Skip to main content

A Discussion of Machine Learning Approaches for Clinical Prediction Modeling

  • Conference paper
  • First Online:
Machine Learning in Clinical Neuroscience

Part of the book series: Acta Neurochirurgica Supplement ((NEUROCHIRURGICA,volume 134))

Abstract

While machine learning has occupied a niche in clinical medicine for decades, continued method development and increased accessibility of medical data have led to broad diversification of approaches. These range from humble regression-based models to more complex artificial neural networks; yet, despite heterogeneity in foundational principles and architecture, the spectrum of machine learning approaches to clinical prediction modeling have invariably led to the development of algorithms advancing our ability to provide optimal care for our patients. In this chapter, we briefly review early machine learning approaches in medicine before delving into common approaches being applied for clinical prediction modeling today. For each, we offer a brief introduction into theory and application with accompanying examples from the medical literature. In doing so, we present a summarized image of the current state of machine learning and some of its many forms in medical predictive modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Reinforcement learning, a third subcategory, is not discussed here.

References

  1. Ghahramani Z. Probabilistic machine learning and artificial intelligence. Nature. 2015;521:452–9. https://doi.org/10.1038/nature14541.

    Article  PubMed  CAS  Google Scholar 

  2. Senders JT, Arnaout O, Karhade AV, Dasenbrock HH, Gormley WB, Broekman ML, Smith TR. Natural and artificial intelligence in neurosurgery: a systematic review. Neurosurgery. 2018;83:181–92. https://doi.org/10.1093/neuros/nyx384.

    Article  PubMed  Google Scholar 

  3. Zhao ZX, Lan K, Xiao JH, Zhang Y, Xu P, Jia L, He M. A new method to classify pathologic grades of astrocytomas based on magnetic resonance imaging appearances. Neurol India. 2010;58:685–90. https://doi.org/10.4103/0028-3886.72161.

    Article  PubMed  Google Scholar 

  4. Bidiwala S, Pittman T. Neural network classification of pediatric posterior fossa tumors using clinical and imaging data. Pediatr Neurosurg. 2004;40:8–15. https://doi.org/10.1159/000076571.

    Article  PubMed  Google Scholar 

  5. Tankus A, Yeshurun Y, Fried I. An automatic measure for classifying clusters of suspected spikes into single cells versus multiunits. J Neural Eng. 2009;6:056001. https://doi.org/10.1088/1741-2560/6/5/056001.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Shortliffe E. Computer-based medical consultations: MYCIN, vol. 2. Amsterdam: Elsevier; 2012.

    Google Scholar 

  7. Shortliffe EH, Axline SG, Buchanan BG, Merigan TC, Cohen SN. An artificial intelligence program to advise physicians regarding antimicrobial therapy. Comput Biomed Res. 1973;6:544–60. https://doi.org/10.1016/0010-4809(73)90029-3.

    Article  PubMed  CAS  Google Scholar 

  8. Roberts AW, Visconti JA. The rational and irrational use of systemic antimicrobial drugs. Am J Hosp Pharm. 1972;29:828–34.

    PubMed  CAS  Google Scholar 

  9. Yu VL, Buchanan BG, Shortliffe EH, Wraith SM, Davis R, Scott AC, Cohen SN. Evaluating the performance of a computer-based consultant. Comput Programs Biomed. 1979;9:95–102. https://doi.org/10.1016/0010-468x(79)90022-9.

    Article  PubMed  CAS  Google Scholar 

  10. Ullman S. Artificial intelligence and the brain: computational studies of the visual system. Annu Rev Neurosci. 1986;9:1–26. https://doi.org/10.1146/annurev.ne.09.030186.000245.

    Article  PubMed  CAS  Google Scholar 

  11. Fisher WS 3rd. Computer-aided intelligence: application of an expert system to brachial plexus injuries. Neurosurgery. 1990;27:837–43; discussion 843.

    Article  PubMed  Google Scholar 

  12. Ball SS, Mah VH, Miller PL. SENEX: a computer-based representation of cellular signal transduction processes in the central nervous system. Comput Appl Biosci. 1991;7:175–87. https://doi.org/10.1093/bioinformatics/7.2.175.

    Article  PubMed  CAS  Google Scholar 

  13. Stigler SM. Gauss and the invention of least squares. Ann Stat. 1981;9:465–74.

    Article  Google Scholar 

  14. Cox DR. Regression models and life-tables. J R Stat Soc Ser B Methodol. 1972;34:187–202.

    Google Scholar 

  15. Platt J. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In: Advances in large margin classifiers, vol. 10; 1999. p. 61–74.

    Google Scholar 

  16. Hsieh FY. Sample size tables for logistic regression. Stat Med. 1989;8:795–802. https://doi.org/10.1002/sim.4780080704.

    Article  PubMed  CAS  Google Scholar 

  17. Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR. A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol. 1996;49:1373–9. https://doi.org/10.1016/s0895-4356(96)00236-3.

    Article  PubMed  CAS  Google Scholar 

  18. Hoerl AE, Kennard RW. Ridge regression: biased estimation for nonorthogonal problems. Technometrics. 1970;12:55–67.

    Article  Google Scholar 

  19. Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Ser B Methodol. 1996;58:267–88.

    Google Scholar 

  20. Zou H, Hastie T. Regularization and variable selection via the elastic net. J R Stat Soc Ser B Sstat Methodol. 2005;67:301–20.

    Article  Google Scholar 

  21. Simon N, Friedman J, Hastie T, Tibshirani R. Regularization paths for Cox’s proportional hazards model via coordinate descent. J Stat Softw. 2011;39:1.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tibshirani R. The lasso method for variable selection in the Cox model. Stat Med. 1997;16:385–95.

    Article  PubMed  CAS  Google Scholar 

  23. Voglis S, van Niftrik CHB, Staartjes VE, Brandi G, Tschopp O, Regli L, Serra C. Feasibility of machine learning based predictive modelling of postoperative hyponatremia after pituitary surgery. Pituitary. 2020;23:543–51. https://doi.org/10.1007/s11102-020-01056-w.

    Article  PubMed  Google Scholar 

  24. Keerthi SS, Lin C-J. Asymptotic behaviors of support vector machines with Gaussian kernel. Neural Comput. 2003;15:1667–89.

    Article  PubMed  Google Scholar 

  25. Hsu C-W, Chang C-C, Lin C-J. A practical guide to support vector classification. Taipei: University of National Taiwan; 2003.

    Google Scholar 

  26. Pochet N, Suykens J. Support vector machines versus logistic regression: improving prospective performance in clinical decision-making. Ultrasound Obstet Gynecol. 2006;27:607–8.

    Article  PubMed  CAS  Google Scholar 

  27. Koutsouleris N, Meisenzahl EM, Davatzikos C, Bottlender R, Frodl T, Scheuerecker J, Schmitt G, Zetzsche T, Decker P, Reiser M, Moller HJ, Gaser C. Use of neuroanatomical pattern classification to identify subjects in at-risk mental states of psychosis and predict disease transition. Arch Gen Psychiatry. 2009;66:700–12. https://doi.org/10.1001/archgenpsychiatry.2009.62.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Breiman L, Friedman J, Stone CJ, Olshen RA. Classification and regression trees. Boca Raton, FL: CRC press; 1984.

    Google Scholar 

  29. Kingsford C, Salzberg SL. What are decision trees? Nat Biotechnol. 2008;26:1011–3. https://doi.org/10.1038/nbt0908-1011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Amit Y, Geman D. Shape quantization and recognition with randomized trees. Neural Comput. 1997;9:1545–88.

    Article  Google Scholar 

  31. Breiman L. Random forests. Mach Learn. 2001;45:5–32.

    Article  Google Scholar 

  32. Ho TK. The random subspace method for constructing decision forests. IEEE Trans Pattern Anal Mach Intell. 1998;20:832–44.

    Article  Google Scholar 

  33. Hastie T, Tibshirani R, Friedman J. The elements of statistical learning: data mining, inference, and prediction. New York, NY: Springer Science & Business Media; 2009.

    Book  Google Scholar 

  34. Kuncheva LI, Whitaker CJ. Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Mach Learn. 2003;51:181–207.

    Article  Google Scholar 

  35. Fernández-Delgado M, Cernadas E, Barro S, Amorim D. Do we need hundreds of classifiers to solve real world classification problems? J Mach Learn Res. 2014;15:3133–81.

    Google Scholar 

  36. Tang C, Garreau D, von Luxburg U. When do random forests fail? In: Advances in neural information processing systems; 2018. p. 2983–93.

    Google Scholar 

  37. Audureau E, Chivet A, Ursu R, Corns R, Metellus P, Noel G, Zouaoui S, Guyotat J, Le Reste PJ, Faillot T, Litre F, Desse N, Petit A, Emery E, Lechapt-Zalcman E, Peltier J, Duntze J, Dezamis E, Voirin J, Menei P, Caire F, Dam Hieu P, Barat JL, Langlois O, Vignes JR, Fabbro-Peray P, Riondel A, Sorbets E, Zanello M, Roux A, Carpentier A, Bauchet L, Pallud J, Club de Neuro-Oncologie of the Societe Francaise de N. Prognostic factors for survival in adult patients with recurrent glioblastoma: a decision-tree-based model. J Neuro-Oncol. 2018;136:565–76. https://doi.org/10.1007/s11060-017-2685-4.

    Article  Google Scholar 

  38. Harrell FE Jr. Regression modeling strategies: with applications to linear models, logistic and ordinal regression, and survival analysis. New York, NY: Springer; 2015.

    Book  Google Scholar 

  39. Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, Zheng S, Chakravarty D, Sanborn JZ, Berman SH, Beroukhim R, Bernard B, Wu CJ, Genovese G, Shmulevich I, Barnholtz-Sloan J, Zou L, Vegesna R, Shukla SA, Ciriello G, Yung WK, Zhang W, Sougnez C, Mikkelsen T, Aldape K, Bigner DD, Van Meir EG, Prados M, Sloan A, Black KL, Eschbacher J, Finocchiaro G, Friedman W, Andrews DW, Guha A, Iacocca M, O’Neill BP, Foltz G, Myers J, Weisenberger DJ, Penny R, Kucherlapati R, Perou CM, Hayes DN, Gibbs R, Marra M, Mills GB, Lander E, Spellman P, Wilson R, Sander C, Weinstein J, Meyerson M, Gabriel S, Laird PW, Haussler D, Getz G, Chin L, Network TR. The somatic genomic landscape of glioblastoma. Cell. 2013;155:462–77. https://doi.org/10.1016/j.cell.2013.09.034.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Frattini V, Trifonov V, Chan JM, Castano A, Lia M, Abate F, Keir ST, Ji AX, Zoppoli P, Niola F, Danussi C, Dolgalev I, Porrati P, Pellegatta S, Heguy A, Gupta G, Pisapia DJ, Canoll P, Bruce JN, McLendon RE, Yan H, Aldape K, Finocchiaro G, Mikkelsen T, Prive GG, Bigner DD, Lasorella A, Rabadan R, Iavarone A. The integrated landscape of driver genomic alterations in glioblastoma. Nat Genet. 2013;45:1141–9. https://doi.org/10.1038/ng.2734.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Oermann EK, Kress MA, Collins BT, Collins SP, Morris D, Ahalt SC, Ewend MG. Predicting survival in patients with brain metastases treated with radiosurgery using artificial neural networks. Neurosurgery. 2013;72:944–51. https://doi.org/10.1227/NEU.0b013e31828ea04b; discussion 952.

    Article  PubMed  Google Scholar 

  42. Duda RO, Hart PE, Stork DG. Pattern classification. New York, NY: John Wiley & Sons; 2012.

    Google Scholar 

  43. Manning C, Schutze H. Foundations of statistical natural language processing. Cambridge, MA: MIT press; 1999.

    Google Scholar 

  44. Ng AY, Jordan MI. On discriminative vs. generative classifiers: a comparison of logistic regression and naive bayes. In: Advances in neural information processing systems; 2002. p. 841–8.

    Google Scholar 

  45. Tunthanathip T, Sae-Heng S, Oearsakul T, Sakarunchai I, Kaewborisutsakul A, Taweesomboonyat C. Machine learning applications for the prediction of surgical site infection in neurological operations. Neurosurg Focus. 2019;47:E7. https://doi.org/10.3171/2019.5.FOCUS19241.

    Article  PubMed  Google Scholar 

  46. Rokach L, Maimon O. Clustering methods. In: Data mining and knowledge discovery handbook. New York, NY: Springer; 2005. p. 321–52.

    Chapter  Google Scholar 

  47. Sneath PH, Sokal RR. Numerical taxonomy. The principles and practice of numerical classification. San Francisco, CA: W.H. Freeman; 1973.

    Google Scholar 

  48. MacQueen J. Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, Oakland, CA, USA, vol. 14; 1967. p. 281–97.

    Google Scholar 

  49. Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B Methodol. 1977;39:1–22.

    Google Scholar 

  50. Ester M, Kriegel H-P, Sander J, Xu X. A density-based algorithm for discovering clusters in large spatial databases with noise. In: Knowledge discovery and data mining, vol. 34; 1996. p. 226–31.

    Google Scholar 

  51. Schubert E, Sander J, Ester M, Kriegel HP, Xu X. DBSCAN revisited, revisited: why and how you should (still) use DBSCAN. ACM Trans Datab Syst. 2017;42:1–21.

    Article  Google Scholar 

  52. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, Alexe G, Lawrence M, O’Kelly M, Tamayo P, Weir BA, Gabriel S, Winckler W, Gupta S, Jakkula L, Feiler HS, Hodgson JG, James CD, Sarkaria JN, Brennan C, Kahn A, Spellman PT, Wilson RK, Speed TP, Gray JW, Meyerson M, Getz G, Perou CM, Hayes DN, Cancer Genome Atlas Research N. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17:98–110. https://doi.org/10.1016/j.ccr.2009.12.020.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, Cahill DP, Nahed BV, Curry WT, Martuza RL, Louis DN, Rozenblatt-Rosen O, Suva ML, Regev A, Bernstein BE. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science (New York, NY). 2014;344:1396–401. https://doi.org/10.1126/science.1254257.

    Article  CAS  Google Scholar 

  54. Wells WM, Grimson WEL, Kikinis R, Jolesz FA. Adaptive segmentation of MRI data. IEEE Trans Med Imaging. 1996;15:429–42.

    Article  PubMed  CAS  Google Scholar 

  55. Plant C, Teipel SJ, Oswald A, Bohm C, Meindl T, Mourao-Miranda J, Bokde AW, Hampel H, Ewers M. Automated detection of brain atrophy patterns based on MRI for the prediction of Alzheimer’s disease. NeuroImage. 2010;50:162–74. https://doi.org/10.1016/j.neuroimage.2009.11.046.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael C. Jin or Anand Veeravagu .

Editor information

Editors and Affiliations

Ethics declarations

The authors report no relevant conflicts of interest or financial relationships.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jin, M.C., Rodrigues, A.J., Jensen, M., Veeravagu, A. (2022). A Discussion of Machine Learning Approaches for Clinical Prediction Modeling. In: Staartjes, V.E., Regli, L., Serra, C. (eds) Machine Learning in Clinical Neuroscience. Acta Neurochirurgica Supplement, vol 134. Springer, Cham. https://doi.org/10.1007/978-3-030-85292-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85292-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85291-7

  • Online ISBN: 978-3-030-85292-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics