Skip to main content

Bacillus thuringiensis Proteins: Structure, Mechanism and Biological Control of Insect Pests

  • Chapter
  • First Online:
Bacilli in Agrobiotechnology

Abstract

Bacillus thuringiensis (Bt) produces a wide variety of insecticidal proteins. It synthesizes δ-endotoxins as parasporal crystalline inclusion bodies during its sporulation and the stationary growth phase. It also produces vegetative insecticidal proteins that are initially given off during the bacterial vegetative growth stage. The insecticidal proteins are widely used as biopesticides either by spraying or by incorporating into transgenic crops. The application of these insecticidal proteins significantly reduced the use of synthetic chemical insecticides. It also controls the major agricultural pests with increased target specificity and environmental safety. This chapter updates the structure and specificity, insecticidal activity, mechanism of action, and application of Bt proteins for biological control of target insect pests in various crops. Furthermore, we discuss the benefits of using Bt biopesticides over chemical insecticides to promote sustainable and eco-friendly agriculture.

Authors Swapan Chakrabarty, Panchali Chakraborty contributed equally for this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adang MJ, Crickmore N, Jurat-Fuentes JL (2014) Diversity of Bacillus thuringiensis crystal toxins and mechanism of action. Adv Insect Physiol 47:39–87

    Article  Google Scholar 

  • Agaisse H, Lereclus D (1995) How does Bacillus thuringiensis produce so much insecticidal crystal protein? J Bacteriol 177:6027–6032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arpaia S, Mennella G, Onofaro V, Perri E, Sunseri F, Rotino GL (1997) Production of transgenic eggplant (Solanum melongena L.) resistant to Colorado potato beetle (Leptinotarsa decemlineata Say). Theor Appl Genet 95:329–334

    Article  CAS  Google Scholar 

  • Banyuls N, Hernandez-Rodriguez CS, Van Rie J, Ferre J (2018) Critical amino acids for the insecticidal activity of Vip3Af from Bacillus thuringiensis: inference on structural aspects. Sci Rep 8:7541

    Article  Google Scholar 

  • Barth H, Aktories K, Popoff MR, Stiles BG (2020) Binary bacterial toxins: biochemistry, biology, and applications of common Clostridium and Bacillus proteins. Microbiol Mol Biol Rev 68:373–402

    Article  Google Scholar 

  • Beegle CC, Yamamoto T (1992) Invitation paper (CP Alexander Fund): history of Bacillus thuringiensis Berliner research and development. Can Entomol 124:587–616

    Article  Google Scholar 

  • Bel Y, Banyuls N, Chakroun M, Escriche B, Ferre J (2017) Insights into the structure of the Vip3Aa insecticidal protein by protease digestion analysis. Toxins 9:131

    Article  PubMed Central  Google Scholar 

  • Berliner E (1915) Über die Schlaffsucht der Mehlmottenraupe (Ephestia kühniella Zell.) und ihren Erreger Bacillus thuringiensis n. sp. Z Angew Entomol 2:29–56

    Article  Google Scholar 

  • Berry C, O’Neil S, Ben-Dov E, Jones AF, Murphy L, Quail MA, Holden MT, Harris D, Zaritsky A, Parkhill J (2002) Complete sequence and organization of pBtoxis, the toxin-coding plasmid of Bacillus thuringiensis subsp. israelensis. Appl Environ Microbiol 68:5082–5095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beveridge N, Elek JA (2001) Insect and host-tree species influence the effectiveness of a Bacillus thuringiensis ssp. tenebrionis-based insecticide for controlling chrysomelid leaf beetles. Aust J Entomol 40:386–390

    Article  Google Scholar 

  • Bi Y, Zhang Y, Shu C, Crickmore N, Wang Q, Du L, Song F, Zhang J (2015) Genomic sequencing identifies novel Bacillus thuringiensis Vip1/Vip2 binary and Cry8 toxins that have high toxicity to Scarabaeoidea larvae. Appl Microbiol Biotechnol 99:753–760

    Article  CAS  PubMed  Google Scholar 

  • Bietlot H, Vishnubhatla I, Carey P, Pozsgay M, Kaplan H (1990) Characterization of the cysteine residues and disulphide linkages in the protein crystal of Bacillus thuringiensis. Biochem J 267:309–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boonserm P, Davis P, Ellar DJ, Li J (2005) Crystal structure of the mosquito-larvicidal toxin Cry4Ba and its biological implications. J Mol Biol 348:363–382

    Article  CAS  PubMed  Google Scholar 

  • Boonserm P, Mo M, Angsuthanasombat C, Lescar J (2006) Structure of the functional form of the mosquito larvicidal Cry4Aa toxin from Bacillus thuringiensis at a 2.8-angstrom resolution. J Bacteriol 188:3391–3401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boukedi H, Khedher SB, Triki N, Kamoun F, Saadaoui I, Chakroun M, Tounsi S, Abdelkefi-Mesrati L (2015) Overproduction of the Bacillus thuringiensis Vip3Aa16 toxin and study of its insecticidal activity against the carob moth Ectomyelois ceratoniae. J Invertebr Pathol 127:127–129

    Article  CAS  PubMed  Google Scholar 

  • Brar SK, Verma M, Tyagi R, Valéro JR (2006) Recent advances in downstream processing and formulations of Bacillus thuringiensis based biopesticides. Process Biochem 41:323–342

    Article  CAS  Google Scholar 

  • Bravo A, Gómez I, Conde J, Munoz-Garay C, Sánchez J, Miranda R, Zhuang M, Gill SS, Soberón M (2004) Oligomerization triggers binding of a Bacillus thuringiensis Cry1Ab pore-forming toxin to aminopeptidase N receptor leading to insertion into membrane microdomains. Biochim Biophys Acta 1667:38–46

    Article  CAS  PubMed  Google Scholar 

  • Bravo A, Gill SS, Soberón M (2005) Bacillus thuringiensis: mechanisms and use. In: Gilbert IL (ed) Comprehensive molecular insect science. Elsevier, Amsterdam, pp 175–205

    Google Scholar 

  • Bravo A, Gill SS, Soberón M (2007) Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49:423–435

    Article  CAS  PubMed  Google Scholar 

  • Bravo A, Likitvivatanavong S, Gill SS, Soberón M (2011) Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem Mol Biol 41:423–431

    Google Scholar 

  • Bretschneider A, Heckel DG, Pauchet Y (2016) Three toxins, two receptors, one mechanism: mode of action of Cry1A toxins from Bacillus thuringiensis in Heliothis virescens. Insect Biochem Mol Biol 76:109–117

    Article  CAS  PubMed  Google Scholar 

  • Butko P (2003) Cytolytic toxin Cyt1A and its mechanism of membrane damage: data and hypotheses. Appl Environ Microbiol 69:2415–2422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butko P, Huang F, Pusztai-Carey M, Surewicz WK (1996) Membrane permeabilization induced by cytolytic δ-endotoxin CytA from Bacillus thuringiensis var. israelensis. Biochemistry 35:11355–11360

    Article  CAS  PubMed  Google Scholar 

  • Carriere Y, Crickmore N, Tabashnik BE (2015) Optimizing pyramided transgenic Bt crops for sustainable pest management. Nat Biotechnol 33:161–168

    Article  CAS  PubMed  Google Scholar 

  • Castella C, Pauron D, Hilliou F, Zucchini-Pascal N, Gallet A, Barbero P (2019) Transcriptomic analysis of Spodoptera frugiperda Sf9 cells resistant to Bacillus thuringiensis Cry1Ca toxin reveals that extracellular Ca2+, Mg2+ and production of cAMP are involved in toxicity. Biol Open 8:bio037085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakrabarty S, Jin M, Wu C, Chakraborty P, Xiao Y (2020) Bacillus thuringiensis vegetative insecticidal protein family Vip3A and mode of action against pest lepidoptera. Pest Manag Sci 76:1612–1617

    Google Scholar 

  • Chakroun M, Ferré J (2014) In vivo and in vitro binding of Vip3Aa to Spodoptera frugiperda midgut and characterization of binding sites by 125I radiolabeling. Appl Environ Microbiol 80:6258–6265

    Google Scholar 

  • Chakroun M, Bel Y, Caccia S, Abdelkefi-Mesrati L, Escriche B, Ferre J (2012) Susceptibility of Spodoptera frugiperda and S. exigua to Bacillus thuringiensis Vip3Aa insecticidal protein. J Invertebr Pathol 110:334–339

    Article  CAS  PubMed  Google Scholar 

  • Chakroun M, Banyuls N, Bel Y, Escriche B, Ferre J (2016) Bacterial vegetative insecticidal proteins (Vip) from entomopathogenic bacteria. Microbiol Mol Biol Rev 80:329–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Jelenkovic G, Chin CK, Billings S, Eherhardt J, Goffreda JC, Day P (1995) Transfer and transcriptional expression of coleopteran CryIIIB endotoxin gene of Bacillus thuringiensis in eggplant. J Am Soc Hortic Sci 120:921–927

    Article  CAS  Google Scholar 

  • Cheng X, Sardana R, Kaplan H, Altosaar I (1998) Agrobacterium-transformed rice plants expressing synthetic cryIA(b) and cryIA(c) genes are highly toxic to striped stem borer and yellow stem borer. Proc Natl Acad Sci U S A 95:2767–2772

    Google Scholar 

  • Cohen S, Dym O, Albeck S, Ben-Dov E, Cahan R, Firer M, Zaritsky A (2008) High-resolution crystal structure of activated Cyt2Ba monomer from Bacillus thuringiensis subsp. israelensis. J Mol Biol 380:820–827

    Article  CAS  PubMed  Google Scholar 

  • Cohen S, Albeck S, Ben-Dov E, Cahan R, Firer M, Zaritsky A, Dym O (2011) Cyt1Aa toxin: crystal structure reveals implications for its membrane-perforating function. J Mol Biol 413:804–814

    Article  CAS  PubMed  Google Scholar 

  • Coyle DR, McMillin JD, Krause SC, Hart ER (2000) Laboratory and field evaluations of two Bacillus thuringiensis formulations, Novodor and Raven, for control of cottonwood leaf beetle (Coleoptera: Chrysomelidae). J Econ Entomol 93:713–720

    Article  CAS  PubMed  Google Scholar 

  • Crickmore N, Zeigler D, Feitelson J, Schnepf E, Van Rie J, Lereclus D, Baum J, Dean DH (1998) Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol Mol Biol Rev 62:807–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crickmore N, Baum J, Bravo A, Lereclus D, Narva K, Sampson K, Schnepf E, Sun M, Zeigler DR (2018) Bacillus thuringiensis toxin nomenclature. http://www.btnomenclature.info/. Accessed on 22 July 2020

  • Datta J, Monsur MB, Chakraborty P, Chakrabarty S, Sabagh AE, Hossain A, Mondal MF (2021) Obstacle in controlling major rice pests in Asia: insecticide resistance and the mechanisms to confer insecticide resistance. In: Fahad S, Sönmez O, Saud S, Wang D, Wu C, Adnan M, Arif M, Amanullah (eds) Engineering tolerance in crop plants against abiotic stress. CRC Press, Boca Raton

    Google Scholar 

  • de Escudero IR, Banyuls N, Bel Y, Maeztu M, Escriche B, Munoz D, Caballero P, Ferre J (2014) A screening of five Bacillus thuringiensis Vip3A proteins for their activity against lepidopteran pests. J Invertebr Pathol 117:51–55

    Article  Google Scholar 

  • de Maagd RA, Bravo A, Crickmore N (2001) How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet 17:193–199

    Article  PubMed  Google Scholar 

  • de Maagd RA, Bravo A, Berry C, Crickmore N, Schnepf HE (2003) Structure, diversity, and evolution of protein toxins from spore-forming entomopathogenic bacteria. Annu Rev Genet 37:409–433

    Article  PubMed  Google Scholar 

  • Derbyshire DJ, Ellar DJ, Li J (2001) Crystallization of the Bacillus thuringiensis toxin Cry1Ac and its complex with the receptor ligand N-acetyl-D-galactosamine. Acta Crystallogr Sect D 57:1938–1944

    Article  CAS  Google Scholar 

  • Domínguez-Arrizabalaga M, Villanueva M, Escriche B, Ancín-Azpilicueta C, Caballero P (2020) Insecticidal activity of Bacillus thuringiensis proteins against coleopteran pests. Toxins 12:430

    Article  PubMed Central  Google Scholar 

  • Donovan WP, Engleman JT, Donovan JC, Baum JA, Bunkers GJ, Chi DJ, Clinton WP, English L, Heck GR, Ilagan OM, Krasomil-Osterfeld KC, Pitkin JW, Roberts JK, Walters MR (2006) Discovery and characterization of Sip1A: a novel secreted protein from Bacillus thuringiensis with activity against coleopteran larvae. Appl Microbiol Biotechnol 72:713–719

    Article  CAS  PubMed  Google Scholar 

  • Endo H, Azuma M, Adegawa S, Kikuta S, Sato R (2017) Water influx via aquaporin directly determines necrotic cell death induced by the Bacillus thuringiensis Cry toxin. FEBS Lett 591:56–64

    Article  CAS  PubMed  Google Scholar 

  • Estruch JJ, Warren GW, Mullins MA, Nye GJ, Craig JA, Koziel MG (1996) Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc Natl Acad Sci U S A 93:5389–5394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evdokimov AG, Moshiri F, Sturman EJ, Rydel TJ, Zheng M, Seale JW, Franklin S (2014) Structure of the full-length insecticidal protein Cry1Ac reveals intriguing details of toxin packaging into in vivo formed crystals. Protein Sci 23:1491–1497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fayad N, Awad MK, Mahillon J (2019) Diversity of Bacillus cereus sensu lato mobilome. BMC Genomics 20:436

    Article  PubMed  PubMed Central  Google Scholar 

  • Federici BA, Bauer LS (1998) Cyt1Aa protein of Bacillus thuringiensis is toxic to the cottonwood leaf beetle, Chrysomela scripta, and suppresses high levels of resistance to Cry3Aa. Appl Environ Microbiol 64:4368–4371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Federici BA, Siegel JP (2008) Safety assessment of Bacillus thuringiensis and Bt crops used in insect control. In: Hammond BG (ed) Food safety of proteins in agricultural biotechnology. CRC Press, New York, pp 45–102

    Google Scholar 

  • Fernández-Chapa D, Ramírez-Villalobos J, Galán-Wong L (2019) Toxic potential of Bacillus thuringiensis: an overview. In: Jia Y (ed) Protecting rice grains in the post-genomic era. IntechOpen, London, pp 183–204

    Google Scholar 

  • Galitsky N, Cody V, Wojtczak A, Ghosh D, Luft JR, Pangborn W, English L (2001) Structure of the insecticidal bacterial δ-endotoxin Cry3Bb1 of Bacillus thuringiensis. Acta Crystallogr Sect D 57:1101–1109

    Article  CAS  Google Scholar 

  • Gawron-Burke C, Baum JA (1991) Genetic manipulation of Bacillus thuringiensis insecticidal crystal protein genes in bacteria. In: Setlow JK (ed) Genetic engineering: principles and methods. Springer, Boston, pp 237–263

    Chapter  Google Scholar 

  • Gazit E, Burshtein N, Ellar DJ, Sawyer T, Shai Y (1997) Bacillus thuringiensis cytolytic toxin associates specifically with its synthetic helices A and C in the membrane bound state. Implications for the assembly of oligomeric transmembrane pores. Biochemistry 36:15546–15554

    Google Scholar 

  • Gouffon CV, Van Vliet A, Van Rie J, Jansens S, Jurat-Fuentes JL (2011) Binding sites for Bacillus thuringiensis Cry2Ae toxin on heliothine brush border membrane vesicles are not shared with Cry1A, Cry1F, or Vip3A toxin. Appl Environ Microbiol 77:3182–3188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grochulski P, Masson L, Borisova S, Pusztai-Carey M, Schwartz JL, Brousseau R, Cygler M (1995) Bacillus thuringiensis CrylA(a) insecticidal toxin: crystal structure and channel formation. J Mol Biol 254:447–464

    Google Scholar 

  • Guerchicoff A, Delécluse A, Rubinstein CP (2001) The Bacillus thuringiensis cyt genes for hemolytic endotoxins constitute a gene family. Appl Environ Microbiol 67:1090–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo S, Ye S, Liu Y, Wei L, Xue J, Wu H, Song F, Zhang J, Wu X, Huang D, Rao Z (2009) Crystal structure of Bacillus thuringiensis Cry8Ea1: an insecticidal toxin toxic to underground pests, the larvae of Holotrichia parallela. J Struct Biol 168:259–266

    Article  CAS  PubMed  Google Scholar 

  • Han S, Craig JA, Putnam CD, Carozzi NB, Tainer JA (1999) Evolution and mechanism from structures of an ADP-ribosylating toxin and NAD complex. Nat Struct Biol 6:932–936

    Article  CAS  PubMed  Google Scholar 

  • Hari NS, Jindal J, Malhi NS (2008) Resistance of Cry1Ab maize to spotted stemborer Chilo partellus (Lepidoptera: Crambidae) in India. Int J Trop Insect Sci 27:223–228

    Article  Google Scholar 

  • Helgason E, Økstad OA, Caugant DA, Johansen HA, Fouet A, Mock M, Hegna I, Kolstø AB (2000) Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis-one species on the basis of genetic evidence. Appl Environ Microbiol 66:2627–2630

    Google Scholar 

  • Hernández-Martínez P, Hernández-Rodríguez CS, Van Rie J, Escriche B, Ferré J (2013) Insecticidal activity of Vip3Aa, Vip3Ad, Vip3Ae, and Vip3Af from Bacillus thuringiensis against lepidopteran corn pests. J Invertebr Pathol 113:78–81

    Article  PubMed  Google Scholar 

  • Hernández-Martínez P, Gomis-Cebolla J, Ferré J, Escriche B (2017) Changes in gene expression and apoptotic response in Spodoptera exigua larvae exposed to sublethal concentrations of Vip3 insecticidal proteins. Sci Rep 7:1–12

    Article  Google Scholar 

  • Höfte H, Whiteley HR (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev 53:242–255

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang F, McGaughey WH (1999) Inheritance of resistance to Bacillus thuringiensis toxin (Dipel ES) in the European corn borer. Science 284:965–967

    Article  CAS  PubMed  Google Scholar 

  • Hui F, Scheib U, Hu Y, Sommer RJ, Aroian RV, Ghosh P (2012) Structure and glycolipid binding properties of the nematicidal protein Cry5B. Biochemistry 51:9911–9921

    Article  CAS  PubMed  Google Scholar 

  • Islam MT, Rahman MM, Pandey P, Jha CK, Aeron A (2016) Bacilli in agrobiotechnology. Springer Nature, Cham

    Book  Google Scholar 

  • Islam MT, Rahman MM, Pandey P, Boehme MH, Haesaert G (2019) Bacilli in agrobiotechnology: phytostimulation and biocontrol, vol 2. Springer Nature, Cham

    Book  Google Scholar 

  • Jiang K, Hou X, Han L, Tan T, Cao Z, Cai J (2018a) Fibroblast growth factor receptor, a novel receptor for vegetative insecticidal protein Vip3Aa. Toxins 10:546

    Article  CAS  PubMed Central  Google Scholar 

  • Jiang K, Hou XY, Tan TT, Cao ZL, Mei SQ, Yan B, Chang J, Han L, Zhao D, Cai J (2018b) Scavenger receptor-C acts as a receptor for Bacillus thuringiensis vegetative insecticidal protein Vip3Aa and mediates the internalization of Vip3Aa via endocytosis. PLoS Pathog 14:e1007347

    Article  PubMed  PubMed Central  Google Scholar 

  • Jin M, Liao C, Chakrabarty S, Zheng W, Wu K, Xiao Y (2019a) Transcriptional response of ATP-binding cassette (ABC) transporters to insecticides in the cotton bollworm, Helicoverpa armigera. Pestic Biochem Physiol 154:46–59

    Article  CAS  PubMed  Google Scholar 

  • Jin M, Liao C, Chakrabarty S, Wu K, Xiao Y (2019b) Comparative proteomics of peritrophic matrix provides an insight into its role in Cry1Ac resistance of cotton bollworm Helicoverpa armigera. Toxins 11:92

    Article  CAS  PubMed Central  Google Scholar 

  • Jin M, Yang Y, Shan Y, Chakrabarty S, Cheng Y, Soberón M, Bravo A, Liu K, Wu K, Xiao Y (2021) Two ABC transporters are differentially involved in the toxicity of two Bacillus thuringiensis Cry1 toxins to the invasive crop-pest Spodoptera frugiperda (JE Smith). Pest Manag Sci 77:1492–1501

    Article  CAS  PubMed  Google Scholar 

  • Jing X, Yuan Y, Wu Y, Wu D, Gong P, Gao M (2019) Crystal structure of Bacillus thuringiensis Cry7Ca1 toxin active against Locusta migratoria manilensis. Protein Sci 28:609–619

    Article  CAS  PubMed  Google Scholar 

  • Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Bioinformatics 8:275–282

    Article  CAS  Google Scholar 

  • Jouzani GS, Valijanian E, Sharafi R (2017) Bacillus thuringiensis: a successful insecticide with new environmental features and tidings. Appl Microbiol Biotechnol 101:2691–2711

    Google Scholar 

  • Jucovic M, Walters FS, Warren GW, Palekar NV, Chen JS (2008) From enzyme to zymogen: engineering Vip2, an ADP-ribosyltransferase from Bacillus cereus, for conditional toxicity. Protein Eng Des Sel 21:631–638

    Article  CAS  PubMed  Google Scholar 

  • Jurat-Fuentes JL, Heckel DG, Ferré J (2021) Mechanisms of resistance to insecticidal proteins from Bacillus thuringiensis. Annu Rev Entomol 66:121–140

    Article  CAS  PubMed  Google Scholar 

  • Kelker MS, Berry C, Evans SL, Pai R, McCaskill DG, Wang NX, Russell JC, Baker MD, Yang C, Pflugrath JW, Wade M, Wess TJ, Narva KE (2014) Structural and biophysical characterization of Bacillus thuringiensis insecticidal proteins Cry34Ab1 and Cry35Ab1. PLoS One 9:e112555

    Article  PubMed  PubMed Central  Google Scholar 

  • Knowles BH (1994) Mechanism of action of Bacillus thuringiensis insecticidal δ-endotoxins. Adv Insect Physiol 24:275–308

    Article  CAS  Google Scholar 

  • Kumar PA, Mandaokar A, Sreenivasu K, Chakrabarti SK, Bisaria S, Sharma SR, Kaur S, Sharma RP (1998) Insect-resistant transgenic brinjal plants. Mol Breed 4:33–37

    Article  CAS  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwa MS, de Maagd RA, Stiekema WJ, Vlak JM, Bosch D (1998) Toxicity and binding properties of the Bacillus thuringiensis delta-endotoxin Cry1C to cultured insect cells. J Invertebr Pathol 71:121–127

    Article  CAS  PubMed  Google Scholar 

  • Lee MK, Walters FS, Hart H, Palekar N, Chen JS (2003) The mode of action of the Bacillus thuringiensis vegetative insecticidal protein Vip3A differs from that of Cry1Ab δ-endotoxin. Appl Environ Microbiol 69:4648–4657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee MK, Miles P, Chen JS (2006) Brush border membrane binding properties of Bacillus thuringiensis Vip3A toxin to Heliothis virescens and Helicoverpa zea midguts. Biochem Biophys Res Commun 339:1043–1047

    Article  CAS  PubMed  Google Scholar 

  • Li J, Carroll J, Ellar DJ (1991) Crystal structure of insecticidal δ-endotoxin from Bacillus thuringiensis at 2.5 Å resolution. Nature 353:815–821

    Article  CAS  PubMed  Google Scholar 

  • Li J, Koni PA, Ellar DJ (1996) Structure of the mosquitocidal δ-endotoxin CytB from Bacillus thuringiensis sp. kyushuensis and implications for membrane pore formation. J Mol Biol 257:129–152

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Song F, Zhang J, Liu R, He K, Tan J, Huang D (2007) Identification of vip3A-type genes from Bacillus thuringiensis strains and characterization of a novel vip3A-type gene. Lett Appl Microbiol 45:432–438

    Article  CAS  PubMed  Google Scholar 

  • Liu JG, Yang AZ, Shen XH, Hua BG, Shi GL (2011) Specific binding of activated Vip3Aa10 to Helicoverpa armigera brush border membrane vesicles results in pore formation. J Invertebr Pathol 108:92–97

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Wang Y, Shu C, Lin K, Song F, Bravo A, Soberón M, Zhang J (2018) Cry64Ba and Cry64Ca, two ETX/MTX2-type Bacillus thuringiensis insecticidal proteins active against hemipteran pests. Appl Environ Microbiol 84:e01996–e01917

    Article  PubMed  PubMed Central  Google Scholar 

  • Lord JC (2005) From Metchnikoff to Monsanto and beyond: the path of microbial control. J Invertebr Pathol 89:19–29

    Article  PubMed  Google Scholar 

  • Manasherob R, Itsko M, Sela-Baranes N, Ben-Dov E, Berry C, Cohen S, Zaritsky A (2006) Cyt1Ca from Bacillus thuringiensis subsp. israelensis: production in Escherichia coli and comparison of its biological activities with those of other Cyt-like proteins. Microbiology 152:2651–2659

    Article  CAS  PubMed  Google Scholar 

  • Masson L, Schwab G, Mazza A, Brousseau R, Potvin L, Schwartz JL (2004) A novel Bacillus thuringiensis (PS149B1) containing a Cry34Ab1/Cry35Ab1 binary toxin specific for the western corn rootworm Diabrotica virgifera virgifera LeConte forms ion channels in lipid membranes. Biochemistry 43:12349–12357

    Article  CAS  PubMed  Google Scholar 

  • Mendoza-Almanza G, Esparza-Ibarra EL, Ayala-Luján JL, Mercado-Reyes M, Godina-González S, Hernández-Barrales M, Olmos-Soto J (2020) The cytocidal spectrum of Bacillus thuringiensis toxins: from insects to human cancer cells. Toxins 12:301

    Article  CAS  PubMed Central  Google Scholar 

  • Milne R, Liu Y, Gauthier D, Van Frankenhuyzen K (2008) Purification of Vip3Aa from Bacillus thuringiensis HD-1 and its contribution to toxicity of HD-1 to spruce budworm (Choristoneura fumiferana) and gypsy moth (Lymantria dispar)(Lepidoptera). J Invertebr Pathol 99:166–172

    Article  CAS  PubMed  Google Scholar 

  • Morse RJ, Yamamoto T, Stroud RM (2001) Structure of Cry2Aa suggests an unexpected receptor binding epitope. Structure 9:409–417

    Article  CAS  PubMed  Google Scholar 

  • OECD (Organisation for Economic Co-operation and Development) (2007) Consensus document on safety information on transgenic plants expressing Bacillus thuringiensis – derived insect control protein. OECD Pap 7:35–35

    Google Scholar 

  • Osman GH, Soltane R, Saleh I, Abulreesh HH, Gazi KS, Arif IA, Ramadan AM, Alameldin HF, Osman YA, Idriss M (2019) Isolation, characterization, cloning and bioinformatics analysis of a novel receptor from black cut worm (Agrotis ipsilon) of Bacillus thuringiensis vip3Aa toxins. Saudi J Biol Sci 26:1078–1083

    Article  CAS  PubMed  Google Scholar 

  • Pacheco S, Gómez I, Arenas I, Saab-Rincon G, Rodríguez-Almazán C, Gill SS, Bravo A, Soberón M (2009) Domain II loop 3 of Bacillus thuringiensis Cry1Ab toxin is involved in a “ping pong” binding mechanism with Manduca sexta aminopeptidase-N and cadherin receptors. J Biol Chem 284:32750–32757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palma L, Muñoz D, Berry C, Murillo J, Caballero P (2014) Bacillus thuringiensis toxins: an overview of their biocidal activity. Toxins 6:3296–3325

    Google Scholar 

  • Pardo-López L, Gómez I, Rausell C, Sánchez J, Soberón M, Bravo A (2006) Structural changes of the Cry1Ac oligomeric pre-pore from Bacillus thuringiensis induced by N-acetylgalactosamine facilitates toxin membrane insertion. Biochemistry 45:10329–10336

    Article  PubMed  Google Scholar 

  • Pardo-Lopez L, Soberon M, Bravo A (2013) Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection. FEMS Microbiol Rev 37:3–22

    Google Scholar 

  • Paul SK, Mahmud NU, Islam T (2022) Impacts of Bt brinjal on economic benefit of the farmers and environmental sustainability in Bangladesh. In: Bacilli in agrobiotechnology: plant stress tolerance, bioremediation, and bioprospecting, vol 3. Springer Nature, Cham

    Google Scholar 

  • Pigott CR, Ellar DJ (2007) Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiol Mol Biol Rev 71:255–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Promdonkoy B, Rungrod A, Promdonkoy P, Pathaichindachote W, Krittanai C, Panyim S (2008) Amino acid substitutions in αA and αC of Cyt2Aa2 alter hemolytic activity and mosquito-larvicidal specificity. J Biotechnol 133:287–293

    Article  CAS  PubMed  Google Scholar 

  • Qiman H, Liqun M, Weihong H, Sandui G (1998) Transgenic tobacco plants with a fully synthesized GFM CryIA gene provide effective tobacco bollworm (Heliothis armigera) control. J Integr Plant Biol 40:228–233

    Google Scholar 

  • Raymond B, Johnston PR, Nielsen-LeRoux C, Lereclus D, Crickmore N (2010) Bacillus thuringiensis: an impotent pathogen? Trends Microbiol 18:189–194

    Google Scholar 

  • Rodríguez-Almazán C, Zavala LE, Munoz-Garay C, Jimenez-Juarez N, Pacheco S, Masson L, Soberón M, Bravo A (2009) Dominant negative mutants of Bacillus thuringiensis Cry1Ab toxin function as anti-toxins: demonstration of the role of oligomerization in toxicity. PLoS One 4:e5545

    Article  PubMed  PubMed Central  Google Scholar 

  • Rydel T, Sharamitaro J, Brown G, Gouzov V, Seale J, Sturman E, Thoma R, Gruys K, Isaac BB (2001) The crystal structure of a coleopteran insect-active binary Bt protein toxin complex at 2.5 Å resolution. Annual meeting of the American Crystallographic Association. Los Angeles, CA, USA

    Google Scholar 

  • Sajid M, Geng C, Li M, Wang Y, Liu H, Zheng J, Peng D, Sun M (2018) Whole-genome analysis of Bacillus thuringiensis revealing partial genes as a source of novel Cry toxins. Appl Environ Microbiol 8:e00277-18

    Article  Google Scholar 

  • Sanahuja G, Banakar R, Twyman RM, Capell T, Christou P (2011) Bacillus thuringiensis: a century of research, development and commercial applications. Plant Biotechnol J 9:283–300

    Google Scholar 

  • Sattar S, Maiti MK (2011) Molecular characterization of a novel vegetative insecticidal protein from Bacillus thuringiensis effective against sap-sucking insect pest. J Microbiol Biotechnol 21:937–946

    Article  CAS  PubMed  Google Scholar 

  • Schnepf HE, Whiteley HR (1981) Cloning and expression of the Bacillus thuringiensis crystal protein gene in Escherichia coli. Proc Natl Acad Sci U S A 78:2893–2897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62:775–806

    Google Scholar 

  • Schünemann R, Knaak N, Cassal MC, Fiuza LM (2014) Pest management of soybean: sustainable production techniques. In: Sahayaraj K (ed) Basic and applied aspects of biopesticides. Springer, New Delhi, pp 357–373

    Google Scholar 

  • Sena JAD, Hernández-Rodríguez CS, Ferré J (2009) Interaction of Bacillus thuringiensis Cry1 and Vip3A proteins with Spodoptera frugiperda midgut binding sites. Appl Environ Microbiol 75:2236–2237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shelton AM, Hossain MJ, Paranjape V, Azad AK, Rahman ML, Khan ASMMR, Prodhan MZH, Rashid MA, Majumder R, Hossain MA, Hussain SS, Huesing JE, McCandless L (2018) Bt eggplant project in Bangladesh: history, present status, and future direction. Front Bioeng Biotechnol 6:106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shelton AM, Sarwer SH, Hossain MJ, Brookes G, Paranjape V (2020) Impact of Bt brinjal cultivation in the market value chain in five districts of Bangladesh. Front Bioeng Biotechnol 8:498

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Xu W, Yuan M, Tang M, Chen J, Pang Y (2004) Expression of vip1/vip2 genes in Escherichia coli and Bacillus thuringiensis and the analysis of their signal peptides. J Appl Microbiol 97:757–765

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Ma W, Yuan M, Sun F, Pang Y (2007) Cloning of vip1/vip2 genes and expression of Vip1Ca/Vip2Ac proteins in Bacillus thuringiensis. World J Microbiol Biotechnol 23:501–507

    Article  CAS  Google Scholar 

  • Shu Q, Ye G, Cui H, Cheng X, Xiang Y, Wu D, Gao M, Xia Y, Hu C, Sardana R, Altosaar I (2000) Transgenic rice plants with a synthetic cry1Ab gene from Bacillus thuringiensis were highly resistant to eight lepidopteran rice pest species. Mol Breed 6:433–439

    Article  CAS  Google Scholar 

  • Singh G, Sachdev B, Sharma N, Seth R, Bhatnagar RK (2010) Interaction of Bacillus thuringiensis vegetative insecticidal protein with ribosomal S2 protein triggers larvicidal activity in Spodoptera frugiperda. Appl Environ Microbiol 76:7202–7209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soberon M, Gill SS, Bravo A (2009) Signaling versus punching hole: how do Bacillus thuringiensis toxins kill insect midgut cells? Cell Mol Life Sci 66:1337–1349

    Article  CAS  PubMed  Google Scholar 

  • Soberón M, López-Díaz JA, Bravo A (2013) Cyt toxins produced by Bacillus thuringiensis: a protein fold conserved in several pathogenic microorganisms. Peptides 41:87–93

    Article  PubMed  Google Scholar 

  • Tabashnik BE, Brévault T, Carrière Y (2013) Insect resistance to Bt crops: lessons from the first billion acres. Nat Biotechnol 31:510–521

    Article  CAS  PubMed  Google Scholar 

  • Tanaka S, Miyamoto K, Noda H, Jurat-Fuentes JL, Yoshizawa Y, Endo H, Sato R (2013) The ATP-binding cassette transporter subfamily C member 2 in Bombyx mori larvae is a functional receptor for cry toxins from Bacillus thuringiensis. FEBS J 280:1782–1794

    Article  CAS  PubMed  Google Scholar 

  • Thomas WE, Ellar DJ (1983) Bacillus thuringiensis var israelensis crystal delta-endotoxin: effects on insect and mammalian cells in vitro and in vivo. J Cell Sci 60:181–197

    Google Scholar 

  • Tu J, Zhang G, Datta K, Xu C, He Y, Zhang Q, Khush GS, Datta SK (2000) Field performance of transgenic elite commercial hybrid rice expressing Bacillus thuringiensis δ-endotoxin. Nat Biotechnol 18:1101–1104

    Article  CAS  PubMed  Google Scholar 

  • Usta C (2013) Microorganisms in biological pest control-a review (bacterial toxin application and effect of environmental factors). Curr Prog Biol Res 13:287–317

    Google Scholar 

  • Vachon V, Laprade R, Schwartz JL (2012) Current models of the mode of action of Bacillus thuringiensis insecticidal crystal proteins: a critical review. J Invertebr Pathol 111:1–12

    Article  CAS  PubMed  Google Scholar 

  • Vílchez S (2020) Making 3D-Cry toxin mutants: much more than a tool of understanding toxins mechanism of action. Toxins 12:600

    Article  PubMed Central  Google Scholar 

  • Warren GW (1997) Vegetative insecticidal proteins: novel proteins for control of corn pests. In: Carozzi B (ed) Advances in insect control: the role of transgenic plants. CRC Press, London, pp 109–121

    Google Scholar 

  • Wei JZ, Hale K, Carta L, Platzer E, Wong C, Fang SC, Aroian RV (2003) Bacillus thuringiensis crystal proteins that target nematodes. Proc Natl Acad Sci U S A 100:2760–2765

    Google Scholar 

  • WHO (World Health Organization) (1999) Microbial pest control agent: Bacillus thuringiensis. World Health Organization & International Programme on Chemical Safety. https://apps.who.int/iris/handle/10665/42242. Accessed on 20 July 2020

    Google Scholar 

  • Wickham TJ, Davis T, Granados RR, Shuler ML, Wood HA (1992) Screening of insect cell lines for the production of recombinant proteins and infectious virus in the baculovirus expression system. Biotechnol Prog 8:391–396

    Article  CAS  PubMed  Google Scholar 

  • Wu KM, Guo YY (2005) The evolution of cotton pest management practices in China. Annu Rev Entomol 50:31–52

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Chakrabarty S, Jin M, Liu K, Xiao Y (2019) Insect ATP-binding cassette (ABC) transporters: roles in xenobiotic detoxification and Bt insecticidal activity. Int J Mol Sci 20:2829

    Article  CAS  PubMed Central  Google Scholar 

  • Ye W, Zhu L, Liu Y, Crickmore N, Peng D, Ruan L, Sun M (2012) Mining new crystal protein genes from Bacillus thuringiensis on the basis of mixed plasmid-enriched genome sequencing and a computational pipeline. Appl Environ Microbiol 78:4795–4801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu CG, Mullins MA, Warren GW, Koziel MG, Estruch JJ (1997) The Bacillus thuringiensis vegetative insecticidal protein Vip3A lyses midgut epithelium cells of susceptible insects. Appl Environ Microbiol 63:532–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu H, Li Y, Li X, Romeis J, Wu K (2013) Expression of Cry1Ac in transgenic Bt soybean lines and their efficiency in controlling lepidopteran pests. Pest Manag Sci 69:1326–1333

    Article  CAS  PubMed  Google Scholar 

  • Zack MD, Sopko MS, Frey ML, Wang X, Tan SY, Arruda JM, Letherer TT, Narva KE (2017) Functional characterization of Vip3Ab1 and Vip3Bc1: two novel insecticidal proteins with differential activity against lepidopteran pests. Sci Rep 7:1–12

    Article  CAS  Google Scholar 

  • Zghal RZ, Elleuch J, Ali MB, Darriet F, Rebaï A, Chandre F, Jaoua S, Tounsi S (2017) Towards novel Cry toxins with enhanced toxicity/broader: a new chimeric Cry4Ba/Cry1Ac toxin. Appl Microbiol Biotechnol 101:113–122

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Candas M, Griko NB, Taussig R, Bulla LA Jr (2006) A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis. Proc Natl Acad Sci U S A 103:9897–9902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Liu B, Zheng W, Liu C, Zhang D, Zhao S, Li Z, Xu P, Wilson K, Withers A, Jones C, Smith J, Chipabika G, Kachigamba D, Nam K, d’Alençon E, Liu B, Liang X, Jin M, Wu C, Chakrabarty S, Yang X, Jiang Y, Liu J, Liu X, Quan W, Wang G, Fan W, Qian W, Wu K, Xiao Y (2020) Genetic structure and insecticide resistance characteristics of fall armyworm populations invading China. Mol Ecol Resour 20:1682–1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang M, Oltean DI, Gómez I, Pullikuth AK, Soberón M, Bravo A, Gill SS (2002) Heliothis virescens and Manduca sexta lipid rafts are involved in Cry1A toxin binding to the midgut epithelium and subsequent pore formation. J Biol Chem 277:13863–13872

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutao Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chakrabarty, S. et al. (2022). Bacillus thuringiensis Proteins: Structure, Mechanism and Biological Control of Insect Pests. In: Islam, M.T., Rahman, M., Pandey, P. (eds) Bacilli in Agrobiotechnology. Bacilli in Climate Resilient Agriculture and Bioprospecting. Springer, Cham. https://doi.org/10.1007/978-3-030-85465-2_25

Download citation

Publish with us

Policies and ethics