Skip to main content

Thermal Arcs

  • Reference work entry
  • First Online:
Handbook of Thermal Plasmas

Abstract

DC and AC arcs are governed essentially by the same basic features. The periodic change of the polarity at the line frequency in AC arcs obscure, however, the basic phenomena involved. Emphasis is therefore placed on DC arcs in this chapter which is divided into two principal section:

The first deals with the arc column and the electrode regions. This includes the classical Elenbass-Heller model, which provides means for obtaining basic trends of arc column behavior such as the maximum temperature, which is feasible in an arc as function of the power input. This is followed by the Watson model, which represent a simple, single fluid description of an arc column. This section also covers a description of the electrode regions (Cathode and anode) and different current attachment mechanisms.

The second part of this chapter is devoted to the current-voltage characteristics of arcs, and their electrical stability. A classification of the different methods used for stabilizing the arc column is presented. This includes free-burning arcs, self-stabilized arcs, gas – stabilized arcs, wall-stabilized arcs, vortex-stabilized arcs, electrode-stabilized arcs and finally magnetically stabilized arcs.

Emil Pfender: deceased.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AC:

Alternative current

AJD:

Anode jet dominated

CJD:

Cathode jet dominated

DC:

Direct current

i.d.:

Internal diameter

ISPC:

International Symposium on Plasma Chemistry

LTE:

Local Thermodynamic Equilibrium

mfp:

Mean free path

MW:

Microwave

OFHC:

Oxygen-free high-purity copper

RF:

Radio frequency

TIG:

Tungsten Inert Gas

TWD:

Traveling wave discharge

1-D:

One-dimensional

2-D:

Two-dimensional

References

  • Anderson JE, Eckert ERG (1967) Transpiration cooling of a constricted electric-arc heater. AIAA J 5(4):699–706

    Article  Google Scholar 

  • Choi HK, Gauvin WH (1982) Operating characteristics and energy distribution in transferred plasma arc systems. Plasma Chem Plasma Process 2:361–386

    Article  Google Scholar 

  • Coudert JF, Delalondre C, Roumilhac P, Simonin O, Fauchais P (1993) Modeling and experimental study of a transferred arc stabilized with argon and flowing in a controlled-atmosphere chamber filled with argon at atmospheric pressure. Plasma Chem Plasma Process 13(3):399–432

    Article  Google Scholar 

  • Degout D, Catherinot A (1986) Spectroscopic analysis of the plasma created by a double-flux tungsten inert gas (TIG) arc plasma torch. J Phys D Appl Phys 19:811

    Article  Google Scholar 

  • Dinulescu HA, Pfender E (1980) Analysis of the anode boundary layer of high intensity arcs. J Appl Phys 51(6):3149–3157

    Google Scholar 

  • Eberhart RC, Seban RA (1966) The energy balance for a high current argon arc. Int J Heat Mass Transf 9:939–949

    Article  Google Scholar 

  • Ecker G (1961) Electrode components of the arc discharge. Ergebnisse dexakten Naturwiss, Bd. 33, 1. Springer, Germany

    Google Scholar 

  • Edels H (1973) Properties of the high pressure ultrahigh current arc. In: Proceedings of the 11th international conference on phenomena in ionized gases. Invited paper 9. Academy of Sciences, Institute of Physics, Prague

    Google Scholar 

  • Elenbaas W (1935) Ähnlichkeitsgesetze der hochdruckentladung. Physica 2:169–182

    Article  Google Scholar 

  • Finkelnburg W, Maecker H (1956) Elektrische Bögen and thermisches Plasma. In: Flügge S (ed) Encyclopedia of physics, vol XXII. Springer, Germany, p 254

    Google Scholar 

  • Foitzik R (1940) Wiss Veröff Siemens-Konz 19:28

    Google Scholar 

  • Gauvin WH (1989) Some characteristics of transferred-arc plasmas. Plasma Chem Plasma Process 9:65S–84S

    Article  Google Scholar 

  • Gerdien H. and A. Lotz (1923) Z. Tech. Phys. 4:157-169

    Google Scholar 

  • Gleizes A, El Hamidi L, Chervy B, Gonzalez JJ, Razafinimana M (1995) Influence of copper vapor near the anode of an argon transferred arc. In: Proceedings of thermal plasma processes, Aachen G, Sept 1994. (Pub.) V.D.I. Düsseldorf G. Nr 1166, p 49

    Google Scholar 

  • Guile AE (1971) Arc-electrode phenomena. IEEE Rev 118:1131–1154

    Google Scholar 

  • Guile AE (1981) Recent research into the erosion of non-refractory cathodes in arc plasma devices. In: Boenig W (ed) Advances into low temperature plasma chemistry, technology, application, vol 1. Technomic Co. Inc., Ca, USA, p 708

    Google Scholar 

  • Hodnett PF (1969) Stationary electric arc in a cross-flow and traverse magnetic field. Phys Fluids 12(7):1441

    Google Scholar 

  • Kaddani A, Delalondre C, Simonin O, Minoo H (1994) High Temp Chem Processes 3(4):441

    Google Scholar 

  • Kopainsky J (1971) Z Phys 248:405

    Article  Google Scholar 

  • Leveroni E, Pfender E (1991) Investigation of the anode boundary layer of free-burning, high intensity arcs. In: Proceedings of the ASME welding joining processes, winter meeting

    Google Scholar 

  • Leveroni-Calvi E (1985) Electric probe measurements in the boundary layer of thermal arcs: theory and experiments. PhD thesis, Mechanical Engineering Department, University of Minnesota

    Google Scholar 

  • Lin ML (1985) PhD thesis, Department of material science and engineering, MIT. Cambridge, MA, USA

    Google Scholar 

  • Maecker H (1955) Z Phys 141:198

    Article  Google Scholar 

  • Maecker H (1959) Über die Charakteristiken zylindrischer Bögen. Z Phys 157:1–29

    Article  Google Scholar 

  • Maecker H (1960) Messung und Auswertung von Bogencharakteristiken (Ar, N2). Z Phys 158:392–404

    Article  Google Scholar 

  • Maecker H (1971) Principles of arc motion and displacement. Proc IEEE 59(4):439–449

    Article  Google Scholar 

  • Morgensen AB (1987) Electrical and mechanical technology of plasma generation and control. In: Feinman R (ed) Plasma technology in metallurgical processing. Iron and Steel Society of AIME, USA

    Google Scholar 

  • Munz RJ, Habelrich M (1992) Cathode erosion n copper electrodes in steam, hydrogen and oxygen plasmas. Plasma Chem Plasma Process 12(2):203–218

    Article  Google Scholar 

  • Nestor OH (1962) Heat intensity and current density distributions at the anode of high current, inert gas arcs. J Appl Phys 33:1638–1648

    Article  Google Scholar 

  • Peters T (1956) Über den Zusammenhang des Steenbeckschen Minimumprinzips mit dem thermodynamischen Prinzip der minimalen Entropieerzeugung. Z Phys 144:612–631

    Google Scholar 

  • Petrie WT, Pfender E (1970) The influence of the cathode tip on temperature and velocity field in a gas-tungsten arc. J Welding Res Suppl 49:5885

    Google Scholar 

  • Pfender E (1978) Electric arcs and arc gas heaters. In: Hirsh M, Oskam H (eds) Gaseous electronics, vol 1. Academic Press, NY, p 291

    Google Scholar 

  • Pfender E (1993) Plasma heat transfer – a key issue in thermal plasma processing. In: Upadhya K (ed) Proceedings of plasma synthesis and processing of materials. TMS Publication, PA, USA, p 97

    Google Scholar 

  • Sanders NA, Pfender E (1984) Measurement of anode falls and anode heat transfer in atmospheric pressure high intensity arcs. J Appl Phys 55(3):714–722

    Article  Google Scholar 

  • Sanders N, Etemadi K, Hsu KG, Pfender E (1982) Studies of the anode region of a high‐intensity argon arc. J Appl Phys 53(6):4136–4145

    Article  Google Scholar 

  • Schoeck P, Eckert RRG (1961) An investigation of the anode heat transfer in high intensity arcs. In: 5th International conference on phenomena ionized gases, Munich, pp 1812–1818

    Google Scholar 

  • Sheer C, Korman S, Angin DJ, Cahn RP (1974) Fine particles. In: Kuhn WE, Ehretsmann J (eds) 2nd International conference. Electrothermics and Metallurgy Division, Electrochemical Society, Princeton

    Google Scholar 

  • Smith JL, Pfender E (1976) Determination of local anode heat fluxes in high intensity, thermal arcs. IEEE Trans Power Appl Syst PAS-95(2):704

    Google Scholar 

  • Stine HA, Watson VR (1962) The theoretical enthalpy distribution of air in steady flow along the axis of a direct-current electric arc. NASA, TN D-1331

    Google Scholar 

  • Szente RN, Munz RJ, Drouet MG (1987) Effect of the arc velocity on the cathode erosion rate in argon-nitrogen mixtures. J Phys D Appl Phys 20:754–756

    Article  Google Scholar 

  • Teste Ph (1994) Contribution à l’étude de l’érosion des electrodes de torches à plasma, incidence de la structure métallurgique. PhD Thesis, University of Paris VI, Paris France

    Google Scholar 

  • Troi N (1983) PhD thesis, Department of material science and engineering, MIT. Cambridge, MA

    Google Scholar 

  • von Engel (1965) Prediction of the cathodic arc root behavior in a hollow cathode thermal plasma torch, 2nd edn. Clarendon, Oxford

    Google Scholar 

  • Watson VR, Pegot EB (1967) Numerical calculation for the characteristics of a gas flowing axially through a constricted arc. NASA, TD, D-4042

    Google Scholar 

  • Waymouth JR (1971) Electric discharge lamps. M.I.T. Press, Cambridge, MA

    Google Scholar 

  • Winograd YY, Klein JF (1969) Electric arc stabilization in crossed convective and magnetic fields. AIAA J 7(9):1699–1703

    Article  Google Scholar 

  • Young RM, Chyou YP, Fleck E, Pfender E (1983) An experimental arc plasma reactor for the synthesis of refractory materials. In: Boulos M (ed) ISPC-6. University of Sherbrooke, CN, 1, pp 211–217

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maher I. Boulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Boulos, M.I., Fauchais, P.L., Pfender, E. (2023). Thermal Arcs. In: Boulos, M.I., Fauchais, P.L., Pfender, E. (eds) Handbook of Thermal Plasmas. Springer, Cham. https://doi.org/10.1007/978-3-030-84936-8_12

Download citation

Publish with us

Policies and ethics