. Tsalamandris C, et al. Progressive decline in renal function in diabetic patients with and without albuminuria. Diabetes. 1994;43(5):649–55.

    Article  CAS  PubMed  Google Scholar 

  105. Nelson RG, et al. Determinants of end-stage renal disease in Pima Indians with type 2 (non-insulin-dependent) diabetes mellitus and proteinuria. Diabetologia. 1993;36(10):1087–93.

    Article  CAS  PubMed  Google Scholar 

  106. Pavkov ME, et al. Increasing incidence of proteinuria and declining incidence of end-stage renal disease in diabetic Pima Indians. Kidney Int. 2006;70(10):1840–6.

    Article  CAS  PubMed  Google Scholar 

  107. Nathan DM, et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329(14):977–86.

    Article  CAS  PubMed  Google Scholar 

  108. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352(9131):837–53.

    Article  Google Scholar 

  109. Patel A, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358(24):2560–72.

    Article  CAS  PubMed  Google Scholar 

  110. Ismail-Beigi F, et al. Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial. Lancet. 2010;376(9739):419–30.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Centers for Disease Control and Prevention (CDC). Prevalence of chronic kidney disease and associated risk factors–United States, 1999-2004. MMWR Morb Mortal Wkly Rep. 2007;56(8):161–5.

    Google Scholar 

  112. Retnakaran R, et al. Risk factors for renal dysfunction in type 2 diabetes: U.K. Prospective diabetes study 74. Diabetes. 2006;55(6):1832–9.

    Article  CAS  PubMed  Google Scholar 

  113. Molitch ME, et al. Development and progression of renal insufficiency with and without albuminuria in adults with type 1 diabetes in the diabetes control and complications trial and the epidemiology of diabetes interventions and complications study. Diabetes Care. 2010;33(7):1536–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Macisaac RJ, Jerums G. Diabetic kidney disease with and without albuminuria. Curr Opin Nephrol Hypertens. 2011;20(3):246–57.

    Article  CAS  PubMed  Google Scholar 

  115. Penno G, et al. Clinical significance of nonalbuminuric renal impairment in type 2 diabetes. J Hypertens. 2011;29(9):1802–9.

    Article  CAS  PubMed  Google Scholar 

  116. Afkarian M, et al. Clinical manifestations of kidney disease among US adults with diabetes, 1988-2014. JAMA. 2016;316(6):602–10.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Lee E, et al. The incidence of cardiovascular events is comparable between Normoalbuminuric and Albuminuric diabetic patients with chronic kidney disease. Medicine (Baltimore). 2016;95(15):e3175.

    Article  CAS  Google Scholar 

  118. Penno G, et al. Non-albuminuric renal impairment is a strong predictor of mortality in individuals with type 2 diabetes: the renal insufficiency and cardiovascular events (RIACE) Italian multicentre study. Diabetologia. 2018;61(11):2277–89.

    Article  CAS  PubMed  Google Scholar 

  119. Penno G, et al. Evidence for two distinct phenotypes of chronic kidney disease in individuals with type 1 diabetes mellitus. Diabetologia. 2017;60(6):1102–13.

    Article  CAS  PubMed  Google Scholar 

  120. Ginevri F, et al. Reversible tubular proteinuria precedes microalbuminuria and correlates with the metabolic status in diabetic children. Pediatr Nephrol. 1993;7(1):23–6.

    Article  CAS  PubMed  Google Scholar 

  121. Watts GF, et al. Low-molecular-weight proteinuria in insulin-dependent diabetes mellitus: a study of the urinary excretion of beta 2-microglobulin and retinol-binding protein in alkalinized patients with and without microalbuminuria. Diabetes Res. 1989;12(1):31–6.

    CAS  PubMed  Google Scholar 

  122. Walton C, et al. Tubular dysfunction and microalbuminuria in insulin dependent diabetes. Arch Dis Child. 1988;63(3):244–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hassan SB, Hanna MO. Urinary κ and λ immunoglobulin light chains in normoalbuminuric type 2 diabetes mellitus patients. J Clin Lab Anal. 2011;25(4):229–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Tojo A, Kinugasa S. Mechanisms of glomerular albumin filtration and tubular reabsorption. Int J Nephrol. 2012;2012:481520.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Dreisbach AW, Batuman V. Low-molecular-weight protein competition for binding sites on renal brush border membranes. Ren Physiol Biochem. 1994;17(6):287–93.

    CAS  PubMed  Google Scholar 

  126. Nakhoul N, Batuman V. Role of proximal tubules in the pathogenesis of kidney disease. Contrib Nephrol. 2011;169:37–50.

    Article  CAS  PubMed  Google Scholar 

  127. Caramori ML, et al. Cellular basis of diabetic nephropathy: IV. Antioxidant enzyme mRNA expression levels in skin fibroblasts of type 1 diabetic sibling pairs. Nephrol Dial Transplant. 2006;21(11):3122–6.

    Article  CAS  PubMed  Google Scholar 

  128. Brito PL, et al. Proximal tubular basement membrane width in insulin-dependent diabetes mellitus. Kidney Int. 1998;53(3):754–61.

    Article  CAS  PubMed  Google Scholar 

  129. Williams ME. Diabetic nephropathy: the proteinuria hypothesis. Am J Nephrol. 2005;25(2):77–94.

    Article  PubMed  Google Scholar 

  130. Alicic RZ, Rooney MT, Tuttle KR. Diabetic kidney disease. Clin J Am Soc Nephrol. 2017;12(12):2032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dragana Lovre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lovre, D., Thethi, T.K. (2022). Natural Course (Stages/Evidence-Based Discussion). In: Lerma, E.V., Batuman, V. (eds) Diabetes and Kidney Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-86020-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86020-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86019-6

  • Online ISBN: 978-3-030-86020-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics