Skip to main content

Characterisation of an AFM Tip Bluntness Using Indentation of Soft Materials

Soft Materials Indentation and Tip Charecterisation

  • Chapter
  • First Online:
Contact Problems for Soft, Biological and Bioinspired Materials

Part of the book series: Biologically-Inspired Systems ((BISY,volume 15))

Abstract

Bluntness of tips of atomic force microscopy (AFM) probes may affect the precision of AFM measurements of surface topography and accuracy of AFM nanomachining of solid surfaces. Here, various methods for characterisation of AFM tip bluntness are discussed. The results of experimental studies of AFM probe tips are presented. Both tips are considered; (i) the intact tips as received from factory and (ii) worn tips. The tip bluntness is studied in both vertical position of the probes and in working position when the AFM cantilever is inclined by 12° to the horizontal plane. It is suggested to describe the tips as power-law functions, whose exponent d is used as a characteristic of tip bluntness. It is argued that the load displacement curve of an experimental depth-sensing indentation (DSI) test may be used to extract the quantitative measure of the AFM tip bluntness. The experimental results showed that one has to be careful in selecting proper soft material (polymer) for bluntness estimations because it was observed rather often practically linear load displacement curves. This was explained by existence of a stagnation zone of polymer macromolecules in front of the AFM tip that moves downward together with the indenter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Al-Musawi RSJ, Brousseau E (2016) Assessing the applied normal load during contact mode AFM: an issue with the conventional approach. In: International Conference for Students on Applied Engineering (ICSAE), pp 119–122

    Google Scholar 

  • Al-Musawi RSJ, Brousseau EB, Geng Y, Borodich FM (2016) Insight into mechanics of AFM tip-based nanomachining: bending of cantilevers and machined grooves. Nanotechnology 27:385302

    Article  CAS  PubMed  Google Scholar 

  • Alraziqi ZNR (2017) Express analysis of actual bluntness of AFM probe tips. PhD thesis, Cardiff University, Cardiff

    Google Scholar 

  • Alraziqi ZNR, Brousseau E, Borodich FM (2016) A new metric to assess the tip condition of AFM probes based on three-dimensional data. In: International Conference for Students on Applied Engineering, ICSAE, pp 24–29

    Google Scholar 

  • Bhaskaran H, Gotsmann B, Sebastian A, Drechsler U, Lantz MA, Despont M, Jaroenapibal P, Carpick RW, Chen Y, Sridharan K (2010) Ultralow nanoscale wear through atom-by-atom attrition in silicon-containing diamond-like carbon. Nat Nanotechnol 5:181–185

    Article  CAS  PubMed  Google Scholar 

  • Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933

    Article  CAS  PubMed  Google Scholar 

  • Bloo M, Haitjema H, Pril W (1999) Deformation and wear of pyramidal, silicon-nitride AFM tips scanning micrometre-size features in contact mode. Measurement 25:203–211

    Article  Google Scholar 

  • Borodich FM (1983) Similarity in the problem of contact between elastic bodies. J Appl Math Mech 47:440–442

    Article  Google Scholar 

  • Borodich FM (1989) Hertz contact problems for an anisotropic physically nonlinear elastic medium. Strength Mater 21:1668–1676

    Article  Google Scholar 

  • Borodich FM (1990) Hertz contact problems for an elastic anisotropic half-space with initial stresses. Soviet Appl Mech 26:126–132

    Article  Google Scholar 

  • Borodich FM (1993) The Hertz frictional contact between nonlinear elastic anisotropic bodies (the similarity approach). Int J Solids Struct 30:1513–1526

    Article  Google Scholar 

  • Borodich FM, Keer LM, Korach CS (2003) Analytical study of fundamental nanoindentation test relations for indenters for non-ideal shapes. Nanotechnology 14:803–808

    Article  Google Scholar 

  • Borodich FM, Galanov BA (2004) Molecular adhesive contact for indenters of non-ideal shapes. In: ICTAM04, abstracts book and CD-rom proceedings. IPPT, PAN, Warsaw

    Google Scholar 

  • Borodich FM (2011) Contact problems at nano/microscale and depth sensing indentation techniques. Mater Sci Forum 662:53–76

    Article  Google Scholar 

  • Borodich FM (2014) The Hertz-type and adhesive contact problems for depth-sensing indentation. Adv Appl Mech 47:225–366

    Article  Google Scholar 

  • Borodich FM, Galanov BA, Suarez-Alvarez MM (2014a) The JKR-type adhesive contact problems for power-law shaped axisymmetric punches. J Mech Phys Solids 68:14–32

    Article  Google Scholar 

  • Borodich FM, Galanov BA, Keer LM, Suarez-Alvarez MM (2014b) The JKR-type adhesive contact problems for transversely isotropic elastic solids. Mech Mater 75:34–44

    Article  Google Scholar 

  • Bouchonville N, Nicolas A (2019) Quantification of the elastic properties of soft and sticky materials using AFM. In: Atomic force microscopy. Springer, pp 281–290

    Chapter  Google Scholar 

  • Bykov V, Gologanov A, Shevyakov V (1998) Test structure for SPM tip shape deconvolution. Appl Phys A Mater Sci Process 66:499–502

    Article  CAS  Google Scholar 

  • Carpick RW, Agrait N, Ogletree D, Salmeron M (1996) Measurement of interfacial shear (friction) with an ultrahigh vacuum atomic force microscope. J Vac Sci Technol B: Microelectron Nanometer Struct Process Meas Phenom 14:1289–1295

    Article  CAS  Google Scholar 

  • Chung K-H, Kim D-E (2003) Fundamental investigation of micro wear rate using an atomic force microscope. Tribol Lett 15:135–144

    Article  CAS  Google Scholar 

  • Dongmo L, Villarrubia JS, Jones SN, Renegar TB, Postek MT, Song J-F (2000) Experimental test of blind tip reconstruction for scanning probe microscopy. Ultramicroscopy 85:141–153

    Article  CAS  Google Scholar 

  • Galanov BA (1981a) The approximate solution of certain problems of the elastic contact of two bodies. In: Akademiia Nauk SSSR, Izvestiia, Mekhanika Tverdogo. Tela, pp 61–67

    Google Scholar 

  • Galanov BA (1981b) Approximate solution of some contact problems with unknown contact area under conditions of power-law hardening of the material. In: Akademiia Nauk Ukrains’ koi RSR, Dopovidi, Seriia A-Fiziko-Matematichni ta Tekhnichni Nauki, pp 35–40

    Google Scholar 

  • Galanov BA (1993). Development of analytical and numerical methods for study of models of materials. Report for the project 7.06.00/001-92, 7.06.00/015-92. Institute for Problems in Materials Science, Kiev. (Ukrainian)

    Google Scholar 

  • Galanov BA, Grigoriev ON (1994) Adhesion and wear of diamond. Part I, Modelling. Preprint. Institute Prob. Mat. Sci., Nat. Ac. Sci. Ukraine, Kiev, pp 1–14

    Google Scholar 

  • Gotsmann B, Lantz MA (2008) Atomistic wear in a single asperity sliding contact. Phys Rev Lett 101:125501

    Article  PubMed  CAS  Google Scholar 

  • Grierson DS, Liu J, Carpick RW, Turner KT (2013) Adhesion of nanoscale asperities with power-law profiles. J Mech Phys Solids 61:597–610

    Article  CAS  Google Scholar 

  • Heim L-O, Kappl M, Butt H-J (2004) Tilt of atomic force microscope cantilevers: effect on spring constant and adhesion measurements. Langmuir 20:2760–2764

    Article  CAS  PubMed  Google Scholar 

  • Hoh JH, Lal R, John SA, Revel J-P, Arnsdorf MF (1991) Atomic force microscopy and dissection of gap junctions. Science 253:1405–1408

    Article  CAS  PubMed  Google Scholar 

  • Hutter JL (2005) Comment on tilt of atomic force microscope cantilevers: effect on spring constant and adhesion measurements. Langmuir 21:2630–2632

    Article  CAS  PubMed  Google Scholar 

  • Jacobs TD, Wabiszewski GE, Goodman AJ, Carpick RW (2016) Characterizing nanoscale scanning probes using electron microscopy: a novel fixture and a practical guide. Rev Sci Instrum 87:013703

    Article  PubMed  CAS  Google Scholar 

  • Kalinin SV, Bonnell DA (2002) Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces. Phys Rev B 65:125408

    Article  CAS  Google Scholar 

  • Khurshudov A, Kato K (1995) Wear of the atomic force microscope tip under light load, studied by atomic force microscopy. Ultramicroscopy 60:11–16

    Article  CAS  Google Scholar 

  • Khurshudov A, Kato K (1997) Wear mechanisms in reciprocal scratching of polycarbonate, studied by atomic force microscopy. Wear 205:1–10

    Article  CAS  Google Scholar 

  • Khurshudov AG, Kato K, Koide H (1997) Wear of the AFM diamond tip sliding against silicon. Wear 203:22–27

    Article  Google Scholar 

  • Kindrachuk VM, Galanov BA, Kartuzov VV, Dub SN (2006) On elastic nanoindentation of coated half-spaces by point indenters of non-ideal shapes. Nanotechnology 17:1104

    Article  CAS  PubMed  Google Scholar 

  • Lantz M, O’Shea S, Welland M (1998) Characterization of tips for conducting atomic force microscopy in ultrahigh vacuum. Rev Sci Instrum 69:1757–1764

    Article  CAS  Google Scholar 

  • Ramirez-Aguilar KA, Rowlen KL (1998) Tip characterization from AFM images of nanometric spherical particles. Langmuir 14:2562–2566

    Article  CAS  Google Scholar 

  • Sedin DL, Rowlen KL (2001) Influence of tip size on AFM roughness measurements. Appl Surf Sci 182:40–48

    Article  CAS  Google Scholar 

  • Shaw MC, Cookson J (2005) Metal cutting principles. Oxford University Press, New York

    Google Scholar 

  • Tseng AA, Notargiacomo A, Chen T (2005) Nanofabrication by scanning probe microscope lithography: a review. J Vac Sci Technol B: Microelectron Nanometer Struct Process Meas Phenom 23:877–894

    Article  CAS  Google Scholar 

  • Villarrubia JS (1994) Morphological estimation of tip geometry for scanned probe microscopy. Surf Sci 321:287–300

    Article  CAS  Google Scholar 

  • Yan Y, Xue B, Hu Z, Zhao X (2016) AFM tip characterization by using FFT filtered images of step structures. Ultramicroscopy 160:155–162

    Article  CAS  PubMed  Google Scholar 

  • Yao N, Wang ZL (2005) Handbook of microscopy for nanotechnology. Springer

    Book  Google Scholar 

  • Zheng Z, Yu J (2007) Using the Dugdale approximation to match a specific interaction in the adhesive contact of elastic objects. J Colloid Interface Sci 310:27–34

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sameeh Baqain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baqain, S., Borodich, F.M., Brousseau, E. (2022). Characterisation of an AFM Tip Bluntness Using Indentation of Soft Materials. In: Borodich, F.M., Jin, X. (eds) Contact Problems for Soft, Biological and Bioinspired Materials. Biologically-Inspired Systems, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-030-85175-0_11

Download citation

Publish with us

Policies and ethics